6,253 research outputs found

    HBV inhibits apoB production via the suppression of MTP expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver dominates the production and secretion of apolipoprotein B (apoB) and evidence shows that liver malfunction induced by hepatitis B virus (HBV) infection could lead to apolipoprotein metabolism disorders. The present study was undertaken to assess the effects of HBV on apoB expression.</p> <p>Methods</p> <p>Clinical examination: serum apoB levels in patients with chronic HBV infection and in healthy individuals were measured by immunoturbidimetry using biochemical analyzer Olympus 5400. Cell study: mRNA and protein expression levels of apoB in HepG2 and HepG2.2.15 cells were measured by RT-PCR and Western blot. Alternatively, HBV infectious clone pHBV1.3 or control plasmid pBlue-ks were tranfected into HepG2 cells, and mRNA and protein expression levels of apoB, as well as the microsomal triglyceride transfer protein (MTP) in tranfected HepG2 cells were also measured by RT-PCR and western blot.</p> <p>Results</p> <p>Serum apoB level was much lower in chronic HBV patients as compared to healthy individuals (P < 0.05). Expression of apoB mRNA and protein was lower in HepG2.2.15 cells than in HepG2 cells. Similarly, expression of apoB mRNA and protein was lower in pHBV1.3 transfected HepG2 cells than in pBlue-ks transfected HepG2 cells. Expression of MTP mRNA and protein in pHBV1.3 transfected HepG2 cells was reduced in a dose-dependent fashion.</p> <p>Conclusion</p> <p>HBV infection plays an inhibitory effect on apoB expression.</p

    Suppressor of Cytokine Signaling-3 (SOCS-3) induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) expression in hepatic HepG2 cell line

    Get PDF
    The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor (TNF-\u3b1). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-\u3b1 and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-\u3b1 induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti- STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF- in a SOCS3-dependent manner

    The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    Get PDF
    BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA(6679 )(RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme

    Metabolic regulation of APOBEC-1 Complementation Factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes

    Get PDF
    AbstractAPOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals

    Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins

    Get PDF
    Background/aims The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. Methods A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naive HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. Results A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. Conclusions This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy

    Human Apolipoprotein B Transgenic Mice Generated with 207- and 145-Kilobase Pair Bacterial Artificial Chromosomes. Evidence that a distant 5'-element confers appropriate transgene expression in the intestine

    Get PDF
    We reported previously that ~80-kilobase pair (kb) P1 bacteriophage clones spanning either the human or mouse apoB gene (clones p158 and p649, respectively) confer apoB expression in the liver of transgenic mice, but not in the intestine. We hypothesized that the absence of intestinal expression was due to the fact that these clones lacked a distant DNA element controlling intestinal expression. To test this possibility, transgenic mice were generated with 145- and 207-kb bacterial artificial chromosomes (BACs) that contained the human apoB gene and more extensive 5'- and 3'-flanking sequences. RNase protection, in situ hybridization, immunohistochemical, and genetic complementation studies revealed that the BAC transgenic mice manifested appropriate apoB gene expression in both the intestine and the liver, indicating that both BACs contained the distant intestinal element. To determine whether the regulatory element was located 5' or 3' to the apoB gene, transgenic mice were generated by co-microinjecting embryos with p158 and either the 5'- or 3'-sequences from the 145-kb BAC. Analysis of these mice indicated that the apoB gene's intestinal element is located 5' to the structural gene. Cumulatively, the transgenic mouse studies suggest that the intestinal element is located between -33 and -70 kb 5' to the apoB gene

    Apolipoprotein E mediates evasion from hepatitis C virus−neutralizing antibodies

    Get PDF
    Background &#38; Aims Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined. Methods We used small interfering RNAs to reduce levels of apolipoprotein E (apoE) in cell culture−derived HCV−producing Huh7.5-derived hepatoma cells and confirmed its depletion by immunoblot analyses of purified viral particles. Before infection of naïve hepatoma cells, we exposed cell culture−derived HCV strains of different genotypes, subtypes, and variants to serum and polyclonal and monoclonal antibodies isolated from patients with chronic HCV infection. We analyzed the interaction of apoE with viral envelope glycoprotein E2 and HCV virions by immunoprecipitation. Results Through loss-of-function studies on patient-derived HCV variants of several genotypes and subtypes, we found that the HCV particle apoE allows the virus to avoid neutralization by patient-derived antibodies. Functional studies with human monoclonal antiviral antibodies showed that conformational epitopes of envelope glycoprotein E2 domains B and C were exposed after depletion of apoE. The level and conformation of virion-associated apoE affected the ability of the virus to escape neutralization by antibodies. Conclusions In cell-infection studies, we found that HCV-associated apoE helps the virus avoid neutralization by antibodies against HCV isolated from chronically infected patients. This method of immune evasion poses a challenge for the development of HCV vaccines

    Ferritin heavy chain Is the host factor responsible for HCV-Induced inhibition of apoB-100 production and is required for efficient viral infection

    Get PDF
    Hepatic fat export occurs by apolipoprotein B-100-containing lipoprotein production, whereas impaired production leads to liver steatosis. Hepatitis C virus (HCV) infection is associated to dysregulation of apoB-100 secretion and steatosis; however, the molecular mechanism by which HCV affects the apoB-100 secretion is not understood. Here, combining quantitative proteomics and computational biology, we propose ferritin heavy chain (Fth) as being the cellular determinant of apoB-100 production inhibition. By means of molecular analyses, we found that HCV nonstructural proteins and NS5A appear to be sufficient for inducing Fth up-regulation. Fth in turn was found to inhibit apoB-100 secretion leading to increased intracellular degradation via proteasome. Notably, intracellular Fth down-regulation by siRNA restores apoB-100 secretion. The inverse correlation between ferritin and plasma apoB-100 concentrations was also found in JFH-1 HCV cell culture systems (HCVcc) and HCV-infected patients. Finally, Fth expression was found to be required for robust HCV infection. These observations provide a further molecular explanation for the onset of liver steatosis and allow for hypothesizing on new therapeutic and antiviral strategies
    • …
    corecore