139 research outputs found

    Cross Z-Complementary Pairs for Optimal Training in Spatial Modulation Over Frequency Selective Channels

    Get PDF
    The contributions of this article are twofold: Firstly, we introduce a novel class of sequence pairs, called “cross Z-complementary pairs (CZCPs),” each displaying zero-correlation zone (ZCZ) properties for both their aperiodic autocorrelation sums and crosscorrelation sums. Systematic constructions of perfect CZCPs based on selected Golay complementary pairs (GCPs) are presented. Secondly, we point out that CZCPs can be utilized as a key component in designing training sequences for broadband spatial modulation (SM) systems. We show that our proposed SM training sequences derived from CZCPs lead to optimal channel estimation performance over frequency-selective channels

    Enhanced Cross Z-Complementary Set and Its Application in Generalized Spatial Modulation

    Full text link
    Generalized spatial modulation (GSM) is a novel multiple-antenna technique offering flexibility among spectral efficiency, energy efficiency, and the cost of RF chains. In this paper, a novel class of sequence sets, called enhanced cross Zcomplementary set (E-CZCS), is proposed for efficient training sequence design in broadband GSM systems. Specifically, an E-CZCS consists of multiple CZCSs possessing front-end and tail-end zero-correlation zones (ZCZs), whereby any two distinct CZCSs have a tail-end ZCZ when a novel type of cross-channel aperiodic correlation sums is considered. The theoretical upper bound on the ZCZ width is first derived, upon which optimal E-CZCSs with flexible parameters are constructed. For optimal channel estimation over frequency-selective channels, we introduce and evaluate a novel GSM training framework employing the proposed E-CZCSs

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    A review on multiplexing schemes for MIMO channel sounding

    Get PDF
    There are three multiplexing schemes for Multi-Input Multi-Output (MIMO) channel sounder Time-division multiplexing (TDM), Code-division multiplexing (CDM) and Frequency-division multiplexing (FDM). The purpose of this paper is comparison overview of multiplexing schemes for MIMO channel sounder. In this paper TDM, FDM and CDM techniques for MIMO channel sounding are considered. TDM, FDM and CDM multiplexing schemes have pros and cons in different aspects. The comparison between multiplexing techniques has been considered in terms of real-time measurement, hardware cost effectiveness and major drawbacks

    A New Construction of Enhanced Cross Z-Complementary Sets With Maximum Zero Correlation Zone

    Get PDF
    Recently, the concept of enhanced cross Zcomplementary sets (E-CZCS) has been proposed for training sequence design in generalized spatial modulation (GSM). Based on generalized Boolean functions, we present a new construction of E-CZCSs having maximum zero correlation zone (ZCZ) width. Based on the proposed E-CZCSs, numerical simulation results indicate that the resultant training sequences lead to superior channel estimation performance in broadband GSM systems

    The Application of Spatial Complementary Code Keying in Point-to-Point MIMO Wireless Communications Systems

    Get PDF

    Generalized DFT: extensions in communications

    Get PDF
    Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) which offers a very limited number of sets to be used in a multicarrier communication system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear phase to non-linear phase, the proposed GDFT provides many possible carrier sets of various lengths with comparable or better performance than DFT. The availability of the rich library of orthogonal constant amplitude transforms with good performance allows people to design adaptive systems where user code allocations are made dynamically to exploit the current channel conditions in order to deliver better performance. For MIMO Radar systems, the ideal case to detect a moving target is when all waveforms are orthogonal, which can provide an accurate estimation. But this is not practical in distributed MIMO radars, where sensors are at varying distances from a target. Orthogonal waveforms with low auto- and cross-correlations are of great interest for MIMO radar applications with distributed antennas. Finite length orthogonal codes are required in real-world applications where frequency selectivity and signal correlation features of the optimal subspace are compromised. In the first part of the dissertation, a method is addressed to design optimal waveforms which meets above requirements for various radar systems by designing the phase shaping function (PSF) of GDFT framework with non-linear phase. Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) has seen a rise in popularity in wireless communication, as it offers a promising choice for high speed data rate transmission. Meanwhile, high peak-to-average power ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced power efficiency in non-linear modules. Such a situation leads to inefficient amplification and increases the cost of the system, or increases in interference and signal distortion. Therefore, PAPR reduction techniques play an essential role to improve power efficiency in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing different aspects proposed in the literature. The trade-off for PAPR reduction in the existing methods is either increased average power and/or added computational complexity. A new PAPR reduction scheme is proposed that implements a pre-designed symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values of the original data symbol alphabets prior to the IFFT operation of an OFDM system at the transmitter. The method formulated with the GDFT offers a low-complexity framework in four proposed cases devised to be independent of original data symbols. Without degrading the bit error rate (BER) performance, it formulates PAPR reduction problem elegantly and outperforms partial transmit sequences (PTS), selected mapping technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the communication scenarios considered in the dissertation
    corecore