1,153 research outputs found

    Including coronary ostia in patient-specific 3D models of the whole aortic valve apparatus, derived from TEE, for biomechanical simulations

    Get PDF
    There is an increasing interest in the numerical modeling and simulation of the aortic valve behavior and functioning, on the different stages involved as healthy, stenotic or replacement procedure. As echocardiography is a ubiquitous and economic modality, the geometric model construction based on such images is therefore of major interest. In this paper, a new patient-specific approach for modeling the complete aortic valve apparatus - derived from parameters extracted from 3D transesophageal echocardiographs -that includes for the first time the left ventricle outflow tract and the coronary ostia, both crucial for proper assessment of valve biomechanical behavior, is presented. An innovative method for characterizing coronary pressures from patient-specific clinical data, to be used as boundary conditions for the numerical simulation is also described. Results from experiments were presented to evaluate the novel aspects of the model, that permits to compare the existing models (non-coronary model NCM) and the proposed new coronary model (CM). Variations of displacement and stress on each leaflet prove the need of considering leaflet asymmetry. Computed quantities in the results sections are within the range of physiological data. This permits to conclude that the proposed aortic valve apparatus model of the aortic valve apparatus improves on previous ones by considering this extremely complex structure in greater detail.Xunta de Galicia | Ref. IN606A-2017/02

    Quantification of leaflet flutter in bioprosthetic heart valves using fluid-structure interaction analysis

    Get PDF
    Many studies have indicated that leaflet fluttering and associated bending in biopros-thetic heart valves (BHVs) is an important criterion in determining the durability of BHVimplants. In this thesis work, a computational methodology for the flutter quantificationof BHV leaflets is presented using an immersogeometric fluid–structure interaction (FSI)framework. The proposed approach is based upon displacement tracking of the BHV leafletfree edges. Integrating over the discrete Fourier transform of free edge displacement data,the energy spectral density is computed for a measure of leaflet flutter. This methodologyseeks to improve approaches used in experimental flutter quantification through utiliza-tion of highly accurate simulation solutions and visualizations to capture a measurement ofleaflet flutter. A set of sampling cases with varying valve material thickness are generatedand FSI-based flutter quantification is performed to investigate the effect of leaflet materialthickness on the presence of flutter and bending in BHVs

    NOVEL STRATEGIES FOR THE MORPHOLOGICAL AND BIOMECHANICAL ANALYSIS OF THE CARDIAC VALVES BASED ON VOLUMETRIC CLINICAL IMAGES

    Get PDF
    This work was focused on the morphological and biomechanical analysis of the heart valves exploiting the volumetric data. Novel methods were implemented to perform cardiac valve structure and sub-structure segmentation by defining long axis planes evenly rotated around the long axis of the valve. These methods were exploited to successfully reconstruct the 3D geometry of the mitral, tricuspid and aortic valve structures. Firstly, the reconstructed models were used for the morphological analysis providing a detailed description of the geometry of the valve structures, also computing novel indexes that could improve the description of the valvular apparatus and help their clinical assessment. Additionally, the models obtained for the mitral valve complex were adopted for the development of a novel biomechanical approach to simulate the systolic closure of the valve, relying on highly-efficient mass-spring models thus obtaining a good trade-off between the accuracy and the computational cost of the numerical simulations. In specific: \u2022 First, an innovative and semi-automated method was implemented to generate the 3D model of the aortic valve and of its calcifications, to quantitively describe its 3D morphology and to compute the anatomical aortic valve area (AVA) based on multi-detector computed tomography images. The comparison of the obtained results vs. effective AVA measurements showed a good correlation. Additionally, these methods accounted for asymmetries or anatomical derangements, which would be difficult to correctly capture through either effective AVA or planimetric AVA. \u2022 Second, a tool to quantitively assess the geometry of the tricuspid valve during the cardiac cycle using multidetector CT was developed, in particular focusing on the 3D spatial relationship between the tricuspid annulus and the right coronary artery. The morphological analysis of the annulus and leaflets confirmed data reported in literature. The qualitative and quantitative analysis of the spatial relationship could standardize the analysis protocol and be pivotal in the procedure planning of the percutaneous device implantation that interact with the tricuspid annulus. \u2022 Third, we simulated the systolic closure of three patient specific mitral valve models, derived from CMR datasets, by means of the mass spring model approach. The comparison of the obtained results vs. finite element analyses (considered as the gold-standard) was performed tuning the parameters of the mass spring model, so to obtain the best trade-off between computational expense and accuracy of the results. A configuration mismatch between the two models lower than two times the in-plane resolution of starting imaging data was yielded using a mass spring model set-up that requires, on average, only ten minutes to simulate the valve closure. \u2022 Finally, in the last chapter, we performed a comprehensive analysis which aimed at exploring the morphological and mechanical changes induced by the myxomatous pathologies in the mitral valve tissue. The analysis of mitral valve thickness confirmed the data and patterns reported in literature, while the mechanical test accurately described the behavior of the pathological tissue. A preliminary implementation of this data into finite element simulations suggested that the use of more reliable patient-specific and pathology-specific characterization of the model could improve the realism and the accuracy of the biomechanical simulations

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    Echocardiographic analysis of a murine model with a mutation in the Nav1.5 channel gene Scn5a

    Get PDF
    Cardiomyopathy is defined as a disorder of heart muscle in terms of structure, function or both. It can be defined as dilated, hypertrophic, arrhythmogenic, restrictive or infiltrative all of which contribute significantly to cardiovascular disease burden. The difference in their presentation, prognosis and treatment is dictated by their underlying pathophysiology and changes on a cellular level which manifests itself on cardiovascular imaging using various modalities. Echocardiography is a very useful and convenient tool for heart imaging. Linking cellular changes to phenotype in real time, echocardiographic imaging is a great clinical need which can potentially unlock the understanding and treatment of complex disease processes. Mutations in the cardiac sodium channel Nav1.5 can lead to long QT syndrome, familial AF, Brugada syndrome or cardiomyopathy. In our experiments, a new murine knock-in model M1875T+/- SCN5A was investigated. This causes a gain of function defect in the Nav1.5 channel leading to altered ion transport across the myocyte membrane. This work is primarily based on the echocardiographic assessment of gross cardiac structure and function of this model. This work also describes methods of histological analysis to be applied in mutant (M1875T+/-) mice. The Visualsonics Vevo 2100 echo system was used to perform echocardiography in 79 mice from both the SV129 and FVB genetic strain background variants. TThe gross differences in wall thickness and chamber dimensions were analysed for the complete cohort. This did not show any difference between young adults of the two groups. However, mature mice (≥25 up to 40 weeks) with the mutation showed significantly larger LV dimensions and volumes during systole and diatole when compared to the wild-type (M1875T+/+) littermates. Analysis of the left atrium and right ventricle revealed no significant differences between the two groups. Some phenotypic changes of the heart are known to manifest with time and therefore the M1875T+/- gene mutation may be associated with the development of cardiomyopathy in older mice. This makes a strong case to further study the effect of this gene mutation in a larger and older sample population

    A systematic approach to 3D echocardiographic assessment of the aortic root

    Get PDF

    Analysis of Blood Flow in Patient-specific Models of Type B Aortic Dissection

    No full text
    Aortic dissection is the most common acute catastrophic event affecting the aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent dilatation and aortic aneurysm formation. The reasons behind the long‐term outcomes of type B aortic dissection are poorly understood. As haemodynamic factors have been involved in the development and progression of a variety of cardiovascular diseases, the flow phenomena and environment in patient‐specific models of type B aortic dissection have been studied in this thesis by applying computational fluid dynamics (CFD) to in vivo data. The present study aims to gain more detailed knowledge of the links between morphology, flow characteristics and clinical outcomes in type B dissection patients. The thesis includes two parts of patient‐specific study: a multiple case cross‐sectional study and a single case longitudinal study. The multiple cases study involved a group of ten patients with classic type B aortic dissection with a focus on examining the flow characteristics as well as the role of morphological factors in determining the flow patterns and haemodynamic parameters. The single case study was based on a series of follow‐up scans of a patient who has a stable dissection, with an aim to identify the specified haemodynamic factors that are associated with the progression of aortic dissection. Both studies were carried out based on computed tomography images acquired from the patients. 4D Phase‐contrast magnetic resonance imaging was performed on a typical type B aortic dissection patient to provide detailed flow data for validation purpose. This was achieved by qualitative and quantitative comparisons of velocity‐encoded images with simulation results of the CFD model. The analysis of simulation results, including velocity, wall shear stress and turbulence intensity profiles, demonstrates certain correlations between the morphological features and haemodynamic factors, and also their effects on long‐term outcomes of type B aortic dissections. The simulation results were in good agreement with in vivo MR flow data in the patient‐specific validation case, giving credence to the application of the computational model to the study of flow conditions in aortic dissection. This study made an important contribution by identifying the role of certain morphological and haemodynamic factors in the development of type B aortic dissection, which may help provide a better guideline to assist surgeons in choosing optimal treatment protocol for individual patient

    Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update

    Get PDF
    Cardiovascular magnetic resonance (CMR) enables assessment and quantification of morphological and functional parameters of the heart, including chamber size and function, diameters of the aorta and pulmonary arteries, flow and myocardial relaxation times. Knowledge of reference ranges ("normal values") for quantitative CMR is crucial to interpretation of results and to distinguish normal from disease. Compared to the previous version of this review published in 2015, we present updated and expanded reference values for morphological and functional CMR parameters of the cardiovascular system based on the peer-reviewed literature and current CMR techniques. Further, databases and references for deep learning methods are included
    corecore