3 research outputs found

    Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging

    Get PDF
    Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 +/- 1.21 mm and 2.27 +/- 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.FCT—Fundacão para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, for funding support through the Programa Operacional Capital Humano (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P Morais) and SFRH/BD/93443/2013 (S Queirós). This work was supported by the projects NORTE-07-0124-FEDER-000017 and NORTE-01-0145-FEDER-000013, co-funded by Programa Operacional Regional do Norte, Quadro de Referência Estratégico Nacional, through Fundo Europeu de Desenvolvimento Regional (FEDER). The authors would also like to acknowledge the EU (FP7) framework program, for the financial support of the DOPPLER-CIP project (grant no. 223615)info:eu-repo/semantics/publishedVersio

    Aortic valve tract segmentation from 3D-TEE using shape-based B-spline explicit active surfaces

    No full text
    A novel semi-automatic algorithm for aortic valve (AV) wall segmentation is presented for 3D transesophageal echocardiography (TEE) datasets. The proposed methodology uses a 3D cylindrical formulation of the B-spline Explicit Active Surfaces (BEAS) framework in a dual-stage energy evolution process, comprising a threshold-based and a localized region-based stage. Hereto, intensity and shape-based features are combined to accurately delineate the AV wall from the ascending aorta (AA) to the left ventricular outflow tract (LVOT). Shape-prior information is included using a profile-based statistical shape model (SSM), and embedded in BEAS through two novel regularization terms: one confining the segmented AV profiles to shapes seen in the SSM (hard regularization) and another penalizing according to the profile's degree of likelihood (soft regularization). The proposed energy functional takes thus advantage of the intensity data in regions with strong image content, while complementing it with shape knowledge in regions with nearly absent image data. The proposed algorithm has been validated in 20 3D-TEE datasets with both stenotic and non-stenotic valves. It was shown to be accurate, robust and computationally efficient, taking less than 1 second to segment the AV wall from the AA to the LVOT with an average accuracy of 0.78 mm. Semi-automatically extracted measurements at four relevant anatomical levels (LVOT, aortic annulus, sinuses of Valsalva and sinotubular junction) showed an excellent agreement with experts' ones, with a higher reproducibility than manually-extracted measures.FCT - Fundacão para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, for funding support through the Programa Operacional Capital Humano (POCH)info:eu-repo/semantics/publishedVersio
    corecore