803 research outputs found

    Bioavailability of the amino acid-attached prodrug as a new anti-HIV agent in rats

    Get PDF
    The primary objective of this study was to compare the pharmacokinetics of a new anti-human immunodeficiency virus agent 1-(2-amino-pyridin-4-ylmethyl)-6-(3,5-dimethyl-benzoyl)-5-isopropyl-1H-pyrimidine-2,4-dione (VP-0502) with its amino acid prodrug alanine amide of VP-0502 (VP-0502AL), following intravenous and oral administrations to rats. The plasma concentrations of both analytes were analyzed via high-performance liquid chromatography coupled with photodiode-array detection (HPLC-DAD). When VP-0502 was intravenously administered at 20 mg/kg, the analyte appeared in low levels with an AUC of 0.3 µg · h/ml, and C0 of 0.2 µg/ml in plasma. However, both the prodrug VP-0502AL and its metabolite VP-0502 appeared at comparatively higher levels following intravenous injection of VP-0502AL at the same dose. VP-0502AL's pharmacokinetic parameters were Vd: 4.6 l/kg; AUC: 3 µg · h/ml; t1/2: 0.5 h; C0: 6 µg/ml; CLtot: 7 l/h/kg; and MRT: 0.6 h. Following oral administration of VP-0502 (100 mg/kg), it was not detectable in plasma (<50 ng/ml), while after the oral administration of VP-0502AL, VP-0502 was quantitatively detected as an active metabolite for the first 7 h, with a maximum plasma concentration (Cmax) of 0.8 µg/ml, and an area under the concentration-time curve (AUC) of 2 µg · h/ml. The oral pharmaco-kinetic parameters of VP-0502AL were calculated to be: maximum concentration time (tmax) 2.7 h; Cmax 0.2 µg/ml; elimination half-life (t1/2): 0.8 h; and AUC 0.5 µg · h/ml. Overall the findings indicate that VP-0502AL has a favorable pharmacokinetic profile as a prodrug with rapid transformation into the active metabolite, and that the attachment of the amino acid alanine to VP-0502 is an effective approach to improve its oral bioavailability. VP-0502AL is predicted to become a new highly bioavailable anti-AIDS drug candidate and/or lead compound

    Grid Potential Analysis and Docking Studies on a Dataset of N-Arylsulfonyl-3-AcetylIndoles as Anti-HIV Agent

    Get PDF
    A grid potential analysis employing the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecules of N-arylsulfonyl-3-acetylindoles as anti-HIV agent. The molecular docking simulations were also employed to position the inhibitors to their binding site to determine the most appropriate binding mode for different conformations of molecule. The uniqueness of AutoGPA module is that it automatically builds the 3D-QSAR model on the pharmacophore based molecular alignment. The best AutoGPA 3D-QSAR model obtained in the present study gives the cross-validated q2 value of 0.588 and r2pred value of 0.701 among the fifty six 3D-QSAR model developed. Furthermore, the steric and electrostatic contour maps for AutoGPA model along with the 3D structure of protein (binding residue of active site) inlaid were obtained to better understand the structural requirements against HIV and interaction between binding residues of protein and inhibitors. The study shows that hydrophobic and hydrogen bonding potential groups are favorable for optimization of parent nucleus for better activity

    Phase I/II Clinical Trials Using Gene-Modified Adult Hematopoietic Stem Cells for HIV: Lessons Learnt

    Get PDF
    Gene therapy for individuals infected with HIV has the potential to provide a once-only treatment that will act to reduce viral load, preserve the immune system, and mitigate cumulative toxicities associated with highly active antiretroviral therapy (HAART). The authors have been involved in two clinical trials (phase I and phase II) using gene-modified adult hematopoietic stem cells (HSCs), and these are discussed as prototypic trials within the general field of HSC gene therapy trials for HIV. Taken as a group these trials have shown (i) the safety of both the procedure and the anti-HIV agents themselves and (ii) the feasibility of the approach. They point to the requirement for (i) the ability to transduce and infuse as many as possible gene-containing HSC and/or (ii) high engraftment and in vivo expansion of these cells, (iii) potentially increased efficacy of the anti-HIV agent(s) and (iv) automation of the cell processing procedure

    A Randomized, Placebo Controlled, Double Masked Phase IB Study Evaluating the Safety and Antiviral Activity of Aprepitant, a Neurokinin-1 Receptor Antagonist in HIV-1 Infected Adults

    Get PDF
    Neurokinin-1 receptor (NK1R) antagonists have anti-HIV activity in monocyte-derived macrophages, decrease CCR5 expression and improve natural killer cell function ex vivo. Aprepitant is a NK1R antagonist approved by FDA as an antiemetic.We conducted a phase IB randomized, placebo controlled, double masked study to evaluate the safety, antiviral activity, pharmacokinetics and immune-modulatory effects of aprepitant in HIV-infected adults not receiving antiretroviral therapy, with CD4+ cell count ≥350 cells/mm(3) and plasma viral load ≥2,000 copies/ml. Subjects were stratified by viral load (< vs. ≥20,000 copies/ml) and randomized within each stratum to receive aprepitant at 125 mg QD(Low), or 250 mg QD(High), or placebo(PL) for 14 days, and followed for 42 days.Thirty subjects were randomized and 27 completed treatment (9, 8, 10 subjects in 125 (Low), 250 (High), and PL groups). 63% were male; 37% white; mean (SD) age 43 (9.3) years. Geometric mean baseline viral load (copies/ml) for Low, High, and PL was 15,709, 33,013, and 19,450, respectively. Mean (95%CI) change in log10 viral load at day 14 for Low, High, and PL was -0.02(-0.24,+0.20), -0.05(-0.21,+0.10), and +0.04(-0.08,+0.16), respectively. The number of subjects with AEs was 4(44.4%), 5(62.5%), and 1(10%) for Low, High, and PL. No Grade 4 AEs occurred.Adverse events of aprepitant were more common in the treated groups. At the dose used in this two-week phase IB study, aprepitant showed biological activity, but no significant antiviral activity.ClinicalTrials.gov NCT00428519

    The utility of self-emulsifying oil formulation to improve the poor solubility of the anti HIV drug CSIC

    Get PDF
    BACKGROUND: CSIC (5-chloro-3-phenylsulfonylindole-2-carboxamide), a non-nucleoside reverse transcriptase inhibitor (NNRTI) has not been advanced as a therapeutic anti-HIV candidate drug due to its low aqueous solubility and poor bioavailability. OBJECTIVE: The objective of this work was to formulate CSIC into self-emulsifying oil formulations for the purpose of improving its aqueous solubility and evaluating in vitro antiretroviral activity. METHODS: CSIC self-emulsifying oil formulations (SEFs) were formulated and evaluated for droplet size, zeta potential, polydispersity index (PDI), viscosity, emulsification time, stability and bioactivity. RESULTS: Results showed significantly improved solubility of CSIC in the SEFs.The concentration of co-surfactant affected the droplet size, zeta potential and polydispersity index. In vitro bioactivity studies showed that the CSIC SEFs retained full anti-HIV activity. CONCLUSION: The in vitro data from this first attempt to formulate CSIC SEFs suggest that improvement on the aqueous solubility of CSIC through this delivery system may accentuate its antiretroviral effectiveness in vivo via bioavailability enhancement. The formulation is therefore intended as an oral anti-HIV agent for prophylactic and therapeutic uses

    Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity

    Get PDF
    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2′-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino–imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol–imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pK[subscript a] of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.National Science Foundation (U.S.) (Grant CHE-1212557)National Science Foundation (U.S.) (Grant CHE-1414486)National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant P41-EB015871)National Institutes of Health (U.S.) (Traineeship T32 ES007020)National Institutes of Health (U.S.) (Grant CA080024)National Institutes of Health (U.S.) (Grant CA26731

    Health Impacts of Traditional Medicines and Bio-prospecting: A World Scenario Accentuating Bhutan's Perspective

    Get PDF
    Life without natural products is unimaginable. It has provided mankind with oxygen, water, fire, food, clothing, shelter and medicine. Its public health impact is considerably high, especially of traditional medicines and nature-based modern drugs. The traditional medicines, despite its limitations, are addressing the health needs of millions of people worldwide. It is estimated that about 65-85% of the world population uses traditional medicines for their primary health cares. It is also estimated that about 39% of all 520 new approved drugs in 1983-1994 were natural products and out of that 74% were discovered as a result of bio-prospecting from plants used in traditional medicines. Traditional medicines are increasingly getting more popular mainly because: a) it is holistic system with less side effects; b) it is evolving as an evidence-based medicine; c) its ethno-medical knowledge is applicable to modern drug discovery programs. As there are many diseases that cannot be cured by the existing drugs and as there are increasing cases of drug resistance, there is urgent need for drugs that are effective against these pathogens. Probably, traditional medicines could provide a solution in fighting them both as a health care delivery mechanism and as a means of chemotherapeutic pool. Bhutan is fortunate to be gifted with rich natural bio-diversity and rich traditional medical knowledge. The positive health impacts of the Bhutanese traditional medicines are resoundingly felt by Bhutanese. Besides, there is huge potential for bio-prospecting in Bhutan. This paper highlights world scenario on the health impacts of the: 1) natural product-based traditional medicines, 2) the natural product-based drug discoveries, and 3) Bhutanese traditional medicine and potential of bio-prospecting in Bhutan

    Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles for Prevention of HIV-1 Infection

    Get PDF
    The objective of this investigation was to develop and evaluate a nano-microbicide containing a combination of cellulose acetate phthalate (HIV-1 entry inhibitor) and efavirenz (anti-HIV agent) for HIV prophylaxis. Cellulose acetate phthalate-efavirenz combination nanoparticles (CAP-EFV-NPs) were fabricated by the nanoprecipitation method and were characterized for particle size, zeta potential and encapsulation efficiency of efavirenz. CAP-EFV-NPs were incorporated into a thermosensitive gel (CAP-EFV-NP-Gel). CAP-EFV-NPs, CAP-EFV-NP-Gel and efavirenz solution were evaluated for cytotoxicity to HeLa cells and for in vitro short-term (1-day) and long-term (3-day) prophylaxis against HIV-1 infection in TZM-bl cells. CAP-EFV-NPs had size \u3c 100 nm, negative surface charge and encapsulation efficiency of efavirenz was \u3e 98%. CAP-EFV-NPs and CAP-EFV-NP-Gel were significantly less toxic (P \u3c 0 01) to HeLa cells as compared to efavirenz solution. CAP-EFV-NPs showed significantly higher prophylactic activity (P \u3c 0 01) against HIV-1 infection to TZM-bl cells as compared to efavirenz solution and blank CAP nanoparticles. CAP-EFV-NP-Gel can be a promising nano-microbicide for long-term HIV prophylaxis

    Получение и анти-ВИЧ активность β-галактозилсфингозина

    Get PDF
    Β-Galactosylsphingosine a potential anti-HIV agent, has been prepared from pig brain cerebrosides and tested for antiviral activity. HIV-inhibitory properties of this compound, predicted previously by molecular modeling, have been confirmed. Consequently, the glycolipid obtained is considered as a promising basic structure for designing its more efficient derivatives.На основе цереброзидов, выделенных из мозга свиньи, получен гликолипид β-галактозилсфингозин - потенциальный анти-ВИЧ-агент - и проведено его тестирование на противовирусную активность, которое подтвердило ВИЧ-ингибирующие свойства соединения, предсказанные ранее методами молекулярного моделирования. В связи с этим полученный гликолипид рассматривается как перспективная базовая структура для создания его более эффективных модифицированных форм

    HIV-1 Neutralization Profile and Plant-Based Recombinant Expression of Actinohivin, an Env Glycan-Specific Lectin Devoid of T-Cell Mitogenic Activity

    Get PDF
    The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility. Two validated assay systems based on human peripheral blood mononuclear cell (hPBMC) infection with primary isolates and TZM-bl cell infection with Env-pseudotyped viruses were employed to characterize AH's anti-HIV-1 activity. In hPMBCs, AH exhibited nanomolar neutralizing activity against primary viruses with diverse cellular tropisms, but did not cause mitogenicity or cytotoxicity that are often associated with other anti-HIV lectins. In the TZM-bl-based assay, AH showed broad anti-HIV-1 activity against clinically-relevant, mucosally transmitting strains of clades B and C. By contrast, clade A viruses showed strong resistance to AH. Correlation analysis suggested that HIV-1′s AH susceptibility is significantly linked to the N-glycans at the Env C2 and V4 regions. For recombinant (r)AH expression, we evaluated a tobacco mosaic virus-based system in Nicotiana benthamiana plants as a means to facilitate molecular engineering and cost-effective mass production. Biochemical analysis and an Env-mediated syncytium formation assay demonstrated high-level expression of functional rAH within six days. Taken together, our study revealed AH's cross-clade anti-HIV-1 activity, apparent lack of side effects common to lectins, and robust producibility using plant biotechnology. These findings justify further efforts to develop rAH toward a candidate HIV-1 microbicide
    corecore