6,600 research outputs found

    Performance Gains of Optimal Antenna Deployment for Massive MIMO Systems

    Full text link
    We consider the uplink of a single-cell multi-user multiple-input multiple-output (MIMO) system with several single antenna transmitters/users and one base station with NN antennas in the NN\rightarrow\infty regime. The base station antennas are evenly distributed to nn admissable locations throughout the cell. First, we show that a reliable (per-user) rate of O(logn)O(\log n) is achievable through optimal locational optimization of base station antennas. We also prove that an O(logn)O(\log n) rate is the best possible. Therefore, in contrast to a centralized or circular deployment, where the achievable rate is at most a constant, the rate with a general deployment can grow logarithmically with nn, resulting in a certain form of "macromultiplexing gain." Second, using tools from high-resolution quantization theory, we derive an accurate formula for the best achievable rate given any nn and any user density function. According to our formula, the dependence of the optimal rate on the user density function ff is curiously only through the differential entropy of ff. In fact, the optimal rate decreases linearly with the differential entropy, and the worst-case scenario is a uniform user density. Numerical simulations confirm our analytical findings.Comment: GLOBECOM 201

    Performance Analysis of Millimeter Wave Massive MIMO Systems in Centralized and Distributed Schemes

    Get PDF
    This paper considers downlink multi-user millimeter-wave massive multiple-input multiple-output (MIMO) systems in both centralized and distributed configurations, referred to as C-MIMO and D-MIMO, respectively. Assuming the fading channel is composite and comprised of both large-scale fading and small-scale fading, a hybrid precoding algorithm leveraging antenna array response vectors is applied into both the C-MIMO system with fully connected structure and the D-MIMO system with partially connected structure. First, the asymptotic spectral efficiency (SE) of an arbitrary user and the asymptotic average SE of the cell for the C-MIMO system are analyzed. Then, two radio access unit (RAU) selection algorithms are proposed for the D-MIMO system, based on minimal distance (D-based) and maximal signal-to-interference-plus-noise-ratio (SINR) (SINR-based), respectively. For the D-MIMO system with circular layout and D-based RAU selection algorithm, the upper bounds on the asymptotic SE of an arbitrary user and the asymptotic average SE of the cell are also investigated. Finally, numerical results are provided to assess the analytical results and evaluate the effects of the numbers of total transmit antennas and users on system performance. It is shown that, from the perspective of the cell, the D-MIMO system with D-based scheme outperforms the C-MIMO system and achieves almost alike performance compared with the SINR-based solution while requiring less complexity.Peer reviewe

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Get PDF
    In this paper, we proposed a newly modified cuckoo search (MCS) algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL) and/or nulls control. The basic cuckoo search (CS) algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA) techniques include particle swarm optimization (PSO) and genetic algorithms (GA)

    Performance analysis and optimal cooperative cluster size for randomly distributed small cells under cloud RAN

    Get PDF
    One major advantage of cloud/centralized radio access network is the ease of implementation of multi-cell coordination mechanisms to improve the system spectrum efficiency (SE). Theoretically, large number of cooperative cells lead to a higher SE; however, it may also cause significant delay due to extra channel state information feedback and joint processing computational needs at the cloud data center, which is likely to result in performance degradation. In order to investigate the delay impact on the throughput gains, we divide the network into multiple clusters of cooperative small cells and formulate a throughput optimization problem. We model various delay factors and the sum-rate of the network as a function of cluster size, treating it as the main optimization variable. For our analysis, we consider both base stations' as well as users' geometric locations as random variables for both linear and planar network deployments. The output signal-to-interference-plus-noise ratio and ergodic sum-rate are derived based on the homogenous Poisson point processing model. The sum-rate optimization problem in terms of the cluster size is formulated and solved. Simulation results show that the proposed analytical framework can be utilized to accurately evaluate the performance of practical cloud-based small cell networks employing clustered cooperation
    corecore