36 research outputs found

    Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice.

    Get PDF
    This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice). © 2020 by the authors

    New frontiers in ocean exploration: the E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Raineault, N.A., and J. Flanders, eds. (2020). New frontiers in ocean exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season. Oceanography 33(1), supplement, 122 pp., https://doi.org/10.5670/oceanog.2020.supplement.01.New Frontiers in Ocean Exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 Field Season is the tenth consecutive supplement on ocean exploration to accompany Oceanography. These booklets provide details about the innovative technologies deployed to investigate the seafloor and water column and explain how telepresence can both convey the excitement of ocean exploration to global audiences and allow scientists as well as the public on shore to participate in expeditions in real time. The supplements also describe the variety of educational programs the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, and the Schmidt Ocean Institute support in conjunction with schools, museums, visitors centers, and aquariums, as well as internships that bring high school students, undergraduates, graduate students, teachers, and artists on board ships. Through these supplements, we have explored the geology, chemistry, biology, and archaeology of parts of the global ocean and seas. We hope you enjoy this booklet and share it widely.Support for this publication is provided by the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, the National Marine Sanctuary Foundation, and the Schmidt Ocean Institute

    Exploration of the Southern California Borderland

    Get PDF
    E/V Nautilus cruise NA075 returned to the Southern California Continental Borderland, an area that remains largely unexplored. Part of the broader North America-Pacific plate boundary, this region extends ~300 km west of the San Andreas Fault and displays an unusually rugged physiography. During the cruise, the multibeam sonar mapped ~5,200 km2 of seafloor, and ROVs Hercules and Argus were deployed for 16 dives to explore geological and biological targets (Figure 1) and collect samples

    \u3cem\u3eNautilus\u3c/em\u3e Sample 2016: New Techniques and Partnerships

    Get PDF
    In 2016, E/V Nautilus and the ROV Hercules collected 549 geological, biological, and water samples (2,022 subsamples) to characterize several US West Coast national marine sanctuaries, the Cascadia margin, and offshore southern California. Most samples are archived at partnering repositories: geological samples to the Marine Geological Samples Lab at the University of Rhode Island and biological samples to Harvard University’s Museum of Comparative Zoology. The national marine sanctuary samples were split between these repositories and the California Academy of Sciences. During this field season, we experimented with new sampling methods to improve exploration efficiency and robustness

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection

    Customized vibration generator for state of health monitoring of prosthetic implants and pseudo-bionic machine-human feedbacks

    Get PDF
    Modern industrial, household and other equipment include sophisticated power mechanisms and complicated control solutions that require tighter human-machine-human interactions to form the structures known as cyber-physical-human systems. Their significant parts are human-machine command links and machine-human feedbacks. Such systems are found in medicine, e.g., in orthopedics, where they are important for the operation and functional abilities of orthopedic devices-wheelchair, prosthesis, rehabilitation units, etc. The mentioned feedbacks may be implemented based on the haptic perceptions that requires vibration actuators. In orthopedics, such actuators can be used also for diagnostic purposes. This research brings forward the idea of the use of 3D printing in conjunction with high quality permanent magnets. This allows for the achievement of better efficiency, smaller size, and the developing of actuators individually for particular circumstances. The obtained simulation, experimental data, and data about 3D manufacturing generally confirm the above hypothesis. In particular, the stiffness coefficient of the actuator's membrane and attached mass, which can be changed easily during 3D printing, affects the frequency of maximal power output. Secondly, the 3D manufacturing process is quick, tunable and rather cheap. Finally, an elaboration of the design of the actuator that allows for the real-time modification of stiffness and mass in a program way is planned for future workspublishersversionPeer reviewe

    Minimally Invasive Expeditionary Surgical Care Using Human-Inspired Robots

    Get PDF
    This technical report serves as an updated collection of subject matter experts on surgical care using human-inspired robotics for human exploration. It is a summary of the Blue Sky Meeting, organized by the Florida Institute for Human and Machine Cognition (IHMC), Pensacola, Florida, and held on October 2-3, 2018. It contains an executive summary, the final report, all of the presentation materials, and an updated reference list

    Oceanus.

    Get PDF
    v. 34, no. 1 (1991

    Distant Operational Care Centre: Design Project Report

    Get PDF
    The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote habitats

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 384)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 372 through 383 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number
    corecore