98 research outputs found

    Dynamic Metric OSPF-Based Routing Protocol for Software Defined Networks

    Full text link
    [EN] Routing protocols are needed in networking to find the optimal path to reach the destination. However, networks are changing both their use finality and their technology. Paradigms like Software Defined Networks (SDNs) introduce the possibility and the necessity to improve the routing protocols. In this paper, a modification of the Open Shortest Path First (OSPF) routing protocol is proposed in order to allow the protocol to change the metric calculation dynamically according to the network requirements. Experiments, which compare our proposal against the OSPF protocol, are performed in five different scenarios. In these scenarios, the performance of the multimedia traffic has been increased 33% in terms of bandwidth utilization, 80% of loss rate reduction and delay reduction on VoIP communications.This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2015)". Grant No. FPU15/06837, by the "Ministerio de Economia y Competitividad", through the "Convocatoria 2014. Proyectos I+D - Programa Estatal de Investigacion Cientifica y Tecnica de Excelencia" in the "Subprograma Estatal de Generacion de Conocimiento", project TIN2014-57991-C3-1-P, through the "Convocatoria 2016 - Proyectos I+D+I - Programa Estatal De Investigacion, Desarrollo e Innovacion Orientada a los retos de la sociedad" (Project TEC2016-76795-C6-4-R) and through the "Convocatoria 2017 - Proyectos I+D+I - Programa Estatal de Investigacion, Desarrollo e Innovacion, convocatoria excelencia" (Project TIN2017-84802-C2-1-P).Rego Mañez, A.; Sendra, S.; Jimenez, JM.; Lloret, J. (2019). Dynamic Metric OSPF-Based Routing Protocol for Software Defined Networks. Cluster Computing. 22(3):705-720. https://doi.org/10.1007/s10586-018-2875-7S705720223Coltun, R., Ferguson, D., Moy, J.: OSPF for IPv6, RFC 5340. https://doi.org/10.17487/rfc5340 , July 2008. https://rfc-editor.org/rfc/rfc5340.txtSoftware-Defined Networking (SDN) Definition. https://www.opennetworking.org/sdn-definition/ . Accessed 15 Dec 2017Jimenez, J.M., Romero, O., Rego, A., Dilendra, A., Lloret, J.: Study of multimedia delivery over software defined networks. Netw. Protoc. Algorithms 7(4), 37–62 (2015). https://doi.org/10.5296/npa.v7i4.8794Egea, S., Rego, A., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Intelligent IoT traffic classification using novel search strategy for fast based-correlation feature selection in industrial environments. IEEE Internet Things J. 5(3), 1616–1624 (2018). https://doi.org/10.1109/JIOT.2017.2787959Rego, A., Sendra, S., Jimenez, J.M., Lloret J.: OSPF routing protocol performance in software defined networks. In: Fourth International Conference on Software Defined Systems (SDS 2017), 8–11 May 2017, Valencia, Spain, https://doi.org/10.1109/SDS.2017.7939153Sendra, S., Fernández, P.A., Quilez, M.A., Lloret, J.: Study and performance of interior gateway IP routing protocols. Netw. Protoc. Algorithms 2(4), 88–117 (2010). https://doi.org/10.5296/npa.v2i4.547Rakheja, P., Kaour, P., Gupta, A., Sharma, A.: Performance analysis of RIP, OSPF, IGRP and EIGRP routing protocols in a network. Int. J. Comput. Appl. 48(18), 6–11 (2012). https://doi.org/10.5120/7446-0401Sendra, S., Rego, A., Lloret, J., Jimenez, J.M., Romero, O.: Including artificial intelligence in a routing protocol using software defined networks. In: IEEE International Conference on Communications Workshops (ICC Workshops 2017), 21–25 May 2017, Paris, France. https://doi.org/10.1109/ICCW.2017.7962735Barbancho, J., León, C., Molina, J., Barbancho, A., SIR: a new wireless sensor network routing protocol based on artificial intelligence. In: Advanced Web and Network Technologies, and Applications. APWeb 2006. Lecture Notes in Computer Science (LNCS), vol. 3842, pp. 271–275. https://doi.org/10.1007/11610496_35Barbancho, J., León, C., Molina, F.J., Barbancho, A.: Using artificial intelligence in wireless sensor routing protocols. In: Knowledge-Based Intelligent Information and Engineering Systems. (KES 2006). Lecture Notes in Computer Science, vol. 4251, pp. 475–482. Springer, New York. https://doi.org/10.1007/11892960_58Arabshahi, P., Gary, A., Kassabalidis, I., Das, A., Narayanan, S., Sharkawi, M.E., Marks, R.J.: Adaptive routing in wireless communication networks using swarm intelligence. In: AIAA 19th Annual Satellite Communications System Conference, Toulouse, France, April 17, 2001Gunes, M., Sorges, U., Bouazizi I.: ARA-the ant-colony based routing algorithm for MANETs. In: International Conference on Parallel Processing Workshops, Vancouver, BC, Canada, 21–21 Aug 2002. https://doi.org/10.1109/ICPPW.2002.1039715Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198 (2010). https://doi.org/10.1007/s11721-010-0040-xRajagopalan, S., Shen, C.: ANSI: a swarm intelligence-based unicast routing protocol for hybrid ad hoc networks. J. Syst. Archit. 52(8–9), 485–504 (2006). https://doi.org/10.1016/j.sysarc.2006.02.006RFC 3561 Ad hoc On-Demand Distance Vector (AODV) Routing, July 2003. https://www.rfc-editor.org/info/rfc3561 . Accessed 08 may 2018Zungeru, A.M., Ang, L., Seng, K.P.: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison. J. Netw. Comput. Appl. 35(5), 1508–1536 (2012). https://doi.org/10.1016/j.jnca.2012.03.004Karaboga, D., Okdem, S., Ozturk, C.: Cluster based wireless sensor network routing using artificial bee colony algorithm. Wirel. Netw. 18(7), 847–860 (2012). https://doi.org/10.1007/s11276-012-0438-zGinsberg, L., Litkowski, S., Previdi, S.: IS-IS route preference for extended IP and IPv6 reachability, RFC 7775. https://doi.org/10.17487/rfc7775 , February 2016. https://www.rfc-editor.org/rfc/rfc7775.txtRekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (BGP-4), RFC 4271. https://doi.org/10.17487/rfc4271 . Jan 2006. https://rfc-editor.org/rfc/rfc4271.txtCaria, M., Das, T., Jukan, A.: Divide and conquer: partitioning OSPF networks with SDN. In: IFIP/IEEE International Symposium on Integrated Network Management (IM 2015), 11–15 May, Ottawa (ON), Canada, 2015. https://doi.org/10.1109/INM.2015.7140324Rothenberg, C.E., Nascimento, M.R., Salvador, M.R., Corrêa, C.N.A., Cunha de Lucena, S., Raszuk, R.: Revisiting routing control platforms with the eyes and muscles of software-defined networking. In: HotSDN ‘12 Proceedings of the first workshop on Hot topics in software defined networks, August 13–17 (2012), Helsinki (Finland), pp. 13–18. https://doi.org/10.1145/2342441.2342445Zhu, M., Cao, J., Pang, D., He, Z., Xu, M.: SDN-based routing for efficient message propagation in VANET, In: Wireless Algorithms, Systems, and Applications (WASA 2015), Lecture Notes in Computer Science, vol. 9204, pp. 788–797. https://doi.org/10.1007/978-3-319-21837-3_77Ye, T., Hema, T.K., Kalyanaraman, S., Vastola, K.S, Yadav S.: Minimizing packet loss by optimizing OSPF weights using online simulation. Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. In: 11th IEEE/ACM International Symposium on, Orlando, FL, USA, 27 Oct 2003. https://doi.org/10.1109/MASCOT.2003.1240645O’Halloran, C.: Dynamic adaptation of OSPF interface metrics based on network load. In: 26th Irish Signals and Systems Conference (ISSC), Ireland, Jun 2015. https://doi.org/10.1109/ISSC.2015.7163767Şimşek, M., Doğan, N., Akcayol, M.A.: A new packet scheduling algorithm for real-time multimedia streaming. Netw. Protoc. Algorithms 9(1–2), 28–47 (2017). https://doi.org/10.5296/npa.v9i1-2.12410Sanchez-Iborra, R., Cano, M.D., Garcia-Haro, J.: Revisiting VoIP QoE assessment methods: are they suitable for VoLTE? Netw. Protoc. Algorithms 8(2), 39–57 (2016). https://doi.org/10.5296/npa.v8i2.912

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Termite inspired algorithm for traffic engineering in hybrid software defined networks

    Get PDF
    In the era of Internet of Things and 5G networks, handling real time network traffic with the required Quality of Services and optimal utilization of network resources is a challenging task. Traffic Engineering provides mechanisms to guide network traffic to improve utilization of network resources and meet requirements of the network Quality of Service (QoS). Traditional networks use IP based and Multi-Protocol Label Switching (MPLS) based Traffic Engineering mechanisms. Software Defined Networking (SDN) have characteristics useful for solving traffic scheduling and management. Currently the traditional networks are not going to be replaced fully by SDN enabled resources and hence traffic engineering solutions for Hybrid IP/SDN setups have to be explored. In this paper we propose a new Termite Inspired Optimization algorithm for dynamic path allocation and better utilization of network links using hybrid SDN setup. The proposed bioinspired algorithm based on Termite behaviour implemented in the SDN Controller supports elastic bandwidth demands from applications, by avoiding congestion, handling traffic priority and link availability. Testing in both simulated and physical test bed demonstrate the performance of the algorithm with the support of SDN. In cases of link failures, the algorithm in the SDN Controller performs failure recovery gracefully. The algorithm also performs very well in congestion avoidance. The SDN based algorithm can be implemented in the existing traditional WAN as a hybrid setup and is a less complex, better alternative to the traditional MPLS Traffic Engineering setup. Document type: Articl

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks

    Full text link
    [ES] La presente tesis aborda el problema del encaminamiento en las redes definidas por software (SDN). Específicamente, aborda el problema del diseño de un protocolo de encaminamiento basado en inteligencia artificial (AI) para garantizar la calidad de servicio (QoS) en transmisiones multimedia. En la primera parte del trabajo, el concepto de SDN es introducido. Su arquitectura, protocolos y ventajas son comentados. A continuación, el estado del arte es presentado, donde diversos trabajos acerca de QoS, encaminamiento, SDN y AI son detallados. En el siguiente capítulo, el controlador SDN, el cual juega un papel central en la arquitectura propuesta, es presentado. Se detalla el diseño del controlador y se compara su rendimiento con otro controlador comúnmente utilizado. Más tarde, se describe las propuestas de encaminamiento. Primero, se aborda la modificación de un protocolo de encaminamiento tradicional. Esta modificación tiene como objetivo adaptar el protocolo de encaminamiento tradicional a las redes SDN, centrado en las transmisiones multimedia. A continuación, la propuesta final es descrita. Sus mensajes, arquitectura y algoritmos son mostrados. Referente a la AI, el capítulo 5 detalla el módulo de la arquitectura que la implementa, junto con los métodos inteligentes usados en la propuesta de encaminamiento. Además, el algoritmo inteligente de decisión de rutas es descrito y la propuesta es comparada con el protocolo de encaminamiento tradicional y con su adaptación a las redes SDN, mostrando un incremento de la calidad final de la transmisión. Finalmente, se muestra y se describe algunas aplicaciones basadas en la propuesta. Las aplicaciones son presentadas para demostrar que la solución presentada en la tesis está diseñada para trabajar en redes heterogéneas.[CA] La present tesi tracta el problema de l'encaminament en les xarxes definides per programari (SDN). Específicament, tracta el problema del disseny d'un protocol d'encaminament basat en intel·ligència artificial (AI) per a garantir la qualitat de servici (QoS) en les transmissions multimèdia. En la primera part del treball, s'introdueix les xarxes SDN. Es comenten la seva arquitectura, els protocols i els avantatges. A continuació, l'estat de l'art és presentat, on es detellen els diversos treballs al voltant de QoS, encaminament, SDN i AI. Al següent capítol, el controlador SDN, el qual juga un paper central a l'arquitectura proposta, és presentat. Es detalla el disseny del controlador i es compara el seu rendiment amb altre controlador utilitzat comunament. Més endavant, es descriuen les propostes d'encaminament. Primer, s'aborda la modificació d'un protocol d'encaminament tradicional. Aquesta modificació té com a objectiu adaptar el protocol d'encaminament tradicional a les xarxes SDN, centrat a les transmissions multimèdia. A continuació, la proposta final és descrita. Els seus missatges, arquitectura i algoritmes són mostrats. Pel que fa a l'AI, el capítol 5 detalla el mòdul de l'arquitectura que la implementa, junt amb els mètodes intel·ligents usats en la proposta d'encaminament. A més a més, l'algoritme intel·ligent de decisió de rutes és descrit i la proposta és comparada amb el protocol d'encaminament tradicional i amb la seva adaptació a les xarxes SDN, mostrant un increment de la qualitat final de la transmissió. Finalment, es mostra i es descriuen algunes aplicacions basades en la proposta. Les aplicacions són presentades per a demostrar que la solució presentada en la tesi és dissenyada per a treballar en xarxes heterogènies.[EN] This thesis addresses the problem of routing in Software Defined Networks (SDN). Specifically, the problem of designing a routing protocol based on Artificial Intelligence (AI) for ensuring Quality of Service (QoS) in multimedia transmissions. In the first part of the work, SDN is introduced. Its architecture, protocols and advantages are discussed. Then, the state of the art is presented, where several works regarding QoS, routing, SDN and AI are detailed. In the next chapter, the SDN controller, which plays the central role in the proposed architecture, is presented. The design of the controller is detailed and its performance compared to another common controller. Later, the routing proposals are described. First, a modification of a traditional routing protocol is discussed. This modification intends to adapt a traditional routing protocol to SDN, focused on multimedia transmissions. Then, the final proposal is described. Its messages, architecture and algorithms are depicted. As regards AI, chapter 5 details the module of the architecture that implements it, along with all the intelligent methods used in the routing proposal. Furthermore, the intelligent route decision algorithm is described and the final proposal is compared to the traditional routing protocol and its adaptation to SDN, showing an increment of the end quality of the transmission. Finally, some applications based on the routing proposal are described. The applications are presented to demonstrate that the proposed solution can work with heterogeneous networks.Rego Máñez, A. (2020). Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160483TESI
    corecore