7,964 research outputs found

    A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics

    Full text link
    [EN] In 1994, Matthews introduced the notion of partial metric and established a duality relationship between partial metrics and quasi-metrics defined on a set X. In this paper, we adapt such a relationship to the fuzzy context, in the sense of George and Veeramani, by establishing a duality relationship between fuzzy quasi-metrics and fuzzy partial metrics on a set X, defined using the residuum operator of a continuous t-norm *. Concretely, we provide a method to construct a fuzzy quasi-metric from a fuzzy partial one. Subsequently, we introduce the notion of fuzzy weighted quasi-metric and obtain a way to construct a fuzzy partial metric from a fuzzy weighted quasi-metric. Such constructions are restricted to the case in which the continuous t-norm * is Archimedean and we show that such a restriction cannot be deleted. Moreover, in both cases, the topology is preserved, i.e., the topology of the fuzzy quasi-metric obtained coincides with the topology of the fuzzy partial metric from which it is constructed and vice versa. Besides, different examples to illustrate the exposed theory are provided, which, in addition, show the consistence of our constructions comparing it with the classical duality relationship.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work is also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears) and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No 779776 and No 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet, D. (2020). A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics. Mathematics. 8(9):1-16. https://doi.org/10.3390/math809157511689MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xGeorge, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Roldán-López-de-Hierro, A.-F., Karapınar, E., & Manro, S. (2014). Some new fixed point theorems in fuzzy metric spaces. Journal of Intelligent & Fuzzy Systems, 27(5), 2257-2264. doi:10.3233/ifs-141189Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Gregori, V., Miñana, J.-J., & Miravet, D. (2018). Fuzzy partial metric spaces. International Journal of General Systems, 48(3), 260-279. doi:10.1080/03081079.2018.1552687Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Romaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Wu, X., & Chen, G. (2020). Answering an open question in fuzzy metric spaces. Fuzzy Sets and Systems, 390, 188-191. doi:10.1016/j.fss.2019.12.006Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2008). Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. Journal of Visual Communication and Image Representation, 19(1), 20-29. doi:10.1016/j.jvcir.2007.04.003Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Morillas, S., Gregori, V., Peris-Fajarnés, G., & Latorre, P. (2005). A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging, 11(5-6), 417-428. doi:10.1016/j.rti.2005.06.007Gregori, V., & Romaguera, S. (2004). Fuzzy quasi-metric spaces. Applied General Topology, 5(1), 129. doi:10.4995/agt.2004.2001Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. doi:10.1016/j.chaos.2004.02.051Rodrı́guez-López, J., & Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2), 273-283. doi:10.1016/j.fss.2003.09.007Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016Miñana, J.-J., & Valero, O. (2020). On Matthews’ Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective. Results in Mathematics, 75(2). doi:10.1007/s00025-020-1173-xKarapınar, E., Erhan, İ. M., & Öztürk, A. (2013). Fixed point theorems on quasi-partial metric spaces. Mathematical and Computer Modelling, 57(9-10), 2442-2448. doi:10.1016/j.mcm.2012.06.036Künzi, H.-P. A., Pajoohesh, H., & Schellekens, M. P. (2006). Partial quasi-metrics. Theoretical Computer Science, 365(3), 237-246. doi:10.1016/j.tcs.2006.07.05

    Spectral geometry with a cut-off: topological and metric aspects

    Full text link
    Inspired by regularization in quantum field theory, we study topological and metric properties of spaces in which a cut-off is introduced. We work in the framework of noncommutative geometry, and focus on Connes distance associated to a spectral triple (A, H, D). A high momentum (short distance) cut-off is implemented by the action of a projection P on the Dirac operator D and/or on the algebra A. This action induces two new distances. We individuate conditions making them equivalent to the original distance. We also study the Gromov-Hausdorff limit of the set of truncated states, first for compact quantum metric spaces in the sense of Rieffel, then for arbitrary spectral triples. To this aim, we introduce a notion of "state with finite moment of order 1" for noncommutative algebras. We then focus on the commutative case, and show that the cut-off induces a minimal length between points, which is infinite if P has finite rank. When P is a spectral projection of DD, we work out an approximation of points by non-pure states that are at finite distance from each other. On the circle, such approximations are given by Fejer probability distributions. Finally we apply the results to Moyal plane and the fuzzy sphere, obtained as Berezin quantization of the plane and the sphere respectively.Comment: Reference added. Minor corrections. Published version. 38 pages, 2 figures. Journal of Geometry and Physics 201

    A Span-Extraction Dataset for Chinese Machine Reading Comprehension

    Full text link
    Machine Reading Comprehension (MRC) has become enormously popular recently and has attracted a lot of attention. However, the existing reading comprehension datasets are mostly in English. In this paper, we introduce a Span-Extraction dataset for Chinese machine reading comprehension to add language diversities in this area. The dataset is composed by near 20,000 real questions annotated on Wikipedia paragraphs by human experts. We also annotated a challenge set which contains the questions that need comprehensive understanding and multi-sentence inference throughout the context. We present several baseline systems as well as anonymous submissions for demonstrating the difficulties in this dataset. With the release of the dataset, we hosted the Second Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2018). We hope the release of the dataset could further accelerate the Chinese machine reading comprehension research. Resources are available: https://github.com/ymcui/cmrc2018Comment: 6 pages, accepted as a conference paper at EMNLP-IJCNLP 2019 (short paper
    corecore