292 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    An Efficient Secure Group Authenticated Key Agreement Protocol for Wireless Sensor Networks in IoT Environment

    Get PDF
    Internet of Things(IoT) consist of interconnected devices for transmitting and receiving the data over the network. Key management is important for data confidentiality while transmitting in an open network. Even though several key management techniques are feasible to use, still obtaining a key management technique is a challenge with respect to energy and computational cost. The main intention of this work is to discover and overcome the design issues of the existing system and implement a lightweight and secure solution for that issue. The existing system has a fatal security flaw that leads to the unavailability of a complete system which is considered a huge problem in Internet of things. To overcome this issue, an authenticated key management protocol is proposed which deals with the problem of single point of failure and maintains the security properties of the existing system. An authenticated scheme is provided using elliptic curve and hash functions. This scheme also provides client addition, deletion and key freshness. Security analysis and computation complexity has been also discussed. We experimented proposed algorithm and tested with Scyther verification tool. The design overcomes the issues of an existing system by utilizing our scheme in peer to peer network. This network resolves the issue of a single point of failure (SPOF) by distributing the resources and services to the multiple nodes in the network. It will dissolve the problem of SPOF and will increase the reliability and scalability of the IoT system

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Lightweight identity based online/offline signature scheme for wireless sensor networks

    Get PDF
    Data security is one of the issues during data exchange between two sensor nodes in wireless sensor networks (WSN). While information flows across naturally exposed communication channels, cybercriminals may access sensitive information. Multiple traditional reliable encryption methods like RSA encryption-decryption and Diffie–Hellman key exchange face a crisis of computational resources due to limited storage, low computational ability, and insufficient power in lightweight WSNs. The complexity of these security mechanisms reduces the network lifespan, and an online/offline strategy is one way to overcome this problem. This study proposed an improved identity-based online/offline signature scheme using Elliptic Curve Cryptography (ECC) encryption. The lightweight calculations were conducted during the online phase, and in the offline phase, the encryption, point multiplication, and other heavy measures were pre-processed using powerful devices. The proposed scheme uniquely combined the Inverse Collusion Attack Algorithm (CAA) with lightweight ECC to generate secure identitybased signatures. The suggested scheme was analyzed for security and success probability under Random Oracle Model (ROM). The analysis concluded that the generated signatures were immune to even the worst Chosen Message Attack. The most important, resource-effective, and extensively used on-demand function was the verification of the signatures. The low-cost verification algorithm of the scheme saved a significant number of valued resources and increased the overall network’s lifespan. The results for encryption/decryption time, computation difficulty, and key generation time for various data sizes showed the proposed solution was ideal for lightweight devices as it accelerated data transmission speed and consumed the least resources. The hybrid method obtained an average of 66.77% less time consumption and up to 12% lower computational cost than previous schemes like the dynamic IDB-ECC two-factor authentication key exchange protocol, lightweight IBE scheme (IDB-Lite), and Korean certification-based signature standard using the ECC. The proposed scheme had a smaller key size and signature size of 160 bits. Overall, the energy consumption was also reduced to 0.53 mJ for 1312 bits of offline storage. The hybrid framework of identity-based signatures, online/offline phases, ECC, CAA, and low-cost algorithms enhances overall performance by having less complexity, time, and memory consumption. Thus, the proposed hybrid scheme is ideally suited for a lightweight WSN

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Security in 5G-Enabled Internet of Things Communication: Issues: Challenges, and Future Research Roadmap

    Get PDF
    5G mobile communication systems promote the mobile network to not only interconnect people, but also interconnect and control the machine and other devices. 5G-enabled Internet of Things (IoT) communication environment supports a wide-variety of applications, such as remote surgery, self-driving car, virtual reality, flying IoT drones, security and surveillance and many more. These applications help and assist the routine works of the community. In such communication environment, all the devices and users communicate through the Internet. Therefore, this communication agonizes from different types of security and privacy issues. It is also vulnerable to different types of possible attacks (for example, replay, impersonation, password reckoning, physical device stealing, session key computation, privileged-insider, malware, man-in-the-middle, malicious routing, and so on). It is then very crucial to protect the infrastructure of 5G-enabled IoT communication environment against these attacks. This necessitates the researchers working in this domain to propose various types of security protocols under different types of categories, like key management, user authentication/device authentication, access control/user access control and intrusion detection. In this survey paper, the details of various system models (i.e., network model and threat model) required for 5G-enabled IoT communication environment are provided. The details of security requirements and attacks possible in this communication environment are further added. The different types of security protocols are also provided. The analysis and comparison of the existing security protocols in 5G-enabled IoT communication environment are conducted. Some of the future research challenges and directions in the security of 5G-enabled IoT environment are displayed. The motivation of this work is to bring the details of different types of security protocols in 5G-enabled IoT under one roof so that the future researchers will be benefited with the conducted work

    Systematic Review of Internet of Things Security

    Get PDF
    The Internet of Things has become a new paradigm of current communications technology that requires a deeper overview to map its application domains, advantages, and disadvantages. There have been a number of in-depth research efforts to study various aspects of IoT. However, to the best of our knowledge, there is no literature that have discussed specifically and deeply about the security and privacy aspects of IoT. To that end, this paper aims at providing a more comprehensive and systematic review of IoT security based on the survey result of the most recent literature over the past three years (2015 to 2017). We have classified IoT security research based on the research objectives, application domains, vulner-abilities/threats, countermeasures, platforms, proto-cols, and performance measurements. We have also provided some security challenges for further research
    • 

    corecore