122 research outputs found

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    An Overview of Security Challenges in Vehicular Ad-Hoc Networks

    Full text link
    © 2017 IEEE. Vehicular Ad hoc Networks (VANET) is emerging as a promising technology of the Intelligent Transportation systems (ITS) due to its potential benefits for travel planning, notifying road hazards, cautioning of emergency scenarios, alleviating congestion, provisioning parking facilities and environmental predicaments. But, the security threats hinder its wide deployment and acceptability by users. This paper gives an overview of the security threats at the various layers of the VANET communication stack and discuss some of the existing solutions, thus concluding why designing a security framework for VANET needs to consider these threats for overcoming security challenges in VANET

    5G-based V2V broadcast communications: A security perspective

    Get PDF
    The V2V services have been specified by the 3GPP standards body to support road safety and non-safety applications in the 5G cellular networks. It is expected to use the direct link (known as the PC5 interface), as well as the new radio interface in 5G, to provide a connectivity platform among vehicles. Particularly, vehicles will use the PC5 interface to broadcast safety messages to inform each other about potential hazards on the road. In order to function safely, robust security mechanisms are needed to ensure the authenticity of received messages and trustworthiness of message senders. These mechanisms must neither add significantly to message latency nor affect the performance of safety applications. The existing 5G-V2V standard allow protection of V2V messages to be handled by higher layer security solutions defined by other standards in the ITS domain. However having a security solution at the 5G access layer is conceivably preferable in order to ensure system compatibility and reduce deployment cost. Accordingly, the main aim of this paper is to review options for 3GPP access layer security in future 5G-V2V releases. Initially, a summary of 5G-V2V communications and corresponding service requirements is presented. An overview of the application level security standards is also given, followed by a review of the impending options to secure V2V broadcast messages at the 5G access layer. Finally, paper presents the relevant open issues and challenges on providing 3GPP access layer security solution for direct V2V communication

    An overview of millimeter waves challenges in 5G vehicle-to-everything networks

    Get PDF
    International audienceThe Automotive Vehicle to Everything (V2X) technology is one of the most important innovations that the world will see in the years to come. This paradigm will support many advanced services such as object detection and recognition, risk identification and avoidance, car platooning. These services will require several keys among them, the high data transmission rates of the order of gigabits per driving hour, and high reliability, and high speed for transition of data, which may be available through the capabilities of the new architecture for the next generation of wireless communications 5G and the wide bandwidth of the millimeter wave (mm Wave) which is deemed to be a real solution for the V2X requirements. However, the challenges related to the reliability/latency and security of the V2X system and nature of mm wave communication require several solutions either for natural challenges such as High path loss propagation, penetrating disability or for the technical challenges. This paper provides an overview of the V2X communication technology investigates the V2X challenges including the mm wave and and finally presents some efficient solutions
    corecore