6,301 research outputs found

    A Hybridized- Logistic Regression and Deep Learning-based Approaches for Precise Anomaly Detection in Cloud

    Get PDF
    Anomaly Detection plays a pivot role in determining the abnormal behaviour in the cloud domain. The objective of the manuscript is to present two approaches for Precise Anomaly Detection Approaches by hybridizing RBM with LR and SVM models. The various phases in the present approach are (a) Data collection (b) Pre-processing and normalization; OneHot Encoder for converting categorical values to numerical values followed by encoding the binary features through normalization (c) training the data (d) Building the Feedforward Deep Belief Network (EDBN) using hybridizing Restricted Boltzmann Machine (RBM) with Logistic Regression (LR) and Support Vector Machine (SVM); In the first approach, RBM model is trained through unsupervised pre-training followed by fine-tuning using LR model. In the later approach, RBM model is trained through unsupervised pre-training followed by fine-tuning using SVM model; both the approaches adopt unsupervised pre-training followed by supervised-fine-tuning operations (e) Model Evaluation using the significant parameters such as Precision, Recall, Accuracy, F1-score and Confusion Matrix. The experimental evaluations concluded the effective anomaly detection techniques by integrating the RBM with LR and SVM for capturing the intricate patterns and complex relationships among the data. The proposed approaches paves a path to improved anomaly detection technique, thereby enhancing the security features and anomaly monitoring systems across distinct domains

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Digital Twin of the Radio Environment: A Novel Approach for Anomaly Detection in Wireless Networks

    Full text link
    The increasing relevance of resilience in wireless connectivity for Industry 4.0 stems from the growing complexity and interconnectivity of industrial systems, where a single point of failure can disrupt the entire network, leading to significant downtime and productivity losses. It is thus essential to constantly monitor the network and identify any anomaly such as a jammer. Hereby, technologies envisioned to be integrated in 6G, in particular joint communications and sensing (JCAS) and accurate indoor positioning of transmitters, open up the possibility to build a digital twin (DT) of the radio environment. This paper proposes a new approach for anomaly detection in wireless networks enabled by such a DT which allows to integrate contextual information on the network in the anomaly detection procedure. The basic approach is thereby to compare expected received signal strengths (RSSs) from the DT with measurements done by distributed sensing units (SUs). Employing simulations, different algorithms are compared regarding their ability to infer from the comparison on the presence or absence of an anomaly, particular a jammer. Overall, the feasibility of anomaly detection using the proposed approach is demonstrated which integrates in the ongoing research on employing DTs for comprehensive monitoring of wireless networks.Comment: 6 pages, 4 figure
    • …
    corecore