1,468 research outputs found

    StemNet: An Evolving Service for Knowledge Networking in the Life Sciences

    Get PDF
    Up until now, crucial life science information resources, whether bibliographic or factual databases, are isolated from each other. Moreover, semantic metadata intended to structure their contents is supplied in a manual form only. In the StemNet project we aim at developing a framework for semantic interoperability for these resources. This will facilitate the extraction of relevant information from textual sources and the generation of semantic metadata in a fully automatic manner. In this way, (from a computational perspective) unstructured life science documents are linked to structured biological fact databases, in particular to the identifiers of genes, proteins, etc. Thus, life scientists will be able to seamlessly access information from a homogeneous platform, despite the fact that the original information was unlinked and scattered over the whole variety of heterogeneous life science information resources and, therefore, almost inaccessible for integrated systematic search by academic, clinical, or industrial users

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Discovering gene annotations in biomedical text databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data.</p> <p>Results</p> <p>In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products.</p> <p>In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general.</p> <p>Conclusion</p> <p>GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.</p

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    A plant disease extension of the Infectious Disease Ontology

    Get PDF
    Plants from a handful of species provide the primary source of food for all people, yet this source is vulnerable to multiple stressors, such as disease, drought, and nutrient deficiency. With rapid population growth and climate uncertainty, the need to produce crops that can tolerate or resist plant stressors is more crucial than ever. Traditional plant breeding methods may not be sufficient to overcome this challenge, and methods such as highOthroughput sequencing and automated scoring of phenotypes can provide significant new insights. Ontologies are essential tools for accessing and analysing the large quantities of data that come with these newer methods. As part of a larger project to develop ontologies that describe plant phenotypes and stresses, we are developing a plant disease extension of the Infectious Disease Ontology (IDOPlant). The IDOPlant is envisioned as a reference ontology designed to cover any plant infectious disease. In addition to novel terms for infectious diseases, IDOPlant includes terms imported from other ontologies that describe plants, pathogens, and vectors, the geographic location and ecology of diseases and hosts, and molecular functions and interactions of hosts and pathogens. To encompass this range of data, we are suggesting inOhouse ontology development complemented with reuse of terms from orthogonal ontologies developed as part of the Open Biomedical Ontologies (OBO) Foundry. The study of plant diseases provides an example of how an ontological framework can be used to model complex biological phenomena such as plant disease, and how plant infectious diseases differ from, and are similar to, infectious diseases in other organism

    Djinn Lite: a tool for customised gene transcript modelling, annotation-data enrichment and exploration

    Get PDF
    BACKGROUND: There is an ever increasing rate of data made available on genetic variation, transcriptomes and proteomes. Similarly, a growing variety of bioinformatic programs are becoming available from many diverse sources, designed to identify a myriad of sequence patterns considered to have potential biological importance within inter-genic regions, genes, transcripts, and proteins. However, biologists require easy to use, uncomplicated tools to integrate this information, visualise and print gene annotations. Integrating this information usually requires considerable informatics skills, and comprehensive knowledge of the data format to make full use of this information. Tools are needed to explore gene model variants by allowing users the ability to create alternative transcript models using novel combinations of exons not necessarily represented in current database deposits of mRNA/cDNA sequences. RESULTS: Djinn Lite is designed to be an intuitive program for storing and visually exploring of custom annotations relating to a eukaryotic gene sequence and its modelled gene products. In particular, it is helpful in developing hypothesis regarding alternate splicing of transcripts by allowing the construction of model transcripts and inspection of their resulting translations. It facilitates the ability to view a gene and its gene products in one synchronised graphical view, allowing one to drill down into sequence related data. Colour highlighting of selected sequences and added annotations further supports exploration, visualisation of sequence regions and motifs known or predicted to be biologically significant. CONCLUSION: Gene annotating remains an ongoing and challengingtask that will continue as gene structures, gene transcription repertoires, disease loci, protein products and their interactions become moreprecisely defined. Djinn Lite offers an accessible interface to help accumulate, enrich, and individualise sequence annotations relating to a gene, its transcripts and translations. The mechanism of transcript definition and creation, and subsequent navigation and exploration of features, are very intuitive and demand only a short learning curve. Ultimately, Djinn Lite can form the basis for providing valuable clues to plan new experiments, providing storage of sequences and annotations for dedication to customised projects. The application is appropriate for Windows 98-ME-2000-XP-2003 operating systems
    • …
    corecore