1,064 research outputs found

    Speeding up the FMMR perfect sampling algorithm: A case study revisited

    Full text link
    In a previous paper by the second author,two Markov chain Monte Carlo perfect sampling algorithms -- one called coupling from the past (CFTP) and the other (FMMR) based on rejection sampling -- are compared using as a case study the move-to-front (MTF) self-organizing list chain. Here we revisit that case study and, in particular, exploit the dependence of FMMR on the user-chosen initial state. We give a stochastic monotonicity result for the running time of FMMR applied to MTF and thus identify the initial state that gives the stochastically smallest running time; by contrast, the initial state used in the previous study gives the stochastically largest running time. By changing from worst choice to best choice of initial state we achieve remarkable speedup of FMMR for MTF; for example, we reduce the running time (as measured in Markov chain steps) from exponential in the length n of the list nearly down to n when the items in the list are requested according to a geometric distribution. For this same example, the running time for CFTP grows exponentially in n.Comment: 19 pages. See also http://www.mts.jhu.edu/~fill/ and http://www.mathcs.carleton.edu/faculty/bdobrow/. Submitted for publication in May, 200

    Processes with Long Memory: Regenerative Construction and Perfect Simulation

    Full text link
    We present a perfect simulation algorithm for stationary processes indexed by Z, with summable memory decay. Depending on the decay, we construct the process on finite or semi-infinite intervals, explicitly from an i.i.d. uniform sequence. Even though the process has infinite memory, its value at time 0 depends only on a finite, but random, number of these uniform variables. The algorithm is based on a recent regenerative construction of these measures by Ferrari, Maass, Mart{\'\i}nez and Ney. As applications, we discuss the perfect simulation of binary autoregressions and Markov chains on the unit interval.Comment: 27 pages, one figure. Version accepted by Annals of Applied Probability. Small changes with respect to version

    Probabilistic cellular automata, invariant measures, and perfect sampling

    Get PDF
    A probabilistic cellular automaton (PCA) can be viewed as a Markov chain. The cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. We investigate the ergodicity of this Markov chain. A classical cellular automaton is a particular case of PCA. For a 1-dimensional cellular automaton, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to be also a PCA. Last, we focus on the PCA Majority, whose asymptotic behavior is unknown, and perform numerical experiments using the perfect sampling procedure

    Multiprocess parallel antithetic coupling for backward and forward Markov Chain Monte Carlo

    Full text link
    Antithetic coupling is a general stratification strategy for reducing Monte Carlo variance without increasing the simulation size. The use of the antithetic principle in the Monte Carlo literature typically employs two strata via antithetic quantile coupling. We demonstrate here that further stratification, obtained by using k>2 (e.g., k=3-10) antithetically coupled variates, can offer substantial additional gain in Monte Carlo efficiency, in terms of both variance and bias. The reason for reduced bias is that antithetically coupled chains can provide a more dispersed search of the state space than multiple independent chains. The emerging area of perfect simulation provides a perfect setting for implementing the k-process parallel antithetic coupling for MCMC because, without antithetic coupling, this class of methods delivers genuine independent draws. Furthermore, antithetic backward coupling provides a very convenient theoretical tool for investigating antithetic forward coupling. However, the generation of k>2 antithetic variates that are negatively associated, that is, they preserve negative correlation under monotone transformations, and extremely antithetic, that is, they are as negatively correlated as possible, is more complicated compared to the case with k=2. In this paper, we establish a theoretical framework for investigating such issues. Among the generating methods that we compare, Latin hypercube sampling and its iterative extension appear to be general-purpose choices, making another direct link between Monte Carlo and quasi Monte Carlo.Comment: Published at http://dx.doi.org/10.1214/009053604000001075 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Note on rejection sampling and exact sampling with the Metropolised independence sampler

    Get PDF
    This short note shows a close relationship between standard rejection sampling and exact sampling by coupling from the past applied to a Metropolised independence sampler. I now know that this idea, first presented as a ten-minute tea-time talk, is probably a duplicate of an unavailable work (Cai 1997), and is closely related to a paper by Jun S. Liu (1996), who provides a much more detailed analysis. Perhaps this exposition will be of interest to some readers
    • …
    corecore