
Note on Rejection sampling and exact sampling with the
Metropolised Independence Sampler

Iain Murray
Gatsby Computational Neuroscience Unit

University College London, London WC1N 3AR, UK
http://www.gatsby.ucl.ac.uk/
i.murray@gatsby.ucl.ac.uk

V0.2, 5 August 2004, based on a tea-time talk 13 January 2004.

1 Introduction

This short note shows a close relationship between
standard rejection sampling and exact sampling by
coupling from the past applied to a Metropolised in-
dependence sampler. Little background is assumed,
but [1] provides a clear review of all required mate-
rial. I now know that this idea, first presented as a
ten-minute tea-time talk, is probably a duplicate of an
unavailable work [3], and is closely related to a paper
by Jun S. Liu [2], who provides a much more detailed
analysis. Perhaps this exposition will be of interest to
some readers.

2 Rejection sampling

Rejection sampling [4] is a method to draw indepen-
dent samples from a probability distribution P (x) =
P ∗(x)/ZP . We may not know the normalising con-
stant ZP , but we assume that we can evaluate P ∗(x)
at any position x we choose. It does not matter here if
the function P (x) gives probabilities for discrete x or
describes a probability density function over continu-
ous x.

Firstly we choose a distribution Q(x) = Q∗(x)/ZQ

from which we can easily draw independent samples
and evaluate Q∗(x) at any x. We then find a constant
c for which cQ∗(x) ≥ P ∗(x) ∀x. We try and choose
c as small as we can, but this step may not be easy.
Define the smallest possible choice (possibly unknown)
to be copt. That we can tractably find a valid finite c
at all is an assumption of this method. This setup is
illustrated in figure 1.

Now we draw samples from our tractable distribution
Q(x) instead of our target distribution P (x). At each
location xi ∼ Q(x) we evaluate cQ∗(xi) and draw a
random height hi ∼ uniform[0, cQ∗(xi)], giving a ran-
dom position drawn uniformly from under the curve
cQ∗(x). Then if hi < P ∗(xi), we accept xi as a sample
from P (x), otherwise we reject the sample, throwing
away both xi and hi. We end up with points drawn

P ∗(x)

coptQ
∗(x)

cQ∗(x)

xxstickyxi

(xi, hi)

(xj , hj)

Figure 1: Rejection sampling draws independent sam-
ples from P (x) ∝ P ∗(x) by taking the x values of
points drawn uniformly from underneath the curve
P ∗(x). This is achieved by drawing samples uniformly
from underneath the curve cQ∗(x) ∝ Q(x) and ignor-
ing any points lying above P ∗(x). If points (xi, hi)
and (xj , hj) were drawn, xi would be added to the
list of samples from P (x), while hi, xj and hj are dis-
carded. The method is most efficient for the c = copt

that minimises the area in which points are rejected.
The method breaks if c < copt, as not all of the area
under P ∗(x) would be sampled. The role of xsticky is
discussed in section 4.
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uniformly from the area under the curve P ∗(x), the ac-
cepted values are therefore samples from P (x). Figure
1 shows two points drawn from under cQ∗(x) leading
to one sample from P (x).

The probability that a point is accepted is simply the
ratio of the areas underneath P ∗(x) and cQ∗(x), as a
function of c this probability is:

paccept(c) =
ZP

cZQ
. (1)

Thus the probability distribution over the number of
samples from Q required for a single sample from P
will be a geometric distribution with mean cZQ/ZP .

3 Metropolised independence sampler

The Metropolis-Hastings method [5] is a Markov chain
Monte Carlo (MCMC) method. That is, it sets up
a biased random walk forming a Markov chain with
a unique equilibrium distribution equal to the target
density P (x). On its own, this method only allows us
to draw correlated samples, not independent samples
as in the previous section.

We must start our Markov chain at some arbitrary
position x0. The procedure for constructing positions
at future times, x1, x2, . . . xT , is:

1. for t = 1 . . . T

2. Propose x′ ∼ Q(x;xt−1)

3. Compute a = P∗(x′)Q∗(xt−1;x
′)

P∗(xt−1)Q∗(x′;xt−1
)

4. Draw r ∼ uniform[0, 1]. If r < a set xt = x′

otherwise set xt = xt−1.

5. end for

Ideally x0 would be drawn from P (x), as otherwise
not only are {xt} correlated, they are also biased by
the initial condition. However, one of the assumptions
above is that direct sampling from P (x) is not easy.

The Metropolised independence sampler is the special
case Q(x;xt−1) ≡ Q(x); the proposal distribution is
independent of the position of the Markov chain. Re-
member that the samples are not independent, they
are still from a Markov chain.

It seems that the two methods above have very differ-
ent properties. This note explores their similarities.

4 Sampling by coupling from the past

There were two unsolved problems in the previous
section: x1 . . . xT are correlated and biased by x0.
The bias can be reduced by running the Metropolis-
Hastings iterations many times before starting to

record the samples. This “burn-in” period is designed
to forget the initial condition so that the samples are
approximately uncorrelated from x0. Similarly inter-
sample correlations can be limited by taking many
steps of the Markov chain between recording each sam-
ple. Unfortunately knowing how many steps to take is
a difficult problem.

Exact sampling by coupling from the past [6] is a clever
practical method for running Markov chains to draw
independent samples exactly (with no bias) from a tar-
get distribution.

We assume that many Metropolised independence
sampler Markov chains starting from all possible x
were started at time t = −∞. Also each chain used the
same supply of random numbers to draw x′ and r at
each step. Any chains that accepted in stage 4. at time
−τ became identical for all later times t > −τ . Those
chains moved to the same x−τ+1 and made the same
proposals and acceptances from that time onwards. At
any time there was a small but finite probability that
all chains coalesced; after infinite time at t = 0 all of
the chains must be on top of one another. Therefore
all chains end at a single x0, totally independent of
any initial condition. Our task is simply to identify
x0 without performing the infinite amount of compu-
tation implied by the above description.

A key observation is that the acceptance ratio for the
Metropolis independence sampler factors into

a =
(

P ∗(x′)
Q∗(x′)

) (
Q∗(xt−1)
P ∗(xt−1)

)
∝

(
Q∗(xt−1)
P ∗(xt−1)

)
. (2)

The first ratio is a constant for all chains, as they
all propose the same new point x′. This means that
the chain with the smallest acceptance probability,
min(1, a), is always at the position minimising Q∗(x)

P∗(x) ,
independent of the proposed position x′. Chains in
this position do not like to move, so we call this loca-
tion, which may be a set of points for all that follows,
xsticky (see figure 1).

Amazingly we can find x0 by looking back no further
than a time t = −τc, when a chain with x−τc−1 =
xsticky accepted a proposal. As a chain at xsticky has
the smallest possible value of a, chains at any other
position will also accept the proposal in step 4. We
now know that all the coupled chains that started at
t = −∞ satisfy x−τc = x′. As discussed above the
chains will now all follow the same path and x0 can
be identified by following a single Markov chain from
t = −τc to t = 0.

A simple algorithm to find τc is to step back in time,
t = 0,−1,−2, . . . sampling and storing proposals x′(t)
and acceptance random numbers r(t). At each time we
also evaluate and store Q∗(x′(t)) and P ∗(x′(t)). We
stop at t = −τc when all chains would accept the pro-
posal x′(−τ), which we check by computing if xsticky



would accept. We can then follow the Markov chain
starting at position x′(−τ) and time t = −τ + 1 until
time t = 0 to identify x0.

Each step of the algorithm above has the same joint
distribution over the proposed point x′, and the event
C, that a chain at xsticky (and therefore all chains)
would accept this proposal:

P (x′, C) = P (C|x′)×Q(x′)

=
Q∗(xsticky)
P ∗(xsticky)

P ∗(x′)
Q∗(x′)

×Q(x′)

=
1

copt
P ∗(x′)

1
ZQ

.

(3)

We can marginalise this expression to obtain the prob-
ability of a coalescence event:

P (C) =
1

coptZQ

∫
dx′P ∗(x′) =

ZP

coptZQ

= paccept(copt).
(4)

Thus the probability distribution over τc will be a ge-
ometric distribution with mean coptZQ/ZP . The same
distribution as found over the number of steps required
in rejection sampling for c = copt (equation 1).

This section assumed we knew xsticky, which amounts
to knowing copt. In fact if we only knew a suboptimal
(but valid) c we could still run the above algorithm:

using the bound
Q∗(xsticky)

P∗(xsticky) ≥ 1/c. This would allow
us to check that xsticky had accepted a proposal, with-
out actually knowing its location. This enables us to
identify some coalescence events, although no longer
guarantees finding the first. Again the distribution
over the number of iterations required for exact sam-
pling is the same as rejection sampling for the same
choice of c.

Moreover, this method and standard rejection sam-
pling need the same number of function evaluations
and random numbers, although the algorithm de-
scribed for coupling from the past requires more mem-
ory. Sampling τc directly from its geometric distribu-
tion and then conditioning proposals on t = −τc be-
ing the last detectable coalescence event before t = 0
would remove the extra storage requirements, making
the two methods even more comparable.

5 Discussion

The author found it surprising that two traditionally
very different methods, rejection sampling and Markov
chain Monte Carlo, could be made to have the same
probability distributions over the number of function
evaluations and random numbers required for drawing
perfect independent samples. The performance of both
exact sampling methods hinges on the ratio of P ∗ and
Q∗, or our knowledge of this ratio, at the single point

xsticky. It seems likely that the unavailable preprint
[3] mentioned in the exact sampling bibliography [7],
made these observations before.

There are two main reasons that we would not use
the coupling from the past algorithm described here.
Firstly it is just more cumbersome to think about than
simple rejection sampling. Secondly, we may not really
want exact samples. Note that the Metropolised inde-
pendence sampler itself, section 3, does not require any
consideration of xsticky or valid c. However, the analy-
sis of section 4 indicates that its samples are typically
only correlated on length scales of ≈ coptZQ/ZP , re-
gardless of whether we know it or not. While the exact
samplers throw away all of the computation leading
up to an independent sample, it is perfectly accept-
able to use all of the correlated samples obtained from
a MCMC sampler when approximating an expecta-
tion1. Doing so will provide unbiased estimators with
a smaller variance than using the smaller number of
independent samples obtained from rejection sampling
in the same time. While previously unknown to me,
this comparison of rejection sampling and Metropolis-
Hastings is not new and was made quantitatively with
a detailed eigen-analysis and consideration of forward
coupling times in [2].
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1Provided x0 was drawn exactly, or a suitable burn-in
period was discarded.


