67,816 research outputs found

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Bisphosphonates : a cost benefit analysis patient

    Get PDF
    Introduction: Osteoporotic hip fractures are common in elderly. There is increased risk of sustaining other fractures that incur financial burden on the health system. Prescription of bisphosphonates after osteoporotic hip fracture surgery has been shown to reduce the overall incidence of re-fractures. Methods: All osteoporotic hip fractures treated surgically in Mater Dei Hospital in the year 2011 were analysed in this observational retrospective study. The inclusion criteria were all primary osteoporotic hip fractures. The initiation, or not, of anti-osteoporotic treatment upon discharge from hospital was reviewed. The mortality and re-fracture rate of this cohort was reviewed for a period of 3 years. The cost of hospitalization for hip fracture and re-fractures was calculated based on local health services costs and compared to the benefits of providing a free bisphosphonate medication to each patient. Results: The osteoporotic hip fracture care pathway did not include initiation of anti-osteoporotic therapy after operations. A re-fracture rate of 11.7% over three years predominantly in female patients was observed. In the first year following hip fracture, an estimated direct medical health expenditure due to re-fractures was of €37,642.55 - €48,835.19. Conclusion: Prescribing a bisphosphonate has been found to reduce both the re-fracture and mortality rates. In our study, a bisphosphonate prescription could have reduced the all cause mortality rate of 25.3% to 15.18% over the first year of hip fracture, as well as reduced the financial and social burden incurred due to a re-fracture.peer-reviewe

    Determination of forest road surface roughness by kinect depth imaging

    Get PDF
    Roughness is a dynamic property of the gravel road surface that affects safety, ride comfort as well as vehicle tyre life and maintenance costs. A rapid survey of gravel road condition is fundamental for an effective maintenance planning and definition of the intervention priorities. Different non-contact techniques such as laser scanning, ultrasonic sensors and photogrammetry have recently been proposed to reconstruct three-dimensional topography of road surface and allow extraction of roughness metrics. The application of Microsoft Kinect\u2122 depth camera is proposed and discussed here for collection of 3D data sets from gravel roads, to be implemented in order to allow quantification of surface roughness. The objectives are to: i) verify the applicability of the Kinect sensor for characterization of different forest roads, ii) identify the appropriateness and potential of different roughness parameters and iii) analyse the correlation with vibrations recoded by 3-axis accelerometers installed on different vehicles. The test took advantage of the implementation of the Kinect depth camera for surface roughness determination of 4 different forest gravel roads and one well-maintained asphalt road as reference. Different vehicles (mountain bike, off-road motorcycle, ATV vehicle, 4WD car and compact crossover) were included in the experiment in order to verify the vibration intensity when travelling on different road surface conditions. Correlations between the extracted roughness parameters and vibration levels of the tested vehicles were then verified. Coefficients of determination of between 0.76 and 0.97 were detected between average surface roughness and standard deviation of relative accelerations, with higher values in the case of lighter vehicles

    Shift rostering using decomposition: assign weekend shifts first

    Get PDF
    This paper introduces a shift rostering problem that surprisingly has not been studied in literature: the weekend shift rostering problem. It is motivated by our experience that employees’ shift preferences predominantly focus on the weekends, since many social activities happen during weekends. The Weekend Rostering Problem (WRP) addresses the rostering of weekend shifts, for which we design a problem specific heuristic. We consider the WRP as the first phase of the shift rostering problem. To complete the shift roster, the second phase assigns the weekday shifts using an existing algorithm. We discuss effects of this two-phase approach both on the weekend shift roster and on the roster as a whole. We demonstrate that our first-phase heuristic is effective both on generated instances and real-life instances. For situations where the weekend shift roster is one of the key determinants of the quality of the complete roster, our two-phase approach shows to be effective when incorporated in a commercially implemented algorithm

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey
    • …
    corecore