106,454 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    A Business Process Management System based on a General Optimium Criterion

    Get PDF
    Business Process Management Systems (BPMS) provide a broad range of facilities to manage operational business processes. These systems should provide support for the complete Business Process Management (BPM) life-cycle (16): (re)design, configuration, execution, control, and diagnosis of processes. BPMS can be seen as successors of Workflow Management (WFM) systems. However, already in the seventies people were working on office automation systems which are comparable with today’s WFM systems. Recently, WFM vendors started to position their systems as BPMS. Our paper’s goal is a proposal for a Tasks-to-Workstations Assignment Algorithm (TWAA) for assembly lines which is a special implementation of a stochastic descent technique, in the context of BPMS, especially at the control level. Both cases, single and mixed-model, are treated. For a family of product models having the same generic structure, the mixed-model assignment problem can be formulated through an equivalent single-model problem. A general optimum criterion is considered. As the assembly line balancing, this kind of optimisation problem leads to a graph partitioning problem meeting precedence and feasibility constraints. The proposed definition for the "neighbourhood" function involves an efficient way for treating the partition and precedence constraints. Moreover, the Stochastic Descent Technique (SDT) allows an implicit treatment of the feasibility constraint. The proposed algorithm converges with probability 1 to an optimal solution.BPMS, control assembly system, stochastic optimisation techniques, TWAA, SDT

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data

    Get PDF
    Divide-and-conquer is a powerful approach for large and massive data analysis. In the nonparameteric regression setting, although various theoretical frameworks have been established to achieve optimality in estimation or hypothesis testing, how to choose the tuning parameter in a practically effective way is still an open problem. In this paper, we propose a data-driven procedure based on divide-and-conquer for selecting the tuning parameters in kernel ridge regression by modifying the popular Generalized Cross-validation (GCV, Wahba, 1990). While the proposed criterion is computationally scalable for massive data sets, it is also shown under mild conditions to be asymptotically optimal in the sense that minimizing the proposed distributed-GCV (dGCV) criterion is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework

    Emergency Department Utilization and Capacity

    Get PDF
    Synthesizes research on who utilizes emergency departments, how often for non-urgent or preventable conditions and why, how cost-sharing affects utilization, and how utilization patterns affect hospital finances, overcrowding, and cost implications
    corecore