2 research outputs found

    Simulation of an interlocking hydraulic direct-drive system for a biped walking robot

    Get PDF
    Biped robots with serial links driven by an electric motor experience problems because the motor and transmission are installed in each joint, causing the legs to become very heavy. Previous solutions involved robots using servo valves, a type of highly responsive proportional valve. However, high supply pressure is necessary to realize high responsiveness and the resulting energy losses are large. To address this problem, we proposed a hydraulic direct-drive system in which the pump controls the cylinder meter-in flow, while a proportional valve controls the meter-out flow. Furthermore, our hydraulic interlocking drive system connects two hydraulic direct-drive systems for biped humanoid robots and concentrates the pump output on one side cylinder. The meter-in flow rate of the other side cylinder is controlled by the meter-out flow rate of the cylinder on which the pump is concentrated. A comparison of the walking simulation performance with that of the conventional independent system shows that our proposed system reduces the motor output power by 24.3%. These results prove the feasibility of constructing a two-legged robot without having to incorporate highly responsive servo valves

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental
    corecore