9 research outputs found

    Anderson localization casts clouds over adiabatic quantum optimization

    Full text link
    Understanding NP-complete problems is a central topic in computer science. This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: the system gets trapped in one of the numerous local minima.Comment: 14 pages, 4 figure

    New Developments in Quantum Algorithms

    Full text link
    In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in time O(\log^c N). It outputs a quantum state describing the solution of the system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201

    Unstructured Randomness, Small Gaps and Localization

    Get PDF
    We study the Hamiltonian associated with the quantum adiabatic algorithm with a random cost function. Because the cost function lacks structure we can prove results about the ground state. We find the ground state energy as the number of bits goes to infinity, show that the minimum gap goes to zero exponentially quickly, and we see a localization transition. We prove that there are no levels approaching the ground state near the end of the evolution. We do not know which features of this model are shared by a quantum adiabatic algorithm applied to random instances of satisfiability since despite being random they do have bit structure

    Quantum annealing: the fastest route to quantum computation?

    Full text link
    In this review we consider the performance of the quantum adiabatic algorithm for the solution of decision problems. We divide the possible failure mechanisms into two sets: small gaps due to quantum phase transitions and small gaps due to avoided crossings inside a phase. We argue that the thermodynamic order of the phase transitions is not predictive of the scaling of the gap with the system size. On the contrary, we also argue that, if the phase surrounding the problem Hamiltonian is a Many-Body Localized (MBL) phase, the gaps are going to be typically exponentially small and that this follows naturally from the existence of local integrals of motion in the MBL phase.Comment: 16 pages, 1 figur

    Case studies in quantum adiabatic optimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 139-143).Quantum adiabatic optimization is a quantum algorithm for solving classical optimization problems (E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution, 2000. arXiv:quant-ph/0001106). The solution to an optimization problem is encoded in the ground state of a "problem Hamiltonian" Hp which acts on the Hilbert space of n spin 1/2 particles and is diagonal in the Pauli z basis. To produce this ground state, one first initializes the quantum system in the ground state of a different Hamiltonian and then adiabatically changes the Hamiltonian into Hp. Farhi et al suggest the interpolating Hamiltonian [mathematical formula] ... where the parameter s is slowly changed as a function of time between 0 and 1. The running time of this algorithm is related to the minimum spectral gap of H(s) for s E (0, 11. We study such transverse field spin Hamiltonians using both analytic and numerical techniques. Our approach is example-based, that is, we study some specific choices for the problem Hamiltonian Hp which illustrate the breadth of phenomena which can occur. We present I A random ensemble of 3SAT instances which this algorithm does not solve efficiently. For these instances H(s) has a small eigenvalue gap at a value s* which approaches 1 as n - oc. II Theorems concerning the interpolating Hamiltonian when Hp is "scrambled" by conjugating with a random permutation matrix. III Results pertaining to phase transitions that occur as a function of the transverse field. IV A new quantum monte carlo method which can be used to compute ground state properties of such quantum systems. We discuss the implications of our results for the performance of quantum adiabatic optimization algorithms.by David Gosset.Ph.D
    corecore