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Abstract

Quantum adiabatic optimization is a quantum algorithm for solving classical optimization
problems (E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by
adiabatic evolution, 2000. arXiv:quant-ph/0001106). The solution to an optimization prob-
lem is encoded in the ground state of a “problem Hamiltonian” Hp which acts on the Hilbert
space of n spin 1/2 particles and is diagonal in the Pauli z basis. To produce this ground state,
one first initializes the quantum system in the ground state of a different Hamiltonian and
then adiabatically changes the Hamiltonian into Hp. Farhi et al suggest the interpolating

Hamiltonian . _
1 — A~
H(s)=(1—8)2( 2%>+SHP (1)
i=1

where the parameter s is slowly changed as a function of time between 0 and 1. The running
time of this algorithm is related to the minimum spectral gap of H(s) for s € [0, 1].

We study such transverse field spin Hamiltonians using both analytic and numerical
techniques. Our approach is example-based, that is, we study some specific choices for the
problem Hamiltonian Hp which illustrate the breadth of phenomena which can occur. We
present

I A random ensemble of 3SAT instances which this algorithm does not solve efficiently.
For these instances H(s) has a small eigenvalue gap at a value s* which approaches 1
as n — oo.

IT Theorems concerning the interpolating Hamiltonian when Hp is “scrambled” by conju-
gating with a random permutation matrix.

IIT Results pertaining to phase transitions that occur as a function of the transverse field.

IV A new quantum monte carlo method which can be used to compute ground state prop-
erties of such quantum systems.

We discuss the implications of our results for the performance of quantum adiabatic opti-
mization algorithms.

Thesis Supervisor: Edward Farhi
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

The subject of this thesis is the quantum adiabatic algorithm|21], which is a quantum
algorithm for solving optimization problems.

Are there optimization problems which the quantum adiabatic algorithm can solve
faster than the best classical algorithm? Answering this question is the objective of
research on quantum adiabatic algorithms. It is a very difficult open question.

In this thesis we study the performance of the quantum adiabatic algorithm,
focusing on a set of examples where we are able to make progress. The goal is to
understand where to look for optimization problems on which the adiabatic algorithm
performs well. Along the way we will develop technical tools which can be used to
study transverse field quantum spin systems. We hope that the reader with some
knowledge of classical and quantum computation (having perhaps already studied
the standard text [52]) will find this thesis accessible.

We now describe the quantum adiabatic algorithm [21].

The Quantum Adiabatic Algorithm

The optimization problems to be solved have the following form. Given a cost function
f(2) which assigns a real number to each n-bit string, the goal is to find the bit string
zg which minimizes f. Assume for simplicity that f(z) > f(z0) for z # z.

A first step in describing the quantum adiabatic algorithm is to rephrase the
optimization problem to be solved. Consider the Hilbert space of n spin % particles.
Write each Pauli z-basis state of the n spin system as a bit string, where 0 is spin up
and 1 is spin down. Then define the “Problem Hamiltonian”[21]

Hp =Y [(2)l2)(2] (1.1)

which has the property that the ground state of this Hamiltonian is the basis state
|20) corresponding to the bit string we are looking for.

Now let’s suppose that we actually have a quantum system of n spin % particles,
and that we’re able to control the Hamiltonian of the system. A simple version of the
quantum adiabatic algorithm works as follows.

13



We assume that we can prepare a product state of the n spins

e = (22

Start by setting the Hamiltonian of the system to be

Hfi(l_fi) (1.2)

1=1

which we call the beginning Hamiltonian|[21], and initialize the state of the n spins
in the state |¢5) which is the ground state of this Hamiltonian. Then slowly change
the Hamiltonian of the system over a time T so that, at the end of the evolution, the
Hamiltonian has been changed to Hp.

We now review the quantum adiabatic theorem (see for example [45]) which applies
to very slowly changing Hamiltonians. Consider a Hamiltonian H(s) which depends
on a parameter s € [0, 1] and which has a unique ground state at each value of s. The
quantum adiabatic theorem can be applied under some fairly general conditions on
the Hamiltonian H(s). Suppose that we initialize a quantum system in the ground
state |1(0)) of the Hamiltonian H(0) and then change the Hamiltonian H(s) as a
function of time along the path s(¢) = %. The quantum system evolves according to
the Schrodinger equation

1
T

L 9(0) = H(s() o (2) (13

(setting A = 1). The quantum adiabatic theorem says that, for any s € [0, 1], by
taking T large enough the state |¢(sT)) can be made arbitrarily close to the instan-
taneous ground state of H(s).

In the quantum adiabatic algorithm we take the interpolating Hamiltonian
H(s)=(1—-s)Hg+ sHp (1.4)

where s(t) = %. So if we choose T large then at the end of the time evolution the
quantum system will be very close to the ground state of Hp. After the adiabatic
evolution, the quantum system is measured in the Pauli z basis. Since the quantum
system is very close to the state |2z) this measurement will likely result in the output
bit string zg which solves the optimization problem of interest.

From the adiabatic theorem we know that the quantum adiabatic algorithm pre-
pares the state |z9) in the limit T — oco. How big does 7" have to be to get a
probability of finding the state |z9) at the final measurement which is larger than
some fixed threshold probability p? (A constant success probability is good enough
because it can be amplified by running the algorithm independently a fixed number of
times). The finite running time behaviour of quantum adiabatic evolution is governed
by the adiabatic approximation which tells us how large to make 7' in order to get
a constant success probability. A precise version of the adiabatic approximation is

14



given in reference [32].

A simpler question is that of computational efficiency. An efficient algorithm has
a running time which grows as a polynomial function of the input size (in this case
n), whereas an inefficient algorithm has a running time which is superpolynomial
in n. Computational efficiency is a crude but useful measure of whether or not
an algorithm is scalable in practice. For which problems is the quantum adiabatic
algorithm efficient? It turns out that to answer this question the relevant property of
the interpolating Hamiltonian 1.4 is the minimum spectral gap

Gmin = min (E(s) — Eo(s))

s€[0,1]

where E)(s) is the first excited state energy and Ey(s) is the ground state energy.
Let us assume that the norm of the Hamiltonian H(s) is upper bounded for all s
by a polynomial function of n. Then the adiabatic approximation tells us that the
quantum adiabatic algorithm is efficient when g, is asymptotically larger than an
inverse polynomial in n [21]. On the other hand if g, is exponentially small as a
function of n then the adiabatic algorithm will be inefficient.

We now comment briefly on our motivation for studying quantum adiabatic op-
timization. As we have already mentioned, the primary goal is to look for problems
on which the quantum adiabatic algorithm outperforms classical algorithms. Other
quantum algorithms such as Shor’s algorithm [59] for factoring integers and Grover’s
algorithm [26] for unstructured database search are remarkable because the running
time of these algorithms is asymptotically faster than the running time of the best
classical algorithm to date (in the case of factoring integers) or the best possible clas-
sical algorithm (in the case of unstructured database search) for the same task. These
quantum algorithms were developed in the “circuit model” of quantum computation—
a standard theoretical framework for quantum algorithms. Quantum adiabatic op-
timization is a different approach (although quantum adiabatic optimization with a
local Hamiltonian can be simulated efficiently by a traditional quantum computer)
and we do not yet know of any quantum speedups using this method.

A second reason to study quantum adiabatic optimization is to better understand
the computational limitations which are imposed by the specific form of the interpo-
lating Hamiltonians used. Transverse field spin Hamiltonians have a special property
called stoquasticity [10] which means that all off diagonal matrix elements are nonpos-
itive. As we will see in section 1.2, this special property can be exploited by various
classical algorithms which simulate the quantum system of interest. Whether or not
quantum adiabatic evolution with a stoquastic local Hamiltonian can be efficiently
simulated on a classical computer is an open question (no such efficient simulation
technique exists to date). Studying quantum adiabatic optimization by example may
give some insight into the similarities and differences between quantum adiabatic op-
timization and classical optimization methods. We return to this point in section
1.4.

The rest of this Chapter is organized as follows. In section 1.1 we review some
problems where it has been possible to determine the running time of the adiabatic

15



algorithm. In our discussion we will preview some of the examples which are treated
in subsequent Chapters. In section 1.2 we introduce the numerical and analytic
techniques that we will use in this thesis. Finally, in section 1.3 we give an outline
of the rest of the thesis. In section 1.4 we conclude with an overview of complexity
theoretic considerations which are relevant to the quantum adiabatic algorithm.

1.1 Performance of Quantum Adiabatic Algorithms

In this section we review progress towards understanding the running time of quantum
adiabatic algorithms.

The first examples we review in section 1.1.1 all have the property that the function
to be minimized has very little structure. In these cases it has been proven that the
quantum adiabatic algorithm cannot succeed in subexponential time [17, 16].

We then discuss the case[l5, 21, 19] where the function to be minimized only
depends on the Hamming weight of its argument (an n bit string). In section 1.1.2
we review the strategy introduced in references [19, 21, 15] for analyzing the quantum
adiabatic algorithm applied to such problems.

In section 1.1.3 we review results that pertain to quantum adiabatic algorithms
for clause based decision problems such as 3SAT, Exact Cover, and XORSAT.

We conclude in section 1.1.4 with a discussion of the relationship between phase
transitions and quantum adiabatic algorithms.

1.1.1 Grover and Scrambled Problem Hamiltonians

Grover’s algorithm [27] is a quantum algorithm (originally defined in the circuit model
of quantum computation) which solves the following problem. The goal is to find a
special bit string zy out of the 2™ possible n-bit strings. In order to determine the bit
string zo we are allowed to make queries to an “oracle” which takes as input a given
bit string y and outputs “yes” if y = z; and “no” otherwise. This oracle is given to
the user as a “black box” unitary transformation.

A different version of Grover’s problem where the oracle is given as a Hamiltonian
was defined in [17]. Here we are given the problem Hamiltonian

Hp = 1 - |Zo><20| (15)

as a “black box” which we are allowed to apply to our system, and the goal is to find
2. The quantum adiabatic algorithm with interpolating Hamiltonian

) = (193 (£5%) + 50— fzoead

=1

was studied in [21] where it was shown that for this problem the minimum gap is
asymptotically ~ 2-27% and the running time of the adiabatic algorithm is expo-
nential in n. (This followed previous work [17] which demonstrated upper and lower

16
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Figure 1-1: (From [13]) Lowest 25 levels for the unscrambled Hamiltonian Hj at
n = 18.

bounds for solving Grover’s problem within a more general “continuous time” model
of quantum computation).

An extension of these results was given in [16] where it was shown that quantum
adiabatic optimization cannot achieve success in subexponential time when the be-
ginning Hamiltonian Hp is a rank 1 projector (as opposed to the Grover case where
the problem Hamiltonian is rank 1).

Reference [16] also discussed quantum adiabatic algorithms for a class of problem
Hamiltonians Hp which are “scrambled”. Given a function h(z) defined over the set
of n bit strings and a permutation 7 which permutes the set of all 2" n-bit strings,
define

he(2) = h(n™(2)).

Each permutation 7 corresponds to a particular scrambled function A, so there are
2"™! possible scrambled functions.

In [16] it was proven that the quantum adiabatic algorithm cannot efficiently find
the bit string which minimizes h, for a randomly chosen 7= (with high probability
over the choice of 7) [16]. The theorem proven in [16] applies to a more general class
of algorithms. It is (in a slightly adapted form)

17
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Figure 1-2: (From [13|) Lowest 25 energy levels for an instance of the scrambled
Hamming weight problem H,(s) with a random permutation at n = 18. The inset
shows a magnified view of levels 2 through 19 near s = 0.6.
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Scrambled Theorem (modified from [16]). Let h(z) be a cost function, with
h(0) = 0 and h(1),h(2),...,A(N — 1) all positive. Let m be a permutation on N ele-
ments, and Hp(t) be an arbitrary m-independent Hamiltonian. Consider the Hamil-

tonian
H,(t)=H (Zh “12)|2) z|)

where |c(t)] < 1 for all t. Let |¢.(T)) be the state obtained by Schrodinger evo-
lution governed by Hy(t) for time T, with a m-independent starting state. The bit
string which minimizes the scrambled cost function is 7(0) and algorithmic success
corresponds with measuring the basis vector |w(0)) at the end of the Schrodinger time
evolution. Suppose that the success probability |(1,(T)|7(0))]> > %, for a set of eN!
permutations. Then

_27

2
> \/_ rN>@.
~  64h* €

The above simplified version of the theorem bounds the time required to obtain
success probability at least 3 —the original theorem from [16] gives a similar bound
for any choice of success probability.

The authors of [16] discussed the lessons learned from this result for quantum
adiabatic algorithm design. A scrambled function A, leads to a problem Hamiltonian

= Z he(z)|2)(z

where

and the interpolating Hamiltonian

n

ACRIEE)S (5% + stten (16)

In the quantum adiabatic algorithm s = s(t) is changed as a function of time. The
Scrambled Theorem can be applied with the identifications ¢(t) = s(¢) and

n

Hp(t)=(1-s(t))) (1 ;";) - (1.7)

=1

An example considered in [16] is where h(z) computes the Hamming weight (num-
ber of ones) of the bit string z. In that case the unscrambled Hamiltonian Hpy (where
I is the identity permutation) is

n

He= Y (5%)

1=1

19



and the Hamiltonian Hj(s) can be written as a sum of n single spin terms with no
interactions. It was pointed out in [16] that the Hamiltonian H,(s) for most permu-
tations m does not have the “bit structure” which is present in the Hamiltonian H,(s).
The results of [16] show that the quantum adiabatic algorithm will not succeed on
the scrambled Hamming weight problem when the permutation 7 is chosen randomly.
This is in contrast to the unscrambled case where the minimum gap of Hj(s) is inde-
pendent of » and the quantum adiabatic algorithm is efficient. It is argued in [16] that
in this example the lack of bit structure is responsible for the failure of the quantum
adiabatic algorithm.

It was also noted [16] that in the scrambled Hamming weight case the ground
state energy of H,(s) has an interesting generic behaviour for randomly chosen per-
mutations 7. The spectrum of Hp, does not depend on w. But the spectrum of
the Hamiltonian H,(s) does. In Figure 1-1 we show the spectrum of the decoupled
Hamiltonian Hy(s) and in Figure 1-2 the spectrum of the Hamiltonian H,(s) for a
random choice of the permutation 7 (these plots are reproduced from [13]). It was
pointed out in [16] that as n increases the ground state energy of H,(s) appears to
approach two straight lines which meet at s = J (when 7 is chosen randomly). We
can see this limiting behaviour already in Figure 1-2.

In Chapter 4 we will return to the subject of scrambled Hamiltonians where we
will prove convergence results for the ground state energy and minimum eigenvalue
gap for such models. Applying our results to the scrambled Hamming weight problem
proves that the ground state energy per spin approaches two straight lines in the limit
n — oo and that the minimum eigenvalue gap g, for this problem is exponentially
small.

1.1.2 Cost Functions which depend only on the
Hamming Weight

Quantum adiabatic algorithms for symmetric cost functions f(z), that is, cost func-
tions which depend only on the Hamming weight of their input, have been analyzed
in references [15, 21, 19]. The Hamming weight of a bit string z is defined to be the
number of ones, and is therefore always an integer between 0 and n. Obviously there
is an efficient classical algorithm which finds a bit string zo for which f(z) is minimal:
for each j € {0,1,...n} choose a bit string z; with Hamming weight j and compute
f(2;). The minimum of f is then achieved by one of these {z;}. It is not hoped that
a quantum adiabatic algorithm achieves a speedup over a classical algorithm for any
problem like this. The study of quantum adiabatic algorithms for symmetric cost
functions is useful because they can be analyzed easily (as we discuss below), and
because the lessons learned may help us understand quantum adiabatic algorithms
for more difficult computational problems. We now review the techniques that have
been used to study quantum adiabatic algorithms applied to such problems.

Write
Hp =" f(2)|2)(] (1.8)
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where f(z) depends only on the Hamming weight of 2. If we add to this problem
Hamiltonian 1.8 a beginning Hamiltonian

Hp — Ci (1 —20';;>
1=1

(where C' is a constant that may depend on n) then the full Hamiltonian

H(s)=(1-s)Hg+ sH,

is a function of the total spin operators

and .
1 i
SZ = 5202.

The operators S, and S, both commute with S* = S2 + 52 + S2. It is easy to
verify that the Hamiltonian H(s) commutes with S? since the problem Hamiltonian
is a function of S, and the beginning Hamiltonian is a function of S,. Because of
this symmetry, the ground state of the system remains in the n + 1 dimensional
symmetric subspace throughout the quantum adiabatic evolution and so the only
relevant eigenvalue gap is the gap within this subspace. This gap can be computed
using numerical diagonalization up to very large values of n. This strategy has been
used to convincingly obtain the asymptotic scaling of the gap with n for a number of
different examples|21, 19, 15].

A second approach[15] for analyzing the quantum adiabatic algorithm applied
to a symmetric cost function can be applied when (for large n) the function to be
minimized is of the form

£z = vy 4 o (19)

n

(where W(z) is the hamming weight function and r € 0,1,2,...) so that in the limit
n — oo the dependence of f on the Hamming weight is captured by the “intensive”
function V' (u) with u € [0,1]. This function V(u) is an energy landscape for the
problem at s = 1 in the limit n — oo. In reference [15] it is shown that one can
extend this quantity to an “effective potential” V (u, s) whose minimum characterizes
the ground state at any value of s in the limit n — oo (however when s # 1 the
quantity u no longer represents the rescaled Hamming weight of a bit string). The
behaviour of this potential as a function of s can be used to infer whether or not an
exponentially small gap is present for finite size systems|[15].

In [19] an algorithmic strategy called “path change” was introduced and applied
to symmetric cost functions. For some problem Hamiltonians the linear interpolation
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1.4 between the initial Hamiltonian and the problem Hamiltonian may not be a good
choice. Path change is the idea of randomly choosing interpolating Hamiltonians
Hpg(s) which end at the given problem Hamiltonian Hg(l) = Hp and running the
quantum adiabatic algorithm for each random choice in the hopes that one of the
runs will be successful. In [19] this path change strategy is applied to a symmetrized
problem Hamiltonian for which the quantum adiabatic algorithm with the Hamilto-
nian 1.4 does not succeed. In that case it is shown [19] that path change can be used
to give an efficient quantum adiabatic algorithm for this symmetrized problem. Farhi
et al. suggest that path change may be a useful strategy to use with the quantum
adiabatic algorithm applied to problems which are not symmetrized. This was the
main purpose of introducing path change, since (as we have already discussed) sym-
metrized problems are not interesting from a computational point of view. In Chapter
3 we will see an example of path change applied to a non-symmetric problem.

1.1.3 Clause Based Decision Problems

In this section we review results pertaining to the performance of the quantum adi-
abatic algorithm on clause based decision problems such as 3SAT and Exact Cover
and XORSAT. Unlike in the Grover and Scrambled cases, these problems have clause
structure which an algorithm can try to exploit. And unlike symmetrized cost func-
tions, there is presumably no simple limiting “energy landscape” for these problems as
n — 0o. We begin by giving some examples of these classical computational problems.

Examples of Clause Based Decision Problems

An instance of 3 Satisfiability (3SAT) on n bits is defined as follows. You are given
a set of m clauses. A clause is a specific type of constraint on the n bits which is
given as a subset {ki, ko, k3} of the n bits and a 3-bit string s. Each k; € {1,...,n}
for 2 € {1,2,3} and s € {000,001, 010,...111}. A clause is said to be satisfied by an
n-bit string z if 2y, 2,2k, # S, Where 2; is the ith bit of z. Given the set of m clauses
which specifies an instance of 3SAT, the question is to determine whether or not there
exists an n-bit string z which satisfies all of the clauses. 3SAT is a decision problem,
meaning the answer is either yes (if the instance is satisfiable) or no (otherwise).

Exact Cover is another example of a clause based decision problem. Like 3SAT,
an instance of exact cover is specified by a set of m clauses and the question is to
determine if there is an n-bit string z which satisfies all of them. Each clause in this
case is represented by a subset kq, ko, k3 of 3 bits. The clause is satisfied by an n-bit
string if

2k, 2ky2ks € {100, 010,001}

Note that each exact cover clause can be written as a set of 5 3SAT clauses which
penalize the bit strings 000,011,101,110,111 on the given subset of bits.

A third example of a decision problem is called 3XORSAT. Here a clause on bits
k1, ko, k3 is a constraint of the form

Zhy B 2y B 2ks = b (1.10)
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where b € {0, 1} and the symbol & indicates the XOR function. The decision prob-
lem is to determine whether a set of m given constraints of the form 1.10 can be
simultaneously satisfied.

How hard are the computational problems that we have just described? We briefly
mention some ideas from complexity theory which help to answer this question. The
complexity class NP is the class of decision problems where every “yes” instance has
a proof that can be checked efficiently (on a classical computer). In 3SAT a proof
consists of the n-bit string z which satisfies all of the clauses. Given this “winning”
bit string, we can check that indeed all of the clauses are satisfied by it. For this
reason 3SAT is contained in NP. It turns out that any instance of a decision problem
in NP can be mapped into a corresponding instance of 3SAT (without expanding the
number of input bits by more than a polynomial factor) [38]. This is the statement
that 3SAT is NP-hard. A problem such as 3SAT which is both NP hard and in NP
is said to be NP complete. Both 3SAT and Exact Cover are NP complete. Most
computer scientists believe that there is no subexponential time algorithm which
will solve NP complete problems. On the other hand 3XORSAT can be solved in
polynomial time on a classical computer. This is the statement that 3XORSAT is
in the complexity class P which consists of the set of decision problems that have
polynomial time classical algorithms. To see why, note that each clause in 3XORSAT
is a linear constraint over the field F}. Determining whether or not a set of linear
equations have a solution can be solved in polynomial time using linear algebra.

Sometimes we will consider instances of 3SAT or other decision problems which
are drawn at random from an ensemble. Properties of such random instances have
been studied using methods from statistical mechanics (see [49] for a review). The
canonical random ensemble of 3SAT instances is defined as follows. To generate a
random instance on n bits, choose each clause uniformly at random but fix the ratio
of clauses to bits a = 7. If « is sufficiently small then the instance will be satisfiable
with high probability. Similarly if « is sufficiently large then a random instance drawn
from this ensemble will be unsatisfiable with high probability. It is believed that there
is a “phase transition” at a critical value a, which separates a satisfiable phase from
an unsatisfiable phase in the thermodynamic limit n — co. Random instances with
a close to a, are believed to be computationally difficult for classical algorithms[49].
Similar phase transition phenomena are believed to occur in random ensembles of
other clause based decision problems.

Quantum Adiabatic Algorithms for Decision Problems

A clause based decision problem can be turned into an optimization problem that
can be solved by the quantum adiabatic algorithm. The strategy is to search for a bit
string z which satisfies all of the clauses, using (for example) the number of violated
clauses as a cost function which must be minimized. If the algorithm runs for a time
T and then outputs the satisfying bit string z when the given instance is satisfiable,
then we don’t need to worry about what happens when the instance is not satisfiable.
We can simply run the algorithm for time 7T, check if the output z satisfies all the
clauses, and conclude that the instance is satisfiable if that is the case. That is why,
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for decision problems, we can restrict to the set of satisfiable instances when studying
the runtime of the quantum adiabatic algorithm.

Now let’s turn to the quantum adiabatic algorithm for 3SAT from [21]. Take each
clause (specified by the subset k1, ko, k3 and the 3 bits s = s15253) and form the clause
Hamiltonian

h — (1+(—21)310 ) <1+( 21)%“) (1-1—(—21)530’“3)'

Summing the clause Hamiltonians associated with each of the m clauses we get the
problem Hamiltonian for the given instance of 3SAT

Hp = h, (1.11)
c=1

This Hamiltonian is diagonal in the Pauli z basis, and a bit string |z) has energy equal
to the number of unsatisfied (violated) clauses. The form of equation 1.11 makes clear
the locality of the problem Hamiltonian—it is a sum of terms h. where each term h,
involves a bounded number of spins (in this case 3). If there is a zero energy state
|20) then the corresponding bit string z is a satisfying assignment for the instance. If
we restrict to instances with a unique satisfying assignment then the eigenvalue gap

of the Hamiltonian
n 1 _
=(1-5)> (
i=1

at s = 1 is at least 1 and the minimum gap gm;, determines the running time of the
quantum adiabatic algorithm.

Of course one can form problem Hamiltonians for other clause based problems
such as Exact Cover or 3XORSAT in a similar manner.

i
O-x) ‘|‘SHP

Worst Case Performance for 3SAT

It is known that there are families of 3SAT instances for which the quantum adiabatic
algorithm has running time which is exponential in the system size[61]. We now review
the example from [61]. Start with the 3SAT clause which penalizes the bit string 100.
This clause is associated with the 3 qubit Hamiltonian

1—0i\ (1+0l\ [(1+7F
i (159) (52) ()

Form a symmetrized instance of 3SAT by including this clause for each of the n
triplets of qubits

3

E : hmk oz?0z7az)

1,7,k=1

We have used the prime superscript in the above to indicate that this is an interme-
diate step in the construction of the problem Hamiltonian—we will modify H} to con-
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struct the final problem Hamiltonian Hp. Since Hp is symmetric under permutations,

it can be written as a function of the Hamming weight operator W = 3" | (1_2”;) .
We get

Hy = (n—W)W?

(1))

so the rescaled cost function g(u) = (1 — u) u? (from equation 1.9). This cost function
has two satisfying assignments, which correspond to the bit strings 000...0 and 111...1.
It is possible to use the effective potential analysis of [15] to show that the quantum
adiabatic algorithm with Hamiltonian

e = (1-9) ) (F5%) + sy

i=1

will end up in the solution 000...0 corresponding to the minimum at v = 0 as s — 1.
To construct the problem Hamiltonian Hp, add one additional clause to the Hamilto-
nian Hp which removes the degeneracy and makes 111...1 the global minimum. The
quantum adiabatic algorithm requires exponential time to find the winning bit string
111...1 in this example [61].

This example demonstrates that quantum adiabatic optimization does not succeed
in the worst case for 3SAT (with the beginning Hamiltonian 1.2 and the problem
Hamiltonian which counts the number of violated clauses). On the other hand the
performance of the quantum adiabatic algorithm for typical instances of 3SAT (or
other combinatorial optimization problems) drawn from a random ensemble has been
more difficult to assess.

Performance on Random Instances of 3SAT and Exact Cover

In this section we will discuss results about the performance of the quantum adiabatic
algorithm on random instances of clause based optimization problems. Since different
studies have occasionally used different random ensembles of instances for the same
problem, we will try to be be clear about which random ensemble was used. The
reader should be aware that not all the random instances which are discussed here
are believed to be hard to solve classically.

The first numerical studies of quantum adiabatic algorithms for random instances
of 3SAT [31] and Exact Cover [20] seemed to suggest that the quantum adiabatic
algorithm might efficiently solve typical instances of these problems.

The authors of [20] generated random instances of Exact Cover with a unique
satisfying assignment and simulated (on a classical computer) the time evolution of
the quantum adiabatic algorithm applied to such instances. The random ensemble
of instances which they studied was constructed by adding one clause at a time until
the number of solutions became < 1. If the final number of solutions after adding
the last clause was zero then they started over, and if it was 1 then the instance was
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kept. With this technique they were able to study the performance of the adiabatic
algorithm up to n = 20. For each n between 10 and 20 they generated 75 random
instances and simulated the adiabatic algorithm for each instance. They computed
the median time to reach a constant (chosen to be 1/8) success probability and found
that this median time was fitted well to a quadratic function of n.

Another numerical study was undertaken by Hogg in [31]. Hogg studied the
performance of the quantum adiabatic algorithm on random instances of 3SAT near
the satisfiability phase transition. These instances are believed to be very difficult
for classical algorithms. Hogg found a polynomial scaling of the running time with
n for instances with n as large as 24. Hogg noted that, although the minimum gap
determines the asymptotic scaling of the quantum adiabatic algorithm, for n < 20 he
found using numerical diagonalization that the median of the minimum gap for the
instances he considered did not vary too much with n. This led him to add the caveat
“Hence, unlike for large n, the cost is not dominated by the minimum gap size and so
the values of Fig. 1 may not reflect asymptotic scaling.”[31] (referring to his Figure 1
which appeared to show polynomial scaling for the quantum adiabatic algorithm on
the random instances he considered).

The reason that Farhi et al and Hogg were limited to studying relatively small
systems is that they both used exact numerical techniques which require an expo-
nential amount of computer memory. The dimension of the Hilbert space for an n
spin quantum system is 2" and computation involving a vector this large becomes
difficult as n increases beyond 20 or so. A technique which has been developed to
avoid this problem is called Quantum Monte Carlo. For now we will just mention
that this method typically has significantly smaller space requirements, and often can
be used at much higher bit number than techniques based on matrix or vector manip-
ulation. Young et al. [63] were the first to apply Quantum Monte Carlo to the study
of the quantum adiabatic algorithm. They studied an ensemble of random instances
of Exact Cover with a unique satisfying assignment which are near the satisfiability
transition for this problem (the ensemble studied by Young et al differed from the
ensemble studied in [20]). They computed the median minimum gap over a set of
random instances at each value of n studied, for n as large as 256. They found that
this median minimum gap decreased only polynomially with n which supported the
notion that the quantum adiabatic algorithm could efficiently solve typical instances
drawn from this ensemble.

Despite this seemingly balmy weather for the quantum adiabatic algorithm, a new
batch of papers [2, 3, 4, 5, 18] arrived which “cast clouds”[3] over the landscape. In
these references a potentially dangerous problem for quantum adiabatic algorithms on
random optimization problems was discussed. The central idea of all of these works is
that there are certain types of instances of clause based optimization problems which
may lead to failure of the quantum adiabatic algorithm. These problematic instances
share some properties of the “worst case” example from [61] which we reviewed in the
previous section.

We study the following random ensemble of problematic 3SAT instances (from
[18]) in Chapter 3 of this thesis. Suppose that we have an instance of 3SAT with
exactly 2 satisfying assignments, corresponding to a problem Hamiltonian Hp. It will
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Figure 1-3: The two lowest energy levels near s = 1 before (left) and after (right)
adding the final penalty clause. A “perturbative cross” is created by adding this single
clause which breaks the degeneracy between two local minima.

be important that these two satisfying assignments differ by a number of bit flips
which is proportional to n. In [18] we constructed a set of random instances where
one of the satisfying assignnments is 000...0 and the other is 111...1. The Hamiltonian

Hs)=(1-5)3 (1 ‘2"5) +sHp,

i=1

has 2 energy levels which are close together as s — 1. The two lowest levels are
illustrated in Figure 1-3 (left). Suppose that for s near 1 the lower energy level
corresponds to the bit string 000...0. The final step in constructing the problematic
instance is to add a single clause which penalizes the lower level 000...0 but not 111...1.
This “drags” the lower energy level above the upper one and creates the picture in
Figure 1-3 (right). At s* there is an avoided cross and a very small gap which causes
the adiabatic algorithm to fail. It turns out that the location of the avoided Cross
s* approaches 1 as n — oo in this scenario, and one can use low order perturbation
theory to compute its value. This type of avoided cross has been called a “perturbative
cross”. The nature of the ground state changes abruptly at s*. For s < s* most of the
amplitude will be concentrated on bit strings with low Hamming weight whereas for
$ > s there is high amplitude only on states with Hamming weights close to n. It
is argued in [4] that problematic instances similar to this will occur with nonneglible
probability in random ensembles of optimization problems and generically lead to the
failure of the quantum adiabatic algorithm.

Young et al again numerically studied random instances of Exact Cover using
Quantum Monte Carlo[64]. The instances considered were chosen to have a unique
satisfying assignment and ratio of clauses to bits near the phase transition. (There
is a minor difference between the problem Hamiltonian H p which was used here for
each instance and that which was used in [63]-see these references for details.) This
time, instead of looking at the median minimum gap, they tried to look for instances
where there appeared to be a sharp change in the ground state at some value of the
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interpolating parameter s*. In order to diagnose such a sharp change, they computed
(using quantum monte carlo) the “order parameter”

1 n
q= " 2(092
i=1

at different values of s and observed that in some instances there is a value of s
at which this order parameter changes abruptly. They found that the fraction of
instances (out of 50 random instances considered at each value of n) where such an
abrupt change occurs increases with n and may approach 1 for large n [64]. A recent
paper of Neuhaus et. al has also reported abrupt changes in an order parameter for
random instances of 3SAT [50]. We don’t know if the sharp changes in the ground
state observed by Young et al [64] (or the one observed by Neuhaus et al [50]) are
associated with “perturbative crosses”.

Performance on Random Regular Instances of XORSAT

In [21], Farhi et al showed that the quantum adiabatic algorithm can efficiently solve
satisfiable instances of 2XORSAT on a ring. In this example the problem Hamiltonian
to be minimized has nearest neighbor constraints on a line with periodic boundary
conditions

"= gigitl
Hp = Rt ““) 1.12
> (=25 (112)
where each J;;11 € {£1} and o?*' = ol. This can be viewed as an instance of
2XORSAT since each term in the sum corresponds to a linear constraint on 2 variables
of the form

2@ 21 = —Jiiq

The cost function 1.12 computes the number of violated clauses. We call this 2-
regular 2XORSAT since the instance is defined on a 2 regular graph (a ring). For
any choice of the couplings which is not frustrated-that is, when the final constraint
on bits n and 1 is consistent with all other constraints , the Hamiltonian 1.4 with the
above problem Hamiltonian is exactly solvable and the spectrum does not depend
on the (consistent) couplings {J;;+1} [21]. Every satisfiable instance has the same
spectrum (and consequently the same eigenvalue gap) as the transverse field ising
model described by the Hamiltonian 1.12 with each J;;4; = 1. For the adiabatic
algorithm with beginning Hamiltonian

HB:z":(1—205>

i=1

and problem Hamiltonian 1.12 it is possible to exactly compute the minimum gap as
a function of n and one obtains that it scales as an inverse polynomial in n [21].
Another ensemble of XORSAT on regular graphs was studied in [37]. The problem
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Hamiltonians considered in [37] are of the form'

= (g

[

each clause c is associated with 3 bits 7; ., 42,73, and a coupling J, € {£1}. This
problem Hamiltonian corresponds to an instance of 3XORSAT. The ensemble of in-
stances was further restricted to those which are 3-regular (meaning that each bit
is involved in exactly 3 clauses). Using the quantum cavity method (which we will
discuss further in section 1.2.4 and in Chapter 5) and Quantum Monte Carlo, Jorg et
al [37] have shown that there is a first order phase transition in this model at a critical
value s =~ % At this critical value properties of the ground state change abruptly; for
example the transverse magnetization changes discontinuously.

Jorg et al also studied the ensemble of random instances of 3 regular 3 XORSAT
which are restricted to have a unique satisfying assignment. A random choice of
the couplings {J.} and 3 regular hypergraph will produce an instance with a unique
satisfying assignment with nonzero probability [37]. For instances with a unique
satisfying assignment, we can always apply a sequence of bit flip operators which map
the unique solution to the bit string 000...0. Conjugating the problem Hamiltonian
with this unitary transformation has the effect of replacing each J. with the value
+1. So when restricted to instances with a unique satisfying assignment, the choice
of the couplings does not affect the spectrum (as in the case of 2 regular 2XORSAT
[21] reviewed in the introduction). The 3 regular hypergraph which specifies the
instance is therefore the only factor which determines the spectrum in this model.
Using numerical diagonalization, the authors of [37] demonstrated that the quantum
adiabatic algorithm does not succeed in polynomial time for random instances of this
problem due to an exponentially small gap which occurs at s ~ % . This agrees with
the quantum cavity method and Quantum Monte Carlo results which apply to the
random ensemble with no restrictions on the number of satisfying assignments.

In chapter 5 of this thesis we will demonstrate that the phase transition observed
by Jorg et al. [37] in random instances of 3-Regular 3XORSAT with a unique satisfy-
ing assignment occurs at exactly s = 3. In particular we show that there is a duality
transformation which maps the problem Hamiltonian into the beginning Hamiltonian,
and the beginning Hamiltonian into a problem Hamiltonian for a different instance
(which occurs with equal weight in the ensemble). This demonstrates that the energy
per spin, averaged over all instances, is symmetric about s = % This implies that, if
there is a unique phase transition as a function of s, it can only occur at s = %

Note that although linear algebra solves 3XORSAT in polynomial time, heuristic
algorithms such as the quantum adiabatic algorithm (which do not use linear algebra)
presumably do not benefit from this fact. This is also true in the classical case-in
reference [28] it was found numerically that the classical algorithm WALKSAT per-
forms worse on random instances of 3-Regular 3XORSAT than on random instances

1We have rescaled the problem Hamiltonian and added an irrelevant constant in order to present
the results of reference [37] in a consistent way with our notation.
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of some NP complete problems.

1.1.4 Quantum Adiabatic Algorithms and Phase Transitions

Since we know that computing the scaling of the minimum eigenvalue gap can be
difficult it would be nice to have an alternative way to study the running time of the
quantum adiabatic algorithm. In some of the examples discussed above, the ground
state energy per spin of the interpolating Hamiltonian H(s) converges to a universal
curve in the limit n — oo. Can we learn anything about the performance of the
quantum adiabatic algorithm (for large but finite n) from this thermodynamic limit?

To begin to address this question let’s look at simple illustrative example: the
scrambled Hamming weight problem which was discussed in section 1.1.1. We will
prove in Chapter 4 of this thesis that in this problem the energy per spin e for a
randomly chosen scrambled instance converges to the curve

in the thermodynamic limit. In Figure 1-2 we can already see the two straight lines
behaviour with a small example consisting of only 18 spins. This limiting curve
has the property that its derivative at s = % is discontinuous. This discontinuity
is interpreted as a first order phase transition. The minimum gap at s = % closes
exponentially quickly as n — oo.

Another example where a first order phase transition occurs is the 3-regular 3XOR-
SAT model studied in [37] using the quantum cavity method and Quantum Monte
Carlo. There it was shown that the phase transition is first order—the first derivative
of the ground state energy per spin has a discontinuity (in the limit n — oo) which
was found numerically to be near s = % This result applies to the ensemble of ran-
dom instances without a restriction on the number of satisfying assignments. The
instances with a unique satisfying occur with finite probability in this ensemble and
were studied using numerical diagonalization in [37]. For finite system sizes the gap
is exponentially small as a function of n near s = £ [37].

Second order phase transitions are also possible. In the (unfrustrated) 2XORSAT
on a ring example [21] there is a limiting curve for the ground state energy per spin.
Recall that for this problem each choice of couplings has the same spectrum so there
is only one curve for each n. The limiting curve can be computed from the exact
solution of the model which is reviewed in [21]. We have plotted the energy per spin
e for this model in the thermodynamic limit in Figure 1-4. In this model the first
derivative of the ground state energy per spin is continuous but its second derivative
blows up at the transition point s = % . Here a second order phase transition is
associated with a gap which scales as an inverse polynomial in n.

It has been suggested [58] that first order phase transitions in the n — oo limit are
typically associated with eigenvalue gaps which decrease exponentially quickly with n.
This is consistent with all of the examples that we know of. When a first order phase

transition occurs in a given model we expect that the quantum adiabatic algorithm
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Figure 1-4: The energy per spin for (satisfiable) 2XORSAT on a ring.

does not succeed in polynomial time. However when a second order phase transition
1s present then we cannot make conclusions about the performance of the quantum
adiabatic algorithm without further investigation of the minimum eigenvalue gap.

Perturbative crosses (which we discuss in more detail in Chapter 3 ) are a mecha-
nism which leads to small gaps that is seemingly different from the phase transitions
discussed above, although they have been called first order phase transitions by some
authors. Is there a connection between perturbative crosses and phase transitions?
We know that as n — oo the perturbative crosses are expected to move to s = 1 but
the effect of perturbative crosses on thermodynamic quantities is not clear.

Finally, we note that the crude distinction between “first order” (signalled by
a discontinuous first derivative of the average energy per spin) and “second order”
(indicating a continuous first derivative at the critical point) is not sufficient to capture
the different behaviours of physical systems at quantum critical points. For example
it is known in the context of quantum spin glasses that a wider range of phenomena
is present (see for example[12] and [24, 23]).

1.2 Tools for Stoquastic Hamiltonians

Quantum spin Hamiltonians are difficult to study numerically because the size of the
Hilbert space scales exponentially with the system size. Numerical methods which
store a vector in this Hilbert space (such as numerical diagonalization) are limited
to small system sizes for this reason. On the other hand there is no general ana-
lytic method that can be used to study quantum spin systems. Hamiltonians where
analytic progress is possible seem to be few and far between.

In this thesis we will primarily use three technical tools to study transverse field
spin Hamiltonians of the form 1.4 with Hpg given by equation 1.2. The first is a
variational lower bound on the ground state energy. The other tools we use are
numerical methods called Quantum Monte Carlo[55, 60] and the quantum cavity
method[43, 40]. All of these tools exploit a property of the Hamiltonian 1.4 called
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stoquasticity [10].

A Hamiltonian H with real matrix elements is said to be stoquastic [10] with
respect to a given basis {|z)} if all of its off diagonal matrix elements in this basis are
nonpositive. For example the Hamiltonian in equation 1.4 has off diagonal matrix
elements which are either 0 or —%(1 — s) in the Pauli z basis.

Many studies [10, 9, 44, 34, 11] have used complexity theory to demonstrate that
computational problems involving Hamiltonians are easier when restricted to the class
of stoquastic Hamiltonians. We will indeed see that stoquasticity makes our life easier
in the examples considered in this thesis.

In this section we discuss the methods for stoquastic Hamiltonians that are used
in subsequent Chapters of this thesis. The mathematical tools in sections 1.2.1 and
1.2.2 (including the variational lower bound on the ground state energy) consists
of immediate applications of the Perron Frobenius theorem and its corollaries [46].
Quantum Monte Carlo and the quantum cavity method make use of a special feature
of the thermal path integral for stoquastic Hamiltonians. We introduce this special
property in section 1.2.3 and in section 1.2.4 we discuss briefly how these numerical
techniques can be used to simulate properties of the Hamiltonian 1.4 on a classical
computer.

The material discussed below is certainly not meant to be comprehensive—see
references [10, 9, 44, 34, 11] for much more on stoquasticity. Portions of this section
have appeared previously in [18, 13].

1.2.1 No Nodes

For any stoquastic Hamiltonian there is always a ground state with nonnegative
amplitudes in the given basis. To see this, write

H=Hy+V

where Hj is diagonal in the basis {|z)} and V is off diagonal and satisfies (z|V|2’) < 0
when z # 2. Consider a state
W)) = Z Cz|z>

with all real amplitudes c,. The energy of this state is given by

(GIHD) = (2l Holz) = D) caey(2|V]y).

Looking at this formula we see that the energy of |¢) cannot be greater than the
energy of the state
[9) = lel|2)

where we have made all of the coeflicients nonnegative. So in particular, any stoquas-
tic Hamiltonian H has a ground state with nonnegative coefficients in the z basis.
Note that if there is a ground state with nonnegative coefficients in the given
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basis then no excited state can have coefficients which are all strictly positive in this
basis (since eigenstates with different eigenvalues are orthogonal). This proves the
following lemma

Lemma 1. Let H be a Hermitian operator, stoquastic in the |z) basis, that is
(2|H|2') <0

for z # 2. If H|yp) = E|) and (z|¢) > 0 for all z, then E = Eg, the ground state
energy of H.

This statement can be strengthened for stoquastic Hamiltonians which have a
property called #rreducibility. A stoquastic Hamiltonian matrix H is reducible if
there exists a permutation matrix P such that

PHPT

is block diagonal (in the given basis {|z)}). Otherwise H is irreducible. The Perron-
Frobenius theorem [46] tells us that

If H is stoquastic and irreducible in the basis {|z)} then:

1. The ground state of H is unique.

2. The ground state |1) can be taken to have strictly positive coefficients (z|i)) > 0.

1.2.2 A Variational Lower Bound For the Ground State En-
ergy

For any normalized state |¢), and any Hamiltonian H, the quantity (¢|H|¢) is an
upper bound on the ground state energy. It is less well known that, for stoquastic
Hamiltonians, one can also obtain a variational lower bound on the ground state
energy of H. Theorem 1 (given below) is an example of such a bound. (It is an
elementary application of the Collatz Wielandt min-max formula [46] of nonnegative
matrices). A short proof of this theorem from [13] is reprinted here.

Theorem 1. Let H be a Hermitian operator, stoquastic in the |z) basis, that is
(z|H|Z') <0 for z # 2. Let E, be its lowest eigenvalue. Then

. (z|H]9)

> min
7T ()
for any state |@) such that (z|¢) > 0 for all z.

Proof. Let H be



Note that |¢) is an eigenvector of H with eigenvalue 0. The ground state energy of
H is 0 by Lemma 1.
For any normalized state |¢)) we have

<ZIH|¢>}

www—wmm==iﬂww[wm

> min{

Choosing |¢) to be a ground state of H we have

@—wm@zgﬂ%%?]

But ()| H|t) > 0 since H has ground state energy 0, so

(a|Hlg)
B2 Mg

O

Note that this variational lower bound is tight (i.e it is possible to achieve equality)
for irreducible stoquastic Hamiltonians.

In Chapter 4 of this thesis we will use this lower bound as well as the standard
variational upper bound on the ground state energy to characterize the ground state
energy for scrambled Hamiltonians. For these problems we are able to solve for the
ground state energy per spin %Eg by showing that we can get variational upper and
lower bounds for this quantity which agree in the limit n — oo.

1.2.3 The Continuous Imaginary Time Path Integral and a
Probability Distribution over Paths

Specialized numerical techniques such as the quantum cavity method [43, 40] and
path integral Quantum Monte Carlo [55, 60] rely on the fact that the thermal path
integral for a stoquastic Hamiltonian has a special form. Here we review the thermal
path integral (in the continuous imaginary time formulation [22, 55]) and discuss how
stoquasticity is useful in this context.

Any stoquastic Hamiltonian can be written as

H=Hy+\V (1.13)

where Hy is diagonal in the basis {|z)}, V is purely off diagonal in this basis, and
A > 0. The parameter A can always be set it to 1 by rescaling V. However, sometimes

we will be interested in computing properties of the Hamiltonian 1.13 as a function
of A with fixed Hy and V.
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The continuous time thermal path integral for the Hamiltonian H = Hy+ AV can
be obtained using the Dyson series as

ot B tm t2
Tr [G_EH] =Tr [e‘ﬁH" Z (—)\)m/t Odtm/t Odtm_l... /l OdthI(tm)VI(tl)
m=0 m= m—-1— 1=

t

Here we use the notation
Vi(t) = etHoye—tHo, (1.14)

We can then insert complete sets of states and take the trace to obtain the path
integral

Tr [e'BH] =
> [(zﬂ — AV |2m) Zm| = AV |2m_1)...(z2] — AV|21)
m=0{z1,....zm}
B tm t2 s
/ dtm / Aty ... / dtye Jimo Holz(®Ddt | (1.15)
tm=0 tm—1=0 t1=0

In this formula we have used the notation Ho(z(t)) = (2(¢)|Ho|2(t)), where the func-
tion z(t) is defined by

le, 0<t <ty

29, t1 <t <ty

Zmy tm—1§t<tm
21, tmgtéﬁ

So in particular

B
/t o)t = (e ol (14—t e ol 20 (1) - (ol Holz) ().

We view the function z(t) as a path in imaginary time which begins at ¢ = 0 and ends
at t = 8. Then equation 1.15 is a sum over paths, where every path P is assigned a
weight according to p

ﬁ(P) = )\m<21| — V|Zm><2m‘ - V|Zm_1><252‘ - V|Zl>dt1...dtm€_ftﬁ=0 Ho(=(1))dt . (116)

Note that because our Hamiltonian is stoquastic, (z|V|z’) < 0 and the weight
function p(P) from equation 1.16 is nonnegative. Summed over all paths it gives the
partition function Z(8) = Tr[e ##]. So we can define a probability distribution p
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over paths by 5(P)
p
p(P) 70) (1.17)
When the Hamiltonian is not stoquastic one can define a normalized weight function
but it will take both positive and negative values. (In Quantum Monte Carlo parlance,
the fact that p can be negative for non stoquastic Hamiltonians is called the “sign
problem”.)

Physical properties of the quantum system at inverse temperature S8 can be ex-
pressed as expectation values with respect to the probability distribution p. (If 3
is sufficiently large then these expectation values will agree with the corresponding
expectation values in the ground state.) It is straightforward to show that for any
operator D which is diagonal in the |z) basis, the thermal expectation value can be

written as [ ﬁH
Tr|De~
—_— D(z 1.1
rep = > (119

where D(z(t)) = (2(t)|D|z(¢)). The notation (), means average with respect to the
classical probability distribution p over paths.

This immediately allows us to express quantities such as the diagonal part of the
Hamiltonian

Tr[Hoe PH)
T[T[; il / Ho(z (1.19)

The thermal expectation value of the full Hamiltonian Hy + AV can be written using
equation 1.19 as well as the expression

Tr]\Ve PH] m
DVe ] _m, (1.20)
Trle=#H] B

where m is the number of transitions in the path. (The derivation of equations 1.18

and 1.20 are given in Appendix A) .

1.2.4 Quantum Monte Carlo and The Quantum Cavity
Method

We have seen that by generating paths from the distribution p and then computing
averages with respect to p, we can evaluate the thermal expectation value of the energy
at a given inverse temperature 3. Generating paths according to the probability
distribution p is not easy! Continuous imaginary time Quantum Monte Carlo methods
( such as the method described in [40]) work by defining a Markov Chain which
converges to the limiting distribution p over paths. By running many iterations of
this Markov Chain one obtains a path which is approximately distributed according
to p. Then one can use the estimators from equations 1.18 and 1.20 to compute
thermal expectations values for the quantum system.

The quantum cavity method[43, 40] is another probabilistic simulation technique
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which makes use of the distribution p over paths. It is the quantum analog of the
classical cavity method which is used to study the Gibbs distribution in statistical
physics. In the quantum case the Gibbs distribution is replaced with the distribution
p over paths. We discuss the quantum cavity method in greater detail in appendix E
and we use this method in Chapter 5.

In this thesis we make use of the numerical schemes for Quantum Monte Carlo
and quantum cavity simulations which are due to Krzakala et al. [40]. We now briefly
mention a modification of their scheme which we have developed and which we use
in our simulations. Their Quantum Monte Carlo method uses as a subroutine an
algorithm for sampling from the path integral for a single spin. Using this subroutine
they are able to sample from the distribution p corresponding to the path integral of
n spins. They also describe an implementation of the quantum cavity method which
uses this single spin sampling algorithm. In appendix B we describe an alternative
algorithm for sampling from the single spin path integral. In this thesis we will use
the methods of Krzakala et al for the Quantum Monte Carlo simulations in Chapter 3
and the quantum cavity method in Chapter 5. The only difference is that we usc our
algorithm for sampling from the single spin path integral in place of the subroutine
described in [40].

1.3 The Next Four Chapters

We are now ready to describe where this thesis fits in.

A Quantum Monte Carlo Method at Fixed Energy

We first take a short detour in Chapter 2 where we present a novel Quantum Monte
Carlo method which is very different from the continuous imaginary time scheme
discussed above. As we have already mentioned, Quantum Monte Carlo methods are
often the best method for studying stoquastic Hamiltonians with large system sizes.
Although this Chapter may seem tangential to our theme (the quantum adiabatic
algorithm), the theory behind this method motivates a variational ansatz which is
used in Chapter 4 to prove results about scrambled Hamiltonians.

Each subsequent Chapter relates in some way to the story we recounted in sectlon
1.1 about the performance of quantum adiabatic algorithms.

Perturbative Crosses

In Chapter 3 we return to the subject of perturbative crosses. We introduce an
ensemble of random instances of 3SAT which have these crosses and for which the
quantum adiabatic algorithm will fail. We argue that, by randomly changing the
beginning Hamiltonian in a prescribed way, the failure of the quantum adiabatic
algorithm on these instances can be overcome. This follows the “path change” strategy
originally outlined in [19] (although the way that we randomly change the path differs
from the proposals in that paper). We confirm our results using Quantum Monte
Carlo simulations on systems as large as n = 150 spins.
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Scrambled Hamiltonians

Chapter 4 is concerned with the scrambled Hamiltonians first discussed in reference
[16]. Farhi et al showed using information theoretic techniques that a quantum algo-
rithm cannot succeed on typical instances of a scrambled problem[16]. We use this
information-theoretic result to prove that in fact the gap is exponentially small with
high probability over the choice of scrambled instance. We also use variational meth-
ods to solve for the ground state energy per spin in the limit n — oco. Our proof
works for a large class of scrambled Hamiltonians including the scrambled Hamming
weight example discussed above.

Phase Transitions in 3XORSAT and Max-Cut

Finally in Chapter 5 we discuss the quantum phase transitions which occur in two
different ensembles of problems. The first is random 3-Regular 3XORSAT with a
unique satisfying assignment. The results of Jorg et al suggest a first order phase
transition in the ground state at s = -;— for this model. We present a duality transform
which shows that the average energy per spin for this problem is symmetric about
s = 1. This locates the phase transition (if it exists and is unique) at s = 3

The second problem we discuss is called Max-Cut which is associated with an
antiferromagnetic 2 local Hamiltonian on a graph. We consider the ensemble of
random 3 regular instances which we study using the quantum cavity method. Using
this method we see a second order phase transition at inverse temperature /3 = 4.

1.4 Outlook

Where does this leave us?

We have seen examples where the quantum adiabatic algorithm fails and some
examples of easy problems where it succeeds. In this thesis we will not answer the
question of whether or not quantum adiabatic optimization is more or less powerful
than classical computation. We hope our example based approach sheds some light
on which problems are hard (and which might be easy) for quantum adiabatic op-
timization. A completely different approach is to study adiabatic algorithms using
complexity theory. We conclude this Chapter by taking a step back and reviewing
some proven results about broad classes of adiabatic algorithms.

Variations on the quantum adiabatic algorithm have been considered in the lit-
erature. Consider the following extension where H(s) is allowed to be any local
Hamiltonian and in particular is not restricted to the transverse field spin Hamiltoni-
ans of the form 1.4. Initialize a quantum system of n spins in a product state which is
the ground state of a local Hamiltonian H(0). Adiabatically change the Hamiltonian
along some prescribed path H(s) until s = 1 at which point you have prepared the
ground state of H(1). Then make local measurements on the final state. In this
model one can solve a wide range of problems-not just optimization problems which
are specified by a classical cost function. In fact, it has been shown that this model
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of adiabatic quantum computation is as powerful as a full blown quantum computer
[1].

On the other hand Bravyi and Terhal have shown that quantum adiabatic evolu-
tion in the ground state of a local, stoquastic, and frustration free Hamiltonian H(s)
can be simulated efficiently with a probabilistic classical computer [11]. (A frustration
free local Hamiltonian is of the form H = Zi H, where each local term H; > 0 and
the ground state |1) satisfies H;|t)) = 0 for each i.)

As pointed out by Bravyi and Terhal[l11] the computational power of adiabatic
evolution in the ground state of a stoquastic local Hamiltonian is unknown. The
quantum adiabatic optimization algorithms discussed in this thesis are a subset of
this class of quantum algorithms. We have seen in the previous section how stoquas-
ticity allows us to use an expanded set of methods for studying quantum systems.
But we should keep in mind that stoquasticity may be a double edged sword-it may
also restrict the computational power of the quantum adiabatic algorithm. Does there
exist an efficient technique for classically simulating stoquastic adiabatic evolution?
If so then we cannot hope for a superpolynomial speedup through quantum adiabatic
optimization. Such a classical simulation technique (if it exists) would likely be prac-
tically useful for condensed matter physicists studying quantum systems which arise
in other contexts.

Since no efficient classical simulation algorithm for stoquastic adiabatic evolution
exists to date, it makes sense to look for examples where quantum adiabatic opti-
mization is efficient but classical optimization algorithms are not. We adopt this
optimistic approach. The question of whether or not an exponential speedup can be
obtained with quantum adiabatic optimization remains open.
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Chapter 2

A Quantum Monte Carlo Method at
Fixed Energy

In this Chapter we describe a new Quantum Monte Carlo method that allows one
to numerically investigate ground state properties of a quantum system. Most of
this Chapter is excerpted from [14] (which is joint work with Edward Farhi, Jeffrey
Goldstone and Harvey Meyer).

2.1 Introduction

A virtue of Quantum Monte Carlo is that one is not required to manipulate vectors in
the Hilbert space corresponding to the quantum system. The dimension of this Hilbert
space typically grows exponentially with the physical size of the system. Instead,
Quantum Monte Carlo methods map the problem of approximating the ground state
energy (or some other observable) onto the problem of evaluating an expectation
value with respect to a probability distribution ¢(X) over a set of configurations C
(so X € C). In order to evaluate this expectation value, one can use a classical
Markov chain Monte Carlo algorithm to sample configurations from the distribution
g. Markov chain Monte Carlo works by defining a Markov chain on the space of
configurations C. This Markov chain can be described by an update rule which
tells you how to generate a new configuration of the chain from the current one.
The Markov chain is constructed so that the limiting distribution is ¢(X). One
then applies some large number N, of iterations of the Markov chain to some initial
configuration Xg. If Ny is sufficiently large then after these iterations, the distribution
of subsequent configurations will be arbitrarily close to g.

There are two key components of a quantum monte carlo scheme. The first com-
ponent is the map between the quantum problem of interest and a classical sampling
problem. One has to first show that, in theory, there is an ensemble of configura-
tions ¢(X) over a state space C such that certain ensemble averages with respect to
q give properties of the quantum system. The second component is practical. One
must show that, in practice, there is a way to calculate these estimators by defining
a Markov Chain over the state space C' which converges to the limiting distribution
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q.
In section 1.2.3 we described the “in theory” component of continuous imaginary
time path integral Quantum Monte Carlo[55]. In that method, the probability dis-
tribution p over paths is the object of interest and we have seen that by computing
ensemble averages with respect to p we can evaluate properties of the quantum system
at an inverse temperature (3, such as the expectation value of the Hamiltonian H.

In this Chapter we present a new Quantum Monte Carlo method. Like most
Quantum Monte Carlo methods, ours is applicable only to stoquastic Hamiltonians.
In keeping with our earlier notation we write

H(\) = Hy + AV (2.1)

where Hy is diagonal in the basis {|z)}, V is purely off diagonal in this basis, and
A>0.

Suppose we are interested in computing the ground state energy curve E4()) for
the Hamiltonian (2.1) at a set of points Ag, A1, Ag, ..., Ag . In order to compute E,(A) by
standard Quantum Monte Carlo methods such as the path integral method, one first
fixes a value Ag as well as a large inverse temperature 3. The Quantum Monte Carlo
procedure then outputs the thermal expectation value of H(\g) at inverse temperature
B, which, if 3 is large, will approximate E,;()). One then repeats this procedure for
some list of values Ai, Ag, ..., Ag. The Quantum Monte Carlo we describe in section
2.3 can also be used to compute points on the curve E,()). We will see that the curve
E4(A) for A > 0 is in fact invertible. In order to use the new Quantum Monte Carlo
method, one fixes an energy ' and computes the value of the inverse function \(F).
One can then repeat this procedure at different values of E to obtain a picture of the
curve.

To motivate our new method and to get a general idea of how it works, consider
the function

G(E,\) =Tr [(ﬁ) v} : (2.2)

Assuming that £ < 0 and A > 0 are chosen so that the Taylor series expansion
converges, we can write

— 1
= T
G(E. ) TKH Ho*_EV> — Ev]

) gTTKHo_—AE@ m] (2.3)

It is clear from the expression in equation 2.2 that the function G(F, \) blows up when
E — E4(X), where Eg(\) is the ground state energy of H(\). Equivalently we can
say that at a fixed value of £ the blow up occurs as A — A(E), where E,(A(E)) = E.
At this value of A the Taylor series expansion must diverge. In fact, this divergence
occurs because as m becomes large, terms in the series approach 1 for large m (here
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we have made some assumptions about the Hamiltonian which we discuss in the next

section) so
—AME) \"
~1.
TTKHO - EV) }

For the remainder of this section we assume that m is large enough to make = close
to =. By inserting complete sets of states in the basis that diagonalizes Hy we can
express the LHS as a sum over paths

MEN™ > (zl = Viznzm| = Vizm1)...(z2| - V|ZIHE1 =

{zl,.A.,zm}

where E; = (2;]Hy|z;). Now taking the log and differentiating with respect to E, we
obtain

1 d\E) l e 1
S aE ~ 2 D (a E,._E>

{21 ?‘“72777.}
m

— Y (2.4

Here the expectation value is taken with respect to the measure f on paths defined
by

1 m
Fz1, s zm}t) = flal = Viem) (znl = Vizm-1)...(z2] = Vi]z) g - F
where [ is a normalizing constant.
Sampling from the distribution f will also allow us to compute _ﬁdi\m from

equation 2.4 as well as other properties of the ground state. We will show how to
sample with respect to the distribution f in a way that makes numerical work possible.

The rest of this Chapter is organized as follows. In section 2.2 we describe the
Hamiltonians for which our method will work. In section 2.3 we fully describe the “in
theory” component of our scheme which consists of the ensemble f over paths and
estimators for ground state properties.

In section 2.4 we turn to the practical issue of sampling. We restrict to the case
of transverse field spin Hamiltonians where the system is composed of n qubits,

n
i
—2%
i=1

and Hj is diagonal in the Pauli z basis. We describe how one can sample configu-
rations from the appropriate distribution for our new Monte Carlo method and we
demonstrate numerically that our method works on a small (16 spin) instance of
Exact Cover.

Finally, in section 2.5.1 we describe two connections between our quantum monte
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carlo method and other topics considered in this thesis. We first demonstrate a
connection between the 8 — oo limit of the path integral distribution p and the
m — oo limit of the ensemble that appears in our method. We obtain a new estimator
for the ground state energy in the standard path integral approach which is based
on this connection. We then describe a variational ansatz for the ground state of
a stoquastic Hamiltonian which we will return to in Chapter 4, where we use this
ansatz in the lower bound from theorem 1 of Chapter 1.

2.2 The Hamiltonian

We now discuss the properties of the Hamiltonian H(\) which we require for our
method to work. We require:

1. The ground state of H(\) is not degenerate for any value of A € (—o0, c0).

2. The smallest eigenvalue of Hy is zero. Note that this condition can be ful-
filled without loss of generality by adding a constant term to the Hamiltonian.
Writing |20) € {|z)} for the unique state with Hg|z) = 0, we also require
that V]zp) # 0 . (This implies that |29) is not an eigenvector of V since
(20V']20) = 0.)

We write |14(\)) and E,(A) for the ground state eigenvector and ground state energy
of H()), and write |1;(\)) and E;(\) for the excited state eigenvectors and energies
with ¢ € {1,...N} . From second order perturbation theory in A\, we have that

dE ; vg
_ Z!w ll¢()>|

< 0. (2.5)

Note that the inequality is strict for all A\. This holds because if it were not strict
then [¢,()¢)) would be an eigenstate of V' for some Ao, which implies that [¢),(\))
must be an eigenstate of V' for all A which is forbidden since V|z) # 0.

Using the fact that

adk,

L= G OIVIgO) (26)
we show that
0, for A<0
15 _ )70 er =0
PN I
<0, for \>0.

In order to obtain the inequalities, we use the variational principle. When A\ > 0,
the ground state energy must be less than zero, since |z9) has zero expectation value
for H (and |2) is not an eigenvector of H(\)). This, together with the fact that H,
is positive semidefinite, implies that (1,|V|¢,) < 0. The analogous result for A < 0 is
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E)

Figure 2-1: E, () for the Hamiltonians we consider. As A\ — 400 we have E, = —oc.

obtained in the same way. These inequalities give a qualitative picture of the curve
E,4(A). Starting from E,(0) = 0, the curve slopes downwards as it goes out from A\=0,
and approaches —oo on both sides of the origin for sufficiently large |\|. Note that
this implies that for each £ < 0 there is one positive and one negative value of \ (call
them A(E) and A_(E) respectively) such that Ey(A(E)) = E and E,(A_(E)) = E.
Furthermore, we show in section C that it is always the case that

A(E) < |A-(E)|. (2.7)

We refer to the case where the inequality is strict as the generic case. We illustrate
the qualitative features of the curve E,(\) (for the generic case) in Figure 2.2.
In the nongeneric case where equality holds at some particular value of £ , then

in fact equality holds at every value of E and the curve E,()) is symmetric about
A =1,

2.3 Description of the method

As motivated in the Introduction, we now define an ensemble where the configurations
are sequences {zi, ..., z,} , and we show how properties of the ground state can be
computed in this ensemble. We refer to the sequences {z, ..., Zn} as paths.

To begin, we fix £/ < 0 and a large integer m as parameters. As in the previous
section, we take A(Z) to be the positive value of A such that H()\) has ground state
energy E, with corresponding eigenvector [i,(A(E))). We now describe how our
method allows us to approximate A(FE) and other properties of the ground state.

Recall from the Introduction that the probability distribution f over paths is
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defined by

f (21, e 2m) mw—wm. (al = Vi ] E@ — (9

where E; = (z;|Hp|z;) and !

F(Em)= Y (a1 = Vlzm)o(za = V]a) [ | E 3 (2.9)
{z1,-s2m } i=1 "
=Tr [(HO__l EV)’”} . (2.10)

(Em

As examples, we now define two quantities and \2(E,m) as ensemble averages

with respect to the distribution f on paths

B(Eam) = Z f {21, °")zm})/863t({zly ceey zm}) = <Best>f

,,,,,

(B, m) D ({21 2 = 020 (211)

il
\
-~

N
oy

,,,,,

where we have defined the estimators (hence the subscript)

GRS |
:Best({zla ceey Zm}) = E _E (2.12)
i=1 ¢
1 — 1
2 = —_— . — v — —
/\est({zl’ AR/ Zm}) - m ;:l 5zz‘+2zi(Ez+1 E)(El E) <Zl|V2|Zl> (213)

with 2,11 = 21, Zma2 = 29. Our reason for using the symbol B.s will become clear
in section 2.5.1 where we will discuss its interpretation as an inverse temperature.
We show in section C that the ensemble averages (anm and A\2(E,m) correspond to
properties of the quantum ground state in the limit m — oo

. B(E,m) 1 dA\(E)
Jim S = ST (2.14)
1 1
= X W EVIH(E)) (2.15)
A%F(E,m) = (ME)). (2.16)

Equation 2.15 follows from 2.6. One can also derive expressions for higher derivatives
of log(A(E)) as averages with respect to f.

1The nongeneric case where equality holds in equation 2.7 can arise when there exists a unitary
transformation U such that U'VU = —V and UTHoU = H,. In this case it is seen from equation
2.10 that F'(E,m) =0 when m is odd. In the nongeneric case m must always be taken to be even.
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We propose to use the measure f as the basis for Monte Carlo simulations. In
particular, our Monte Carlo algorithm begins by choosing £ < 0 and a large integer
m and then samples sequences of bit strings from the distribution f. One can then
use the estimators from equations 2.11 and 2.13 to evaluate the quantities A\(E) and
(g (AME))|V|1g(A(E))), using equations 2.15 and 2.16 for the limiting behaviour of
these estimators. We do not construct a general method for sampling from f, instead
we leave it to the reader to construct such a method for the particular choice of V
at hand. We do note that it is essential that whatever method is used conserves the
total number m of transitions in the path. In section 2.4 we give an example of this

n %

for a generic spin system with V. =—>""  o%.

2.4 Sampling Paths for Transverse Field Spin Hamil-
tonians

In this section we explicitly construct a method to compute averages with respect to
the distribution f in the case where the Hilbert space is that of n spin % particles,
and V = — Y " o The Hamiltonian Hy is an arbitrary diagonal matrix in the
Pauli z basis for n spins. Our algorithm can be used to compute the average of any
function of the path which is invariant under cyclic permutations of the path. For
this choice of V, the spectrum of H(\) is symmetric about A = 0 (so this corresponds
to the nongeneric case where equality holds in equation 2.7 for all £ < 0). With these
choices, the paths which have nonzero weight (with respect to f) are periodic paths
of m bit strings of length n where each string z differs from the previous one by a bit
flip. We must take m to be even since each bit must flip an even number of times so
that the path is periodic (and so the total number of bit flips m in the path must be
even). In order to sample from these paths according to f, we construct a Markov
Chain which has f as its limiting distribution (actually, our Markov Chain converges
to the correct distribution over equivalence classes of paths which are only defined up
to cyclic permutation—this is why we restrict ourselves to estimating quantities which

are cyclically invariant). Note that with our choice of V' we can write (see equation
2.8)

1 o1
f({z1 0 2m}) = F(E,m) 11 E_—E°

Our Markov chain is defined by the following update rule which describes how the
configuration is changed at each step

1. Choose an integer i € {1,...,m} uniformly at random.

2. Consider the bit strings z;_;, 2;, zi4; in the current path (where 2,1 = 21).
Suppose that z;_; and z; differ in bit ¢; € {1,...,n}, which we write as z; =
zi_1 @ é,. Also write go € {1,...,n} for the bit in which z; and 2., differ, so
Zit1 = 2 D ég,.

3. If g1 # g2 then propose to change the bit string z; to the new value z; = z;_1D@ég,.
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Ziyy ) Ziy

Figure 2-2: Monte Carlo update where the order of 2 flips in the path is interchanged.

Accept this proposal with probability

; E,—FE
Paccept — mm{l, Ei — E}

where E; = (3| Hy|2;). This Monte Carlo move has the effect of interchanging
2 consecutive flips in the path (see Figure 2-2).

4. If ¢ = g2, then choose a new bit gye, € {1,...,n} from the probability distri-

bution
1 1

T WE -E
where E, = (z;_1®é,|Hy|z;-1®é;), and W = 37| TI—E Then (with probabil-
ity 1) change 2; to the new value z,_, @ ¢, . This Monte Carlo move replaces
a pair of consecutive flips which occur in the same bit with 2 new flips in a
possibly different bit (see Figure 2-3).

P(Qnew = q) (2'17)

We show in appendix C that this algorithm can be used to estimate any quantity
which is invariant under cyclic permutations of the path (note that all estimators we
have discussed have this property).

Numerical Simulation with a Particular Choice of Hy,

We have numerically tested our Monte Carlo algorithm using a C++ computer pro-
gram. In this section we show numerical data at 16 bits where we are able to compare
results with exact numerical diagonalization. We studied the Hamiltonian with V' as
in the previous section, and Hy corresponding to a problem Hamiltonian for the
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Zi Zi4

q1= q2 qnew

Figure 2-3: Monte Carlo update where 2 adjacent flips in the path which occur in the
same bit are replaced by flips in a different bit.

combinatorial optimization problem Exact Cover [20]
n

HX) =Hy—\» ot
i=1

where

Hy = i 1 — 2@ _ g0 _ sl 2
0 = 2 '

c=1

Here Hj is a sum over N, clauses.

We generated an instance of Exact Cover on 16 bits with a unique satisfying
assignment through a random procedure. Figures 2-4 and 2-5 show the values of
AE) and —A(E)dE())/d\ computed using equation 2.11 for 200 values of E, with
m = 1000. Statistical errors were computed using Ulli Wollf’s error analysis program
[62]. This data set was taken by running 10® Monte Carlo updates on each of two
processors of a dual core laptop computer for each value of E. The two processors
ran simultaneously and the total time taken for all the data was under 5 hours. We
also include the curves for these quantities obtained by exact diagonalization, which
are in good agreement with the Monte Carlo data. Since it is hard to see the error
bars in Figures 2-4 and 2-5, we have plotted the errors separately in Figures 2-6 and
2-7.
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Monte Carlo Data and Exact Diagonalization for A(E)

1-4 T T T T T T T T T
———— Exact Diagonalization
Monte Carlo Data
121
1 - -
08F 4
<
0.6
0.4r g
..\.
0.2f .
.w
)
\
D 1 1 1 1 1 1 L 1 1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
E

Figure 2-4: A(E) computed using Monte Carlo data and exact diagonalization for a
16 spin Hamiltonian. Statistical error bars are included for the Monte Carlo results,
but they are barely visible. We have also plotted the errors separately in Figure 2-6.

Monte Carlo Data and Exact Diagonalization for <=A V >
18— T T T T T T

I T I
—— Exact Diagonalization
Monte Carlo Data

16

141 i

<=-A V>

L 1 I
-10 -9 =8 =7 -6 -5 -4 -3 -2 -1 0

Figure 2-5: —A(E)(¢y(A(E))|V [thg(A(E))) computed using Monte Carlo data and
exact diagonalization for a 16 spin Hamiltonian. Statistical error bars are included
for the Monte Carlo results, but they are barely visible. Errors are also plotted
separately in Figure 2-7.
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-4 Statistical Error Estimates for A(E)
ERe : . . ‘ T T I

T

I
Actual Error
+  Estimated Statistical Error

Error
-y

Figure 2-6: A(E) from Figure 2-4. The black crosses show the estimated statistical
error. The blue circles show the magnitude of the difference between the Monte Carlo
estimates and the result of exact numerical diagonalization.

Error Estimates for <-A V >
004 T T T T T T T T T T
Actual Error
+  Estimated Statistical Error

0.035 -

0.03+ -
0.025+ s} 4

0.02+ 4

Error

0.015

0.005

Figure 2-7: —A(E){(¢y(A(E))|V|1y(A(E))) from Figure 2-5. The black crosses show
the estimated statistical error. The blue circles show the magnitude of the difference
between the Monte Carlo estimates and the result of exact numerical diagonalization.
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2.5 Two Observations

In this section we discuss two results which relate our new monte carlo method to
other topics discussed in this thesis. Firstly, in section 2.5.1 we show how to obtain a
new estimator for the ground state energy in the path integral quantum monte carlo
method discussed in Chapter 1. We will see that the form of this estimator establishes
a connection between the two quantum monte carlo methods.

In section 2.5.2 we give a preview of a variational ansatz used in Chapter 4 to
solve for the ground state energy of scrambled Hamiltonians. We will see how this
variational ansatz for the ground state is inspired by our Quantum Monte Carlo
method.

2.5.1 A New Estimator for the Ground State Energy for Path
Integral Quantum Monte Carlo

We now derive a novel estimator for the energy in the path integral ensemble described
by the distribution p from equation 1.17 over paths in imaginary time. Our estimator,
which is useful in the limit 3 — oo,is given by

i) = (9,0 5)

where E* is a function of the path defined to be the smallest value of E which satisfies

the equation
m—+1 1

ﬁz;Ei—E' (2.18)

In this expression the E; are the energies of the states |z;) visited along the path, with
Emv1 = E;. Note that the above equation is almost identical to equation 2.12 (this
justifies our choice of notation Bes). We obtain this formula by a similar method to
that used in reference [6] to obtain an alternate estimator for the energy (H). Our
formula, however, is valid when some or all of the {E;} are the same, and therefore
resolves a serious difficulty encountered in reference [6]. This may be of use in large
8 Monte Carlo simulations, as an alternative to the standard estimator for (H). We
note in particular that this estimator does not involve the times {ty,...,¢,} in the
path.

Equation 2.18 can be derived by considering the Laplace transform of the partition
function (with s > —FE,)

/Oooe"@SZ(,B)dﬁ = Tr[ ! }

H+s
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We can also express this as
| ez -

0
/ dBe Y

0

[Am >zl = Vizm) (@ml = Vigmoa). (2| = V]z1)
{

m=0 Z1yeyZm }
o o . m+1
0 0 i=1
SP IR IRCIERENREEREEND | B
m=0 {z1,..,2m} =1 "
Performing the inverse Laplace transform gives
o0 1 mid 1
Z(B) = Z A™ Z (a1l = Vizm) - (] - Vlzl>2m / dse65< H E; + s)
m=0 {z1,--2m}

C is a contour in the complex plane which encircles the poles of the integrand, which
are located at {—FE;}. The expectation value of the energy can then be expressed as

__ 1
== 73
szc eﬁs< ?ZJIIE—F)
_ < > (2.19)
p

1 Bs m+1
27rifCe < i=1 E+s

Tr[He PH]

1
Z(B)

The complex function h(s) = e < | ﬁ) will in general have multiple saddle

points along the real axis. We can solve for the locations of these saddle points by
writing
h(s) = ePals)

where
m+1

(5) =5 =5 3 log(F+3)

i1=1

Saddle points occur at real values s* where %(s*) = 0 , which says that

m—+1

1
ﬂzZEi‘l’S*.

=1

In the integrals in equation 2.19, we can choose the contour of integration along the
curve of steepest descent through that saddle point s* which is largest (it is possible
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to show that one can deform the contour to follow this curve without changing the
encircled poles).

Performing the integrals in equation 2.19 and letting EF* = —s* we obtain
! Tr[He ") = (E*) + O (l>
Z(P) B

where E* is the smallest solution to equation 2.18.

2.5.2 A Variational Ansatz for the Ground State

The central object in the Quantum Monte Carlo method at fixed energy is the oper-
ator AE)
AE)= =22V ).
®= (7o)

We have seen that, for large m, A(E)™ projects onto the ground state of H(A(E)).
If |¢) has nonzero overlap with the ground state, and if E = E,()), then the states

A(E)™|9) (2.20)

become closer to the ground state of H(\) as m increases.

In Chapter 4 we prove upper and lower bounds on the ground state energy for
scrambled Hamiltonians. We use the variational lower bound discussed in Chapter
1. We are able to prove a lower bound on the energy per spin which is exact as
n — oo using an ansatz of the form 2.20 with m = 2. Note that this procedure for
characterising the ground energy is a bit backwards: in order to prove a bound on
the energy we first guess the value of E to plug into the ansatz 2.20!

2.6 Conclusions

In this Chapter we outlined an approach to Quantum Monte Carlo simulations in
which properties of the ground state of a quantum system are computed at a fixed
value of the ground state energy. We confirmed the validity of our method by per-
forming a numerical simulation of a system consisting of 16 spins. Our approach
involves a path integral which does not include any jump time variables, as in the
stochastic series expansion [56, 57], which is another Quantum Monte Carlo method.

We have mentioned two results which are inspired by our numerical method. By a
saddle point calculation, we obtained an estimator for the ground state energy which
is valid in continuous imaginary time Quantum Monte Carlo simulations but which
does not involve the imaginary time variables. We also introduced a variational ansatz
for the ground state of a stoquastic Hamiltonian which will be useful to us in Chapter
4.
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Chapter 3

Perturbative Crosses

In this Chapter we discuss a random ensemble of 3SAT instances which exhibit the
“perturbative crosses” that we mentioned in Chapter 1. Different examples with
perturbative crosses have been considered by other authors in references [2, 4, 5, 18] .
The material in this Chapter is for the most part excerpted from the paper [18] which
is joint work with Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Harvey Meyer,
and Peter Shor.

In section 3.1 we construct a set of random instances of 3SAT for which the
adiabatic interpolating Hamiltonian

n

H(5)=(1—3)2(1_20;> 4 sHp

=1

has a very small gap due to a perturbative cross. We then show in section 3.2 that
by randomly choosing a new beginning Hamiltonian Hp and using the interpolating
Hamiltonian

H(s)=(1—s)Hp+sHp

the perturbative cross is removed with probability bounded away from zero by a
constant. We confirm our results by Quantum Monte Carlo simulations in section
3.3.

3.1 Problematic Instances

We now describe the method we use to generate n bit random instances of 3SAT that
lead to quantum adiabatic Hamiltonians with small minimum gaps. To do this we
first generate an instance with exactly two satisfying assignments given by the bit
strings 111...1 and 000...0 . Each clause ¢ of the 3SAT instance specifies a subset
of 3 bits i,(c),i2(c),i3(c) € {1,..,n} and a particular assignment w;(c)ws(c)ws(c) to
those three bits which is disallowed. In order to only generate instances which are
consistent with the bit strings 111...1 and 000...0, we only use clauses for which

wi(c)wsa(c)ws(c) € {100,010,001, 110,101,011} .
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We add such clauses one at a time uniformly at random and stop as soon as these
two bit strings are the only bit strings which satisfy all of the clauses that have been
added. (In practice to check whether or not this is the case we use a classical 3SAT
solver.) We write m for the total number of clauses in the instance. We note that the
number of clauses m obtained using this procedure scales like nlogn. We need this
many clauses in order to ensure that each bit is involved in some clause. On the other
hand, when the number of clauses is 5nlogn the probability of additional satisfying
assignments goes to zero as n — oc.

We now consider the problem Hamiltonian H} corresponding to this instance,
which we define to be

o m 1_+_(_1)w1(c)021(0) 1_+_(_1)w2(c)0.22(6) 1+(_1)w3(c)ai3(c)
P=2 2 2 2 ‘

Each term in this sum is 1 if ¢;(c)is(c)iz(c) violates the clause and 0 otherwise.
For the beginning Hamiltonian we choose

HB:Z”:(1—20—;> . (3.1)

i=1

The two lowest eigenvalues of the Hamiltonian H'(s) = (1 — s)Hp + sH} will then
both approach 0 as s — 1, as in Figure 1-3 (left). The ground state for values of s
which are sufficiently close to 1 will approach either |000...0) or |[111...1) as s — 1.
Suppose for values of s close to 1 the state that approaches |000...0) has lowest energy.
Then we add an extra term hy which acts on bits 1,2 and 3 and which penalizes this
state but not |111...1)

h-l 1+ol\ (1+02\ [1+03
T2\ 2 2 2

Hp=Hp+hg.

and pick

(Note that this extra term has a multiplicative factor of %, to avoid any degeneracy
of the first excited state at s = 1.) In the case where the lowest energy state near
s = 1 approaches |111...1) we instead add

hoo L 1—o\ [(1—02\ [(1-03
A 2 2 '

The Hamiltonian H(s) = (1 —s)Hg+ sHp is then expected to have a small gap near
s = 1 as depicted in Figure 1-3 (right). We expect the location s* of the minimum
gap to approach s =1 as n — oo.
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Location of the Minimum Gap

In order to determine the dependence of the location s* of the avoided crossing on
the number of spins n and the number of clauses m, we consider the perturbative
corrections to the energies of the states |000...0) and [111...1) around s = 1. We will
show that the low order terms in the perturbation series reliably predict a crossing

3
at! s* =1-0(45z (1))
With the Hamiltonian constructed in the previous section, one of these states has
energy 0 at s = 1 (call this the lower state |z7)) and the other state has energy 1 at

s = 1 (we call this the upper state |zy;)). We write our Hamiltonian as

_<1;5)§:%44#} (3.2)

i=1

H@y:u—gg+s

and we then consider the term — (1=2) =" | % as a perturbation to Hp expanding
around s = 1.

To understand why we trust perturbation theory to predict the location of the
near crossing, consider a system which is composed of two disconnected sectors, A
and B, so the corresponding Hamiltonian is of the form

("5t )

In this situation the generic rule that levels do not cross[42] does not apply and we
can easily imagine that the two lowest levels look like what we show in Figure 3-1,
where the levels actually cross at s*.

Imagine that low order perturbation theory around s = 1 can be used to get good
approximations to the ground state energies of Ha(s) and Hg(s) for s near s*, even
for s somewhat to the left of s*. Then it is possible to accurately predict s*. Our
situation is very close to this. We can think of A as consisting of the states close to
z;, in Hamming weight, and B as states close to zy in Hamming weight. Similarly,
we view H4 and Hp as the restrictions of H to these sectors. Note that it takes n
powers of the perturbation to connect |000...0) and |111...1) and this is why we view
A and B as essentially disconnected.

Although Figure 3-1 looks like Figure 1-3 (right), it is Figure 1-3 (right) that
depicts the actual situation, where the two levels avoid crossing. This true near cross
means that the perturbation series in the actual theory will diverge very close to s*.
However this divergence will only be seen at high order, in fact at an order which is
proportional to n. The low order terms of the perturbation series in Figure 3-1 are
the same as the low order terms of the perturbation series in Figure 1-3 (right), so
we can trust low order perturbation theory to locate s*.

(We argue below that as a function of the number of bits, n, s* goes to 1 as n goes
to infinity. This implies that the radius of convergence of the perturbation theory

!The notation f(n) = ©(g(n)) means that, for n sufficiently large, bg(n) < f(n) < cg(n) for some
constants b and c.
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Figure 3-1: A true energy level crossing can arise from two disconnected sectors.

for the full H(s), expanded about s = 1, goes to 0 as n goes to infinity. This fact
has no bearing on our argument that low order perturbation theory can be used to
accurately predict s*.)

For small values of the parameter =%, the energies of the two states under con-
P F g

sideration can be expanded as

= i ) . )
EL(S) = (1—3)24—5 O+(4__S) ef)+( S) 85{1)-{—,“
2 s A
1 1—s\2 1 o= %A

It is easy to see that each expansion (inside the square brackets) only contains even

(3.3)

powers. Note that eg) is guaranteed to be negative as is always the case for 2nd
order perturbation theory of the ground state. In addition, since we added a term
to penalize the state which had smaller energy near s = 1 before adding the clause,
we expect that eg) < e(Lz). We are interested in the behaviour of the difference
E;(s) — Ey(s) for randomly generated instances (as generated using the prescription
of the previous section) as a function of the number of spins n in the limit n — oco.
This requires us to further investigate the behaviour of each coefficient e&k) and eg“)

as a function of n and m.

In fact to locate s* we need only to go to second order in perturbation theory.
From equation 3.2 we view Hp as the unperturbed Hamiltonian, and —13 " 0k as
the perturbation, with 2% as the expansion parameter. Now ollz) = |z @ é;) so at
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second order we get

(21, ® &o%|zL)]?

1
e = - p 5
L 4 <ZL|HPIZL> — <ZL®€i|Hp’ZLEB6i>

Similarly,

@ _ 1 1
e —
U 4;%— ZU@éi!HP|ZU@éi>

where the £ in the denominator is (zy|Hp|zy).

The expected energy penalty incurred when flipping a bit of either 2y or 2z, is of

order ™ since each bit is typically involved in ©(%) clauses. So the coefficients e(Lz)

and eg) are of order n (%) since the energy denominators involved are ©(Z). We

3
now show that their difference is of order y/n (Z)2. Write

n
€(U2) — 6(3) = Z dl
i=1

where for each 1,

d - 1( 1 N 1 > (3 5)
" 4 % - (ZU @D éi|Hp|ZU D él> (ZL EBé,-|lezL @él> ' '

Recall that Hp = Hp + h where h is the penalty term from the final clause which
acts only on the first 3 bits. Therefore, for i = 4,5,...,n

1 1 1
d; = -1 — - — + — — .
' 4( (2v @ &|Hplzu & &) <ZL@€i\H§>|ZL@€z‘))

Our procedure for generating instances is symmetric between the strings 000...0 and
111...1 so averaging over instances it is clear that the mean of d; for ¢ = 4,5...,n is 0.
Thus we expect > ., d; to be (approximately) Gaussian with mean 0 and standard
deviation proportional to y/no(d), where o(d) is the standard deviation of each d; for
i € {4,5,...,n}. To compute o(d) we note that

1 ((ZU &>, é,lH}’ZU @é') — (ZL (o) éz‘H’PlzL@ é,>>

d; = — ~ - ~ -
4\ (zr @ é;|Hp|zr ® &) {(zv ® é;|Hplzu D &)

Again using the symmetry between all zeros and all ones, we conclude that the nu-
merator is of order \/f’—T and the denominator is of order (%)2 Hence we expect o(d)

3
tobe O( (2 ) ). So e —el? is of order y/n (Z)2 . We will now locate s* using second
order perturbation theory and afterwards argue that higher orders do not change the
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result. Returning to equations 3.3 and 3.4, equating the two energies at second order

we have
1 1-—s*
0= [5 (55 ) (e - eg>)]

% 1 /m\}
s =1-6(— (5) ). (3.6)

The 4th order correction to the energy of the lower state is given by

¢L <15L

e = (lV () Vi) aal V5 V1) = (aalV 2LV 2oy

"l

where
1 i

and ¢r, = 1 — |zz)(z|. Writing Hp(z) = (2|Hp|z), this can be expressed as

@ 1
€ =
g ZZ (Hp(zr @ &) Hplz Dé;)

1
__6 Z Hp(zp ® é)Hp(z B é;)Hp(zr &€ D E)

1
Z p(ar ®6:)) Hp(z ® & ® ¢)

n Z i,HP(ZL deé; b éj) — HP(ZL S5 é,‘) — HP(ZL D éj)
7716 (Mp(2 @ 8)) Hp(z @) (Hp(z. 0 & B ¢5))

Now consider the terms in this expression corresponding to indices ¢, j for which i # j
and the bits < and 7 do not appear in a clause together. Under these conditions we
have

’HP(ZL @D é; D éj) = HP(ZL D éi) + 'HP(ZL D éj) .
So we can write

n

(4) 1 1
e = — 3.7
- Z 16 (Hp(z @ &:))° (3.7)

Z i%p(ZLEBéi@éj) —HP(ZLGBéi) —HP(ZLEBéj)
6 (Hp(zr @ &) Hplar ® &) (Mp(zr @ & @ &;))

+

i#j clausemates

Here the subscript “clausemates” indicates that we sum only over pairs of indices
which appear together in at least one clause of the 3SAT instance corresponding to
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Hp. For eg}t), since the unperturbed energy is % we obtain

ey = (3.8)

"1 1
= 16 (Hp(zv ® &) — %)3
N Z (Hp(zu @& @ &) — 1) — (Hp(zv @ &) — 3) — (Hp(zu ® &) — §)
C 16 (e @) — )’ (el ©2) — 3) (Mol ©6965) — 3)

clausemates

(3.9)

Let’s look at the first sum in each of equations 3.7 and 3.9 where 7 goes from 1 to n.
Each term as 4 goes from 4 to n is of order (%)3 and so the difference of the two sums
is O(y/n (%)3) . The second sums (those which are restricted to clausemates) contain
of order m terms. Each denominator is of order (%)4 and the numerators are ©(1)
since the only contribution to the numerator is from clauses in Hp which involve bits

i and j together. Separating out the terms where 7 and/or j are 1,2 or 3, we conclude

7
that the contribution to e\’ —e!") from the clausemate terms is ©(y/n (Z)?). For our

instance generation m grows like nlogn so this clausemate contribution is asymptot-
ically dominated by the first term which scales like ©(y/n (%)3) So the fourth order

contribution to the difference of energies Epy(s) — EL(s) is O(s [\/ﬁ (2)3 (ﬂ)4])

m 8

At s* which we determined at second order to be 1 — ©(— (ﬂ)%), the fourth or-

n1/4 n

der contribution to the energy difference is © (%) The fourth order corrections

can therefore be neglected in determining the location of s*. Sixth order and higher
contributions to the difference are even smaller.

3.2 Fixing the Problem by Path Change

In our instance generation we manufactured a small gap by penalizing the planted
assignment corresponding to the energy eigenstate with the smallest energy near
s = 1. Since the slopes of the two curves in Figure 1-3(left) are the same at s =
1, the second derivatives determine which eigenvalue is smaller near s = 1. After
penalization we have eg) < e(Lz) which is consistent with the near crossing in Figure
1-3(right). Suppose instead that we penalize the assignment corresponding to larger
energy in Figure 1-3(left). Then we expect the situation depicted in Figure 3-2 where
no level crossing is induced.

We imagine that the instances that we manufacture with a small gap as in Figure 1-
3(right) are a model for what might be encountered in running the quantum adiabatic
algorithm on some instance a quantum computer is actually trying to solve. There
is a strategy for overcoming this problem. The idea is to produce Figure 3-2, with
reasonable probability, by randomly modifying the adiabatic path which ends at Hp,
of course making no use of the properties of the particular instance. For this purpose
one could use any random ensemble of paths H(s) such that H(1) = Hp and the
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Figure 3-2: s = 1. Here the second derivative of the upper curve B is greater than
the second derivative of the lower curve A.

ground state of H(0) is simple to prepare. However in this paper we only consider
randomly changing the beginning Hamiltonian. We have made this choice so that
we are able to use our Quantum Monte Carlo method to numerically verify our
arguments. Like other Quantum Monte Carlo methods, the method we use does not
work when the Hamiltonian has nonzero off-diagonal matrix elements with positive
sign.

Starting with an instance where H(s) = (1 — s)Hg + sHp has a tiny gap due
to the problem discussed above, we now consider a different adiabatic path H(s) =
(1—s)Hg+sHp obtained by keeping the same problem Hamiltonian Hp but choosing
a different beginning Hamiltonian Hp in a random fashion which we will prescribe
below. We argue that the small gap near s = 1 is then removed with substantial
probability, so that by repeating this procedure a constant number of times it is
possible to find an adiabatic path without a small gap near s = 1.

The way that we choose a random Hamiltonian Hp is to first draw n random

variables ¢; for i = 1,2,...,n , where each ¢; is chosen to be % or 2 with equal

2 2
probability. We then take

n

Hp=Y" %ﬂ . (3.10)

i=1

We write ég) and ég) for the analogous quantities to eff) and egfz) for the new Hamil-

tonian H(s) = (1 — s)Hg + sHp. The point is that by randomizing Hp in the way

we prescribe, there is a substantial probability that one will obtain ég) — é(f) >0,
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and in that case one expects no avoided crossing near s = 1. Write

~(2 Z c2d

where the {d;} are fixed by the instance (and are defined in equation 3.5). Since we

have fixed the problem Hamiltonian Hp, the only random varlables) app?a;rlng in the
2 2

above equation are the ¢;. We have ¢? = 2 so the mean value of eU is then
OO
g2 D — 2l _ Py <0,

4

But more importantly
&2 — ¢ — o(va (3) ).

The variance of this difference is

Var(eg) é?) = z:d?\/ar(c2
i=1
- S,
i=1

which is ©(n (%)3) For a fixed instance with a corresponding fixed set {d;} the
random variable Y, c7d; is approximately Gaussian and from its mean and variance we

see that the probability that ég) — é(LQ) is positive and in fact greater than a\/n (%)%,
for a > 0, is bounded away from 0 independent of n. This means that there is a good
chance that randomizing Hg turns the situation depicted in Figure 1-3 (right) into
the situation depicted in Figure 3-2.

In the case of two planted satisfying assignments with one penalized to produce
a small gap when the beginning Hamiltonian is Hg of equation 3.1, we have shown
that a random choice for the beginning Hamiltonian Hp of equation 3.10 can with
substantial probability remove the small gap. This gives further weight to the idea
that when running the quantum adiabatic algorithm on a single instance of some
optimization problem, the programmer should run the quantum adiabatic algorithm
repeatedly with different paths ending at Hp [19].

3.3 Quantum Monte Carlo Simulations

We have seen in section 1.2.3 that sampling with respect to the probability distribu-
tion p over paths (from equation 1.17) allows one to compute thermal properties of a
quantum system.

We have developed a quantum monte carlo simulator which samples from p using
a modified version of the heat bath algorithm'of Krzakala et al [41]. Our method
differs from the scheme outlined in reference [41] in that we use our novel single spin
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sampling algorithm which is given in Appendix B .

As with other Quantum Monte Carlo methods, this algorithm is a Markov Chain
Monte Carlo method. In order to sample from the distribution p, one defines a Markov
Chain over the state space consisting of all paths, where the limiting distribution of
the chain is p. To obtain samples from p one starts in an initial path z;,;(¢) and then
applies some number Neg,; of iterations of the Markov Chain. If Ny, is sufficiently
large then the distribution of the paths found by further iteration will be close to p.
We use these subsequent paths to compute averages with respect to p.

The figures which are referred to in this section are located in section 3.5.

3.3.1 Equilibration of the Quantum Monte Carlo and Identi-
fication of Level Crossings

Our discussion in Chapter 1 demonstrates how one can estimate expectation values
of various quantities in the ground state of a quantum system. The method is “con-
tinuous time” so there is no discretization error and for fixed 8 quantities can be
arbitrarily well approximated with enough statistics. We use the Quantum Monte
Carlo method in a nonstandard way in order to be able to study the lowest two
eigenstates of our Hamiltonian (as opposed to just the ground state).

As we have just noted, the standard procedure for generating configurations is
to equilibrate to the distribution p from some initial path z;,;(t) (we call this the
seeded path) by applying the Monte Carlo update N, times. In order to ensure
that one has equilibrated after N4,y Monte Carlo updates, one could for example do
simulations with two or more different initial paths (seeded paths) and check that the
values of Monte Carlo observables appear to converge to the same seed independent
values.

For each instance we consider, we run two different Monte Carlo simulations that
are seeded with two different paths z2 . (¢) and z},,(t). These seeds are paths with
no flips in them, corresponding to the two states 000...0 and 111...1,

zini(t) = 000...0 for all t € [0, B]

zima(t) = 111..1for all t € [0,4].
With each seed, we run the Monte Carlo simulation for some total number Ny, of
Monte Carlo sweeps, taking data every k sweeps. Here a single sweep is defined to be
n iterations of our Monte Carlo update rule as described in the appendix (where n is
the number of spins). We then remove the first N,,,; Monte Carlo samples, and use
the remaining Monte Carlo samples to estimate the thermal averages of the energy
and the Hamming weight operator

Tr[He PH
() ———Tﬁ[e%f

TrWe BH
W =
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where W = 3™ (1=%) is the Hamming weight operator) using equations 1.19,
i=1 2 g
1.20, and 1.18.

In order to convince the reader that the Monte Carlo algorithm works correctly,
and that we can obtain information about the first excited state, we show data at
16 bits where exact numerical diagonalization is possible. In Figures 3-3 and 3-4 we
show the result of this procedure for a 3SAT instance with 16 bits, with problem
Hamiltonian Hp (before adding the penalty term h, so that the levels are degenerate
at s = 1 ). This instance has 122 clauses. The inverse temperature is 8 = 150.
The total number of Monte Carlo sweeps at each value of s is Ny = 200000,
with data taken after every fifth sweep (this gave us 40000 data samples). We use
Neguir = 2500 samples solely for equilibration at each value of s. Note that the
Monte Carlo simulations with the two different seeds (corresponding to the circles and
crosses in the Figures) only agree for values of s less than roughly 0.4. We interpret
this to mean that at these values of s the Quantum Monte Carlo has equilibrated
to the proper limiting distribution p regardless of the seed. As s increases past
0.4, the two simulations abruptly begin to give different results. In this case the
simulation seeded with 2] .,(¢) finds a metastable equilibrium of the Markov Chain
(i.e not the limiting distribution p), which corresponds in this case to the first excited
state of the Hamiltonian. For s above 0.4 we can see from the comparison with exact
diagonalization that the two differently seeded values allow us to compute the energies
(Figure 3-3) and Hamming weights (Figure 3-4) of the lowest two energy levels of our
Hamiltonian.

What is happening here is that for large s, the quantum system can be thought of
as consisting of two disconnected sectors. One sector consists of states in the z basis
with low Hamming weight and the other with Hamming weight near n. The Quantum
Monte Carlo “equilibrates” in each sector depending on the initial seed as can be seen
by the smooth data in each sector. (Note that data is taken independently at each
value of s.) The lower of the cross and circle at each value of s in Figure 3-3 is the
ground state energy. Of course if the classical algorithm ran for long enough then the
circles in Figure 3-3 would lie on the crosses for every value of s.

In Figures 3-5 and 3-6 we show data taken for the same instance after the penalty
clause is added that removes the degeneracy at s = 1. In this case the two levels
have an avoided crossing as expected and which can be seen by exact numerical di-
agonalization in Figure 3-5. However in the Monte Carlo simulation with two seeds
there are two essentially disconnected sectors and the two levels being tracked do
cross. When we see this behaviour in the Monte Carlo simulation, we interpret it as
compelling evidence that there is a tiny gap in the actual system, which occurs where
the curves cross. In Figure 3-6 first look at the curves coming from the exact numer-
ical diagonalization. The Hamming weight of the ground state decreases and then
abruptly rises at the location of the minimum gap. The Hamming weight of the first
excited state also undergoes an abrupt change at the location of the minimum gap.
Not surprisingly the exact diagonalization clearly shows the behaviour we expect with
the manufactured tiny gap. Now look at the Monte Carlo data which is interpreted
by first looking at Figure 3-5. In Figure 3-5 the true ground state is always the lower
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of the circles and the crosses. For s below s* &~ 0.423 it is the crosses and for s larger
than s* it is the circles. Accordingly in Figure 3-6 the Hamming weight of the ground
state is tracked by the crosses for s below s* and by the circles for s above s*. We can
therefore conclude, based only on the Monte Carlo data, that the Hamming weight
of the ground state changes abruptly. At higher bit number we do not have exact
numerical diagonalization available but we can still use the Quantum Monte Carlo to
extract key information.

3.3.2 Randomizing the Beginning Hamiltonian

For the 16 spin Hamiltonian depicted above, we now consider randomizing the begin-
ning Hamiltonian Hp as described in section 3.2. In order to minimize the number
of times we run the Monte Carlo algorithm (this will be more of an issue at high bit
number where simulations are very time consuming), we generated many different
sets of coefficients {c;} and calculated the differences &!”) — &2 with fixed problem
Hamiltonian Hp and beginning Hamiltonians

- - 1—03
HB:ZCi( ) )

1=1

According to our discussion in section 3.2, we expect the avoided crossm% near
2

s =1 to be removed for choices of coefficients ¢; such that the difference eU

. We made a histogram of the e( ) 22 (shown in Figure 3-7) and randomly chose

three sets of coefficients {¢;} such that eU) - é(LZ) > % for each. Our analysis predicts
that in these cases the crossing will be removed. As expected, each of these three
sets of coefficients resulted in an adiabatic Hamiltonian with the small gap removed,
although in one there was another small gap at a smaller value of s. We plot the
Monte Carlo data for one of these sets in Figures 3-8 and 3-9.

In section 3.1 we argued that we could manufacture a small gap in a 3SAT instance
as sketched in Figure 1-3(right). Our 16 bit instance is a concrete example of this and
the tiny gap can be seen in Figure 3-5. In section 3.2 we argued that by randomizing
the beginning Hamiltonian we should be able to produce Figure 3-2. This is what we
see concretely at 16 bits in Figure 3-8. We now tell the same story at 150 bits using
only Monte Carlo data since exact numerical diagonalization is not possible.

3.3.3 Data for an Instance of 3SAT with 150 bits

In addition to validating our method at 16 bits, we studied 3SAT instances with
25,75 and 150 bits using our Quantum Monte Carlo simulator. The data from these
simulations for the most part supported our arguments. In this section we present
Monte Carlo data taken for a double plant instance of 3SAT with 150 spins and
1783 clauses. In this case the inverse temperature 8 = 300, and the total number of
Monte Carlo sweeps at each value of s is N, = 100000, with data taken every fifth
sweep (giving 20000 data samples). The first 2500 data samples at each value of s
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are removed for equilibration. We ran our simulations on a 648 processor SiCortex
computer cluster in embarrassingly parallel fashion. We used a different processor for
each value of s and each value of the seed. Data taken at the lower values of s took
the longest to accumulate, in some cases more than 10 days on a single processor for
a single data point.

Figures 3-10 and 3-11 show the energy and the Hamming weight before the penalty
clause is added, running with two different seeds. In Figure 3-10 for large values of
s, the crosses are always below the circles and track the ground state which ends
at 000...0 as can be seen in Figure 3-11. We have also plotted the second order
perturbation theory energies for these two levels, expanding around s = 1. Note the
good agreement, between the second order perturbation theory and the Monte Carlo
data all the way down to s = 0.35.

Since the lower curve corresponds to 000...0, we penalize this assignment by the
addition of a single clause to form Hp attempting to manufacture a near crossing. In
Figure 3-12, the circle data is below the cross data for s near 1 but the two curves
cross near s = .49. This is seen clearly in Figure 3-13 where the energy difference
is plotted. From the Monte Carlo data we conclude that H(s) has a tiny gap. The
location of the avoided crossing is well predicted by second order perturbation theory
as can be seen in Figure 3-13.

The Monte Carlo data at 150 bits shows that we can make an instance of 3SAT
with a tiny gap following the procedure outlined in section 3.1. We now use the Monte
Carlo simulator to show that a randomly chosen Hp can alter the Hamiltonian H(s)
so that this small gap becomes large. For the instance at hand we first compute the
difference é(UQ) — é(L) for 100000 randomly chosen sets of coefficients. The histogram
of these differences is plotted in Figure 3-15. After doing this we randomly selected
(from this set) two sets of coefficients such that 53) - ég) > 1. For both of these sets
of coefficients we saw that the crossing at s = 0.49 was no longer present, although
in one case there appeared to be a new crossing at a much lower value of s. Figures
3-16 and 3-17 show the Monte Carlo data for the choice of Hp which does not appear
to have any crossing. At 150 bits we see compelling evidence that the story outlined
in sections 3.1 and 3.2 is true.

Is s* near 1?

We argued that s* should go to 1 for large enough n. However our 16 bit example
has s* = 0.42 and the 150 bit example has s* =~ 0.49. Recall from equation 3.6 that

s =1—O(-b; (m)7). At 16 bits with m = 122 we have L7 ()% = 2.20 and at 150

ni/4 ni/4

3
bits with m = 1783 we have - (Z)* = 1.83. Although asymptotically m is of order

ni/4 \n
nlogn, for these values of n we are not yet in the regime where # (%)?_‘ < 1.
Even though s* is not near 1 for our instance at 150 bits, we see from Figure
3-13 that second order perturbation theory can be used to predict the location of s*.
This is because the fourth order contribution to the energy difference is quite small.
So already at 150 bits we can predict the presence or absence of an avoided crossing

using second order perturbation theory.
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3.4 Conclusions

We have introduced a new Quantum Monte Carlo technique to analyze the perfor-
mance of quantum adiabatic algorithms for instances of satisfiability. Using seeded
configurations (in the Monte Carlo simulation) corresponding to disparate low lying
states, our technique exposed the presence or absence of an exponentially small gap
without ever actually computing the gap.

We used this method to numerically investigate a set of random instances of 3SAT
which were designed to expose a weakness of the adiabatic algorithm. We confirmed
that this weakness can be overcome for our set of instances by using path change. Our
numerical work and the analysis in this Chapter pertains to instances of 3SAT with
2 planted satisfying assignments. Reference [18] also discusses the scenario where an
instance has k satisfying assignments and then all but one are penalized with a small
number of clauses.

In light of our results we believe that path change must be considered an integral
part of the quantum adiabatic algorithm. For any given instance, the algorithm
should be run with many different randomly selected paths which end at the problem
Hamiltonian. As long as the algorithm succeeds on at least a polynomially small
fraction of the trials, it can be used to solve decision problems.

The random ensemble of instances considered in this Chapter were engineered
to have perturbative crosses between their two lowest energy levels. It is argued in
references [2, 4] that such crosses are a generic feature which causes the adiabatic
algorithm to fail for other clause based decision problems. The question of how
perturbative crosses manifest themselves in other random ensembles of clause based
optimization problems is subtle since there may be many low lying excited states
which are disparate in Hamming weight. We do not have a complete picture of the
performance of the quantum adiabatic algorithm on such problems.

3.5 Numerical Results
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Energy of a 16 Bit Instance with 2 Planted Solutions

Monte Carlo Seeded with 000...0
O Monte Carlo Seeded with 111...1
Exact Ground State Energy
Exact First Excited State Energy

Energy

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
S

Figure 3-3: The discontinuity in the circle data that occurs near s = 0.4 is a Monte
Carlo effect that we understand. As can be seen from the exact numerical diagonaliza-
tion there is no true discontinuity in either the ground state energy or the first excited
state energy. For s greater than 0.4 the Monte Carlo simulation is in a metastable
equilibrium that corresponds to the first excited state. The true ground state energy
at each s is always the lower of the circle and the cross at that value of s.
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Hamming Weight of a 16 Bit Instance with 2 Planted Solutions

20 T T i | T T T T
Monte Carlo Seeded with 000...0
O  Monte Carlo Seeded with 111...1
181 Exact Ground State Hamming Weight 7
Exact First Excited State Hamming Weight

Hamming Weight

Figure 3-4: Together with Figure 3-3, we see that the discontinuity in the circles
appears in data for both the energy and the Hamming weight. This is not indicative
of a phase transition in the physical system (as evidenced by the smooth curves

computed by exact numerical diagonalization), but is purely a result of the way in
which we use the Monte Carlo method.
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Energy of a 16 Bit Instance After Adding the Penalty Clause

Monte Carlo Seeded with 000...0

O  Monte Carlo Seeded with 111...1
——— Exact Ground State Energy

Exact First Excited State Energy

Energy
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Figure 3-5: After adding the penalty clause we see that the energy levels have an
avoided crossing at s =~ 0.423. The inset shows exact numerical diagonalization near
the avoided crossing where we can resolve a tiny gap. The ground state energy is well
approximated by the lower of the circle and cross at each value of s.
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Hamming Weight of a 16 bit Instance After Adding the Penalty Clause
20 T T T

1 T I

Monte Carlo Seeded with 000...0

O  Monte Carlo Seeded with 111...1
18 Exact Ground State Hamming Weight .
Exact First Excited State Hamming Weight

16

-
B

2
N

Hamming Weight

Figure 3-6: In this Figure there is a phase transition which occurs near s =~ 0.423. We
see from the exact numerical diagonalization that the Hamming weights of the first
excited state and ground state undergo abrupt transitions at the point where there is
a tiny avoided crossing in Figure 3-5. There is also a jump in the Monte Carlo data
plotted with circles that occurs before the avoided crossing: this is a Monte Carlo
effect as discussed earlier and has no physical significance. If we look at the Monte
Carlo data in Figure 3-5 we conclude that below s ~ 0.423 the crosses represent the
ground state and after this point the circles represent the ground state. From the
current Figure, along with Figure 3-5, we conclude that the Hamming weight of the
ground state jumps abruptly at s* ~ 0.423.
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Histogram of Curvature Differences (16 spins)
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Figure 3-7: ég}?) —éf) for 1 million different choices of coefficients ¢; shows a substantial

tail for which égf) — éf) > 0. These sets of coefficients correspond to beginning

Hamiltonians Hp for which we expect the small gap in Figure 3-5 to be removed.
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Energy with Choice of HB that Removes a Cross (16 spins)
35 ] .

Energy

+  Monte Carlo Seeded with 000...0
O  Monte Carlo Seeded with 111...1

Exact Ground State Energy
Exact First Excited State Energy
I I

1 1
0.1 0.2~ 03 0.4 0.5 0.6 0.7 08

Figure 3-8: A random beginning Hamiltonian removes the crossing seen in Figure 3-5.
The problem Hamiltonian is the same as that in Figure 3-5. The circles are always
below (or equal to) the crosses for all values of s. This means that the circles track
the ground state for all s and we see no sign of a small gap in the Monte Carlo data.
This is consistent with the displayed exact numerical diagonalization.
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Hamming Weight with Choice of HB that Removes a Cross (16 spins)
20 I T T
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Figure 3-9: From Figure 3-8 we see that the ground state of the Hamiltonian corre-
sponds to the circles for all values of s and the Hamming weight of the circles here
goes smoothly to the Hamming weight of the unique satisfying assignment. (The
Jump in the Monte Carlo data corresponding to the crosses is due to the Monte Carlo
effect discussed earlier.)
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Energy of a 150 Bit Instance with 2 Planted Solutions
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Figure 3-10: The crosses, which represent the Monte Carlo data seeded with 111...1,
are below (or equal to) the circle data for all values of s. (This is seen more clearly in
the inset which shows the positive difference between the circle and cross values). We
conclude that the crosses track the ground state energy which is smoothly varying.
The jump in the circle data is a Monte Carlo effect and for s above 0.2 the circles
track the first excited state.
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Hamming Weight of a 150 Bit Instance with 2 Planted Solutions
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Figure 3-11: Comparing with Figure 3-10 we see that the Hamming weight for the

first excited state and the ground state are continous functions of s . We only obtain
data for the first excited state for values of s larger than s ~ 0.2 .
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Energy of a 150 Bit Instance After Adding the Penalty Clause
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Figure 3-12: Adding the penalty clause makes the cross data go above the circle data
at s ~ 0.49. This is shown in more detail in Figure 3-13 where we plot the energy
difference between the first two levels as a function of s. We interpret this to mean
that the Hamiltonian H(s) has a tiny gap at s* ~ 0.49.
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Energy Difference between the Two Lowest Levels (150 spins)
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Figure 3-13: The energy difference, circles minus crosses, from Figure 3-12 near the
value of s where the difference is 0. Note that second order perturbation theory does
quite well in predicting where the difference goes through zero.
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Hamming Weight of a 150 Bit Instance After Adding the Penalty Clause
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Figure 3-14: Looking at Figure 3-12 we see that the ground state is represented by
the crosses to the left of s &~ 0.49 and is represented by the circles after this value of
s. Tracking the Hamming weight of the ground state, we conclude that it changes
abruptly at s = 0.49.
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Histogram of Curvature Differences (150 spins)

350 |’ T T T T T T T

300+

250

200

150

Number of Samples

100

50

&2 _ &)

Figure 3-15: ég) — ég) for 100000 choices of coefficients ¢; for our 150 spin instance.
Note that a good fraction have éﬁf) — é(f) =),
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Energy with Choice of HB that Removes a Cross (150 spins)
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Figure 3-16: A random choice of coefficients such that ég) - éf) > % gives rise to

an H(s) where there is no longer an avoided crossing. The circles here correspond
to the ground state for all s since the cross data is always above (or equal to) the
circle data for all s. This can be seen in the inset where we have plotted the energy
difference, crosses minus circles. The crosses have a Monte Carlo discontinuity near
s &~ 0.2, after which they correspond to the first excited state.
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Hamming Weight with Choice of HB that Removes a Cross (150 spins)
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Figure 3-17: Looking at Figure 3-16 we see that the ground state corresponds to the
circles for all values of s so we see here that the Hamming weight of the ground state
goes smoothly to its final value as s is increased. We take this as further evidence that

this choice of Hg would correspond to success for the quantum adiabatic algorithm
for this instance.
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Chapter 4

Scrambled Hamiltonians and First
Order Phase Transitions

In this Chapter we prove results concerning the scrambled Hamiltonians introduced
in [16] and reviewed briefly in Chapter 1. We prove a convergence theorem for the
ground state energy per spin and we show that the minimum gap is exponentially
small. The results of this section are based on reference [13] (which is joint work with
Edward Farhi, Sam Gutmann, Jeffrey Goldstone, and Peter Shor) and some of this
Chapter is excerpted from that paper.

4.1 Scrambled Hamiltonians

We begin with some conventions and definitions. As in previous Chapters, Let Hp
be a Hamiltonian which acts on the Hilbert space of 7 spin % particles, and which
is diagonal in the Pauli z basis, with matrix elements Hp(z) = (z|Hp|z). We will
assume that n > 1. We assume that Hp satisfies the following three basic properties:

1. There is at least one n-bit string zp such that

HP(Z()) = 0.

2. For any n-bit string z,
0 < Hp(z) < n.

3. There is at least one bit string z with Hp(z) > 0.

Note that properties 1 and 2 can always be achieved by adding a constant and
then rescaling by a multiplicative factor. Property 3 only requires that Hp is not the
zero matrix.
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We also define
o = (=Y Hp(2) (4.1)
on\» P '

§ = |5 ) (Hp(2) —na)z} (4.2)

so an is the average energy Hp(z) of a randomly chosen bit string 2 and ¢ is the stan-
dard deviation of the random variable Hp(z) (note that « > 0 for any Hp satisfying
the properties above).

For any permutation matrix 7 on 2" elements, write

Hy(s) = (1 > S) > (1 _2“;) + sHpy (4.3)

i=1

where

}{Rﬂ = ﬂ]ypﬂ_l

2n—1

= Y He(r'(2))]2)(2]

"The theorems we will prove in this Chapter will apply to the Hamiltonian H,(s) with
7 chosen uniformly at random from the 2"! permutations of n-bit strings.

4.2 Results

Define
(s) as , 0<s<s*
eqn(s) =
“ (1—55) , s*<s<1
where 1
T 211

Write E,(s) for the ground state energy of the Hamiltonian H,(s). The following
theorem proves that E"T(S) converges to e,(s), under a condition on the standard
deviation d of the spectrum of Hp.
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Theorem 2. Suppose

- EgZ(HP@ —naf] =

z

where ¢ > 1 and p > 0. Let 7 be a random permutation.
Then

IN

eq(s) for0<s<1

and

where

For each = let

where ~,(s) is the eigenvalue gap between the two lowest energy levels of H,(s).

Our second theorem says that g, is (with high probability) exponentially small as a
function of n.

Theorem 3. Let 7 be a random permutation. Suppose the ground state of Hp s
unique, with an eigenvalue gap gp . Then

1
n 1\3
Pr[gwénQZ‘E <1+—2> }—>1asn——>oo.
9p

The proofs of theorems 2 and 3 are found in section 4.5.
4.3 Variational Ansatzes for the Ground State of
H W(S )

The proof of theorem 2 uses variational upper and lower bounds on the ground state
energy. The variational upper bound we use is the standard elementary upper bound.
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We also use Theorem 1 from Chapter 1 which is a lower bound on the ground state
energy for stoquastic Hamiltonians.
In this section we discuss the states which are used as variational ansatzes in these
bounds, as they give insight into the ground state of H,(s).
The upper bound
E.(s) <ney(s) 0<s<1

is easy to prove. It can be obtained by using the state |¢(s)) defined by

=5 |2), for0< s < s*
[w(s)) = § Y2 .

|w) , for s <s<1
where |w) is a zero energy state for Hp .(note that at least one such w exists by our
conditions on the Hamiltonian Hp). This state satisfies

(Y (s)[Hr(s)[th(s)) = nea(s)

which furnishes the desired bound.

Unfortunately the state |1(s)) does not give an acceptable lower bound on the
ground state energy when used as a trial wavefunction in Theorem 1. The state |1(s))
does not even satisfy the requirements of the theorem for s* < s < 1 (since it has
zero amplitude on all but one of the computational basis states). For 0 < s < s* we
can try using the theorem applied to this state, which gives the bound

E.(s) > minw for0 <s<gs*
= (z]9(s))

=min (sHp,(z)) for 0 < s < s*

=0for0<s<gs".

A better variational ansatz will be needed to prove theorem 2. The ansatz which we
use is inspired by the novel Quantum Monte Carlo method introduced in Chapter 2.
Recall that in Chapter 2 we encountered the operator

-V
A(E) =
(£) (HO—E>
which has the property that, if the parameter E is taken to be the ground state
energy of the stoquastic Hamiltonian H = Hy + AV , then A(E)" projects onto the
ground state for sufficiently large r!. For the problem at hand, we believe that we

know the ground state energy per spin. In particular, we are aiming to show that
Er(s) = ney(s) . This suggests that we try a variational ansatz

A(nea(s))"|¢)

'When V = — Y, 0% this operator also projects onto one other state-but we ignore this detail
for the purposes of this motivational discussion
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where 7 is chosen to be “large enough”, and |¢) is a suitably chosen state which we
believe is already close to the ground state. By choosing |¢) = \/127 >, lz) and r =2
we are able to obtain a good lower bound for 0 < s < s*. The bound we get is given

in the following lemma

1
20+1°
—n(1-n2)

Lemma 2. Fiz s € [0,s*), where s* = If m is chosen uniformly at random,

then, with probability at least 1 — e

B 2 s (=) [ Al

This lemma, combined with the variational upper bound discussed above, shows
that, for each 0 < s < s*, the ground state energy E’;@ differs from the curve e,(s)
by terms which vanish in the large n limit if % — 0 asn — oo.

This lemma does not prove a lower bound for s > s*, which we will need in order
to prove theorem 2. In order to lower bound the ground state energy for all s € [0, 1]
we use the concavity property of the ground state energy —we don’t ever need to
obtain a good variational ansatz for s* < s < 1. To see how this works, let’s suppose

that )
EEW<S*) = eq(s")[1 — €] (4.4)

for some 0 < € < 1. Tt is easy to show, using the linearity of the Hamiltonian H,(s),
that for any s; < s9,

En(s) > (S — 5 ) Enlsy) + ( S ) En(s1) for s <s< sy

S9 — 81 S9 — 81

This equation simply says that the true ground state energy curve lies above the
straight line connecting any two points on the curve. Applying this to the two points
s; = 0 and sy = s* and then the two points s; = s* and sy = 1 we get that E;(s) lies
above e, (s)(1 —¢) for all s € [0, 1].

In summary, our proof technique is as follows. We first obtain the upper and lower
bounds for s < s* using the variational ansatzes discussed above. Using these results
we get a bound on E,(s*) of the form 4.4 where ¢ — 0 as n — oo. We then use this
fact to bound the curve for all s. The full proof of theorem 2 is given in section 4.5.

4.4 Discussion and Conclusions

Let’s see what theorems 2 and 3 say about the scrambled Hamming weight problem
which was introduced in [16] and reviewed in Chapter 1. Recall the (unscrambled)
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problem Hamiltonian is

. /1-ot
Hp = 2.
=2 (57)
For this problem Hamiltonian the mean energy is o = % (from equation 4.1) and the
standard deviation ¢ (from equation 4.2) is the standard deviation of a Blnomlal( 3)

random variable, so § = ‘/_ So in theorem 2 we can set ¢ = 1 and p = 1 to get that
E. 2
Pr {—(82 e1(s) (1-—8) for 0 < s < 1} >1—e (702
n 2 ne

which shows (combined with the upper bound from the theorem) that, for large n,
with high probability the energy per spin will be close to the two straight lines e1 (s).
This confirms the limiting behaviour which was hypothesized in reference [16] and
which is seen in Figure 1-2. A better rate of convergence for this problem is proven in
reference [13] using the same variational method but with a different ansatz for the
lower bound.

Since the gap gp at s = 1 is equal to 1 for this problem Hamiltonian, theorem 3
says that the minimum gap g, is exponentially small. It does not tell us where this
minimum gap occurs as a function of s. From Figure 1-2 in Chapter 1 we can see
that it is at s = %

If we believe our variational ansatzes are close to the true ground state then for
5 < %, the ground state is close to the ground state at s = 0,

2" -1

- 75 1

|z =0)

which in the 2z basis is completely delocalized. And for s > % the ground state is close
to the ground state at s = 1 which is

|z =m(0))

corresponding to one z string, that is, a fully localized state.

The small gap at s = % for the scrambled Hamming weight problem is associated
with a “delocalized to localized” first order phase transition. The recent work on
perturbative crosses|2, 3, 18, 39, 5] suggests that a “localized to localized” ground
state transition can also lead to an exponentially small gap. Unlike the situation in
this model, these ground state transitions occur for s — 1 as n — oo. There are
two key features of a model that exhibits perturbative crosses. First, for any string
a single bit flip changes the cost function by O(1). The other feature is that there
are very disparate bit strings with low cost. The scrambled models that we study
here have the second feature but not the first. In the case of the scrambled Hamming
weight problem it is shown in [13] that perturbative crosses are not present.

In what ways are scrambled problem Hamiltonians different from random clause
based decision problems such as 3SAT? There is the issue of perturbative crosses which
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we have just mentioned. We also do not know if random instances of satisfiability
have a “delocalized to localized” first order phase transition like the fully unstructured
example shown in Figure 1-2 or have no “delocalized to localized” phase transition
like the bit structured example shown in Figure 1-1. We hope that future work is
able to better characterize the ways in which clause structure helps or hinders the
quantum adiabatic algorithm for random optimization problems.

4.4.1 Connection to Previous work on Random Energy Mod-
els

We note that the scrambled Hamiltonians we consider in this Chapter are similar to
the quantum random energy models which are Hamiltonians of the form

His) = (-9 (1 _2(’5> +5 Y B

where the “on site energies” E(z) are independent and identically distributed ran-
dom variables. Some of what we have proven is already known for random energy
models[53, 54, 36]. For example, in [36, 35|, Jorg et. al. use perturbation theory to
show the existence of a first order phase transition in a random energy model and
also discuss the connection to localization. Presilla and Ostilli have studied quantum
random energy models in [54, 53] and have shown the two straight lines phenomenon
but they seem to have made some assumptions in their proof. For example they
“assume that the probability for the ground-state energy to assume a given value
becomes infinitely peaked around its average E0”[53] .

In contrast, we have used variational methods which prove upper and lower bounds
on the ground state energy. To prove that the gap is exponentially small in 7, we
use the information theoretic result[16] that no efficient quantum algorithm exists for
locating the minimum of a scrambled cost function.

4.5 Proofs

Proof of Lemma 2

The main technical tools which are used in the proof of lemma 2 are the variational
lower bound from Theorem 1 as well as Hoeffding’s Inequality, which we reproduce
here for completeness. Note that in the standard version of Hoeflding’s inequality
(Theorem 1 from [30]) the random variables X; are taken to be independent and
identically distributed. The version below, in which the random variables are drawn
without replacement from a population, is proven in section 6 of [30].
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Hoeffding’s Theorem (from [30]). Let X1, Xs,..., X,, be randomly drawn without
replacement from a population of N elements {y; : 0 < ¢ < N} (here N > n). Suppose

0<y; <1 forall0<i<N

and

Then

To prove lemma 2 we use the variational lower bound from theorem 1, using the
variational ansatz |¢,) defined by

1 - 1
) = e+ () n = ams L\L:f <3HPVW(Z ®e)+ () n - W)] |

We can use this to get a variational lower bound when 0 < s < s* because for this
range of s the ansatz satisfies (z|¢,) > O for all basis states |z).

Note that, up to normalization,

|pr) = A(nea(s))z !\/lz—n Z ,Zﬁ

where

i=1

1 < 0!
A = T = n—E <27<1 ‘S)> '

Since Hpr(z) <n, for any 0 < s < s*,

(zl¢m)| = sn+(%—sl)n—ans [" (sn+(1—z—sl)"—a”5>}
- (o)
t=r=rk "
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We also bound

(2] (Hx(s) — ans)|ér)]
3 1 1-5) ¢ .
- Z: (SHP,w(Z®éj)+ (%)n—ans) - ( 2 ) (2 ® éclen)

]_]_ k=1

n n

1
e (sHp,,r z@éj)+(1—2ﬁ)n—ans)

(1—5) 1
2 ) sHp (2 ®é;®é) + (552) n—ans

1 1—s 1
n 5 o2 - (4.6)
n 2 sHp (2 ®é; ® ér) + (——2—3) n— ans

where the last line follows since Hp,(2) > 0. We can simplify the above expression
by noting that (for 0 < s < s*)

1 (1—3) 1
n 2 sHp.(z®é; ®é) + (1 s)nvoms

(%) 1 |Hrnlz® & ® &) — an|
= |- H(z@ e Déy) —an
n/ sHp.(z®é; ® &) + (;;_s) n—ons O I K

() (g ey

Plugging this expression into equation 4.6 and using equation 4.5 we get

(z|(Hr(s) — ans)|dx) 1 - (20— 1)s
<z|¢7r> = ( ) <1—_m) 21;'pr Z®€]@€k)—an|

We separate out the terms with j = k and bound them using n-|Hp(z) — an| < n?,
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which follows since 0 < a < 1 and 0 < Hp,(z) < n. Then

(2|(Hx(s) — ons)|¢x)

(2|¢x) _
a (%) _S 2 (nz) ; [Hpa(®&; @ &) — an!]
N (%) -S + 2( ) ;E |Hpx(2 ® é; @ &) — an|) +
2 (%) Z ([Hpr(z@¢é; @ éx) —an| —E(|Hp(z ® é; ® &) — an|)) }

Now for any random variable X , Var(|X|) = E(|X|?) — [E(|X])]* > 0. Applying this
to the case at hand we get

E (aljﬂ-(Z 5% éj SY) ék) - an|) < []E (alJT(Z D é]‘ ©® ék) — OZTLIQ)] 2
)

So

(2| (Hr(s) — ans)|¢x)
(2|¢m)

< (=) [ (7))

#2(5) X ez @89 2) = anl = B (Heols 06, @ 20) —anl) .

j<k
1— (2a — ].)S 2 2 z z
< (m) {5(1 +06) +s(n—1) (W) ;(ij ]E(ij))}
where
Y= ’_Hp,,,(z Deé; Pé) —a
Note that

0<Y;i<l

The random variables Y3 for fixed z and j < k are not independent. Their joint prob-
ability distribution (over the choice of 7) is the distribution governing a sample of

(" Y elements drawn from the population of 2" values {|£Hp(z) —al,z = 1,...,2"},
w1th0ut replacement. We can therefore use Hoeffding’s 1nequal1ty to bound the prob-
ability that the sum (n D E] <k Yji differs substantially from its mean value. Ho-
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effding’s inequality says

i<k
Nowtaketz\/ﬁ
Pr ——Q—Z(Yk—ﬂz[y:;]p L | <em
n(n—l)j<k ! W= n=1|

So , fixing z € {1,...,2"} and 0 < s < s*, with probability at least 1 — e " we have

(2 (Hr(s) — ans)|¢n)
(2|¢x)

e 100 o]
< (——1 - EQO‘_ 1§3>2 [s (1+0+Vn)].

We now apply a union bound over the z to bound the minimum of the LHS over all z

|

> Pr{

o {elUH(s) — ans)lo)
: (216n)

(2|(H,(5) — ans)| )
(lon) =

(%)2 [s (1+6+ \/ﬁ)} for all z € {1, ...,2”}]

_ 1_Pr[ CI(H.(s) — ams)lée) N
( 2a+ls

ey
- ZPF [ (z|(Hy(8) — ans)|ox)

< (=) bl

) [ (1+6++/n) ] for at least one z € {1, ...,2"}}
Dzomled) (L0 Lo+ v
> 1-ven (4.7)

v

Now the variational lower bound says

(2[(Hx(s) — ans)|ér)
(z|¢x) ’

E.(s) — ans > min
z

So
s) > ans — |min (2|(Hn(s) — ans)|¢n)
Ex(s) 2 i o '
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Plugging in the bound in inequality 4.7 shows that, for any 0 < s < 5%,
2
Er(s) > s — 1—(2a—-1)s s 1+5+_1_ > 1 — g n(1-In2),
no 1—(2a+1)s n NG

Proof of Theorem 2

Pr

To prove the upper bound, we use the standard variational method. First, consider

the state ]
z=0)= 2
2=0)= =3k

This state satisfies

(x =0|Hx(s)|lx=0) = s{z=0/Hp,|z=0)
s
= 521{%(@
= ans,z

and so E"T(s) < as for all 0 < s < 1. Recall that by assumption our problem Hamilto-

nian Hp, has at least one state |w) = |7(zp)) which satisfies Hp|w) = 0. This state

gives
1-s
(wlttpofu) = (5 ) n

and so &;@ < 1—;"’ for all 0 < s < 1. Combining these two upper bounds on the
ground state energy gives the desired bound FE,(s) < ney(s) for all 0 < s < 1.

We now prove the lower bound. Let sp =
that, with probability at least 1 — e (17102

E.(so) S 1—-(2a—-1)s 1+5 1
s —_— J— PRN—
n - ‘\1-(2a+1)s n o n . \/n
1— 2a1 2 1
— 0430—50( 2a+1 )) |:_+é
n

1
> _ R DT
= T st 1e {n-'_\/ﬁJ

527 (1 —€) where € < 1. Lemma 2 says

3

IV
[}
o)
+ Q
—
[ —|
J
|
8|
(3=
N
e
+
Sl
N———
| S

v




Letting € = nl—k with

k_{g L if0<p<]
=q3 0 ]

6 5 lf 5 S p

we get (with probability at least 1 — e "(1~1n2))

Now, for any 0 < s; < s < 1 we can write

) = (S22 ) e + (22 ) (s

S2— 81 S92 — 51

Taking the expectation value of both sides in the ground state of H(s) gives

Ex(s) > (S — 4 ) Er(ss) + (32 —° ) E.(s1) fors; <s<s;  (4.8)

S9 — 81 S92 — 851
Plugging in s; = so, 52 = 1 and s = s* gives , with probability at least 1 — e~"(1712),
1 1/1-s
_E7T * - ET(
- 1— 5t o [ 13¢ i}
—o\1-5 ( — L)) 2a+1 a nk
B 20 o' 13c 1
- 20+ ﬁ 200+ 1 a nk
] 1 « 13c 1
- 20mk ) 200+ 1 a nk
o' 1 13ci
- 2a+1 2ank a nk
14
@ fp_lcl (4.9)
200+ 1 a nk

since ¢ > 1. Now use equation 4.8 with s; = 0 and s, = s* to get, for all s € [0, s*),

Er(s) S _S_Eﬂ(s*).

n 8 n

Similarly, using equation 4.8 with s; = s* and sy = 1 gives, for s € (s*, 1]

Eﬂ(s)> 1 —s E(s%)
n —l—s n
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If inequality 4.9 holds (which occurs with probability at least 1 — e (1722)) " then
using the above two inequalities (as well as 4.9) gives

Ew—@zea(s)[l——ik<yg>} for 0 < s <1.
n nk \ «

This completes the proof.

Proof of Theorem 3

We will use the adiabatic theorem (in the form given in Theorem 3 of [32] with
m = 1), which we reproduce below with the text of the hypotheses quoted from [33].
We will also use the Scrambled theorem (modified from reference [16]) reviewed in
section 1.1.1.

Adiabatic Theorem (from [32] and [33]). Let H(s) be a finite-dimensional twice
differentiable Hamiltonian on 0 < s < 1 with a nondegenerate ground state |¢(s))
separated by an energy gap v(s). Let |1(t)) be the state obtained by Schrédinger time
evolution with Hamiltonian H (%) starting with state |$(0)) at t = 0. Then
1
+ / ds (13 )} :
s=1 0 v

We now return to the quantum adiabatic Hamiltonian H,(s) given by (4.3) .
Recall that our problem Hamiltonian Hp has one zero energy ground state |z,) with
the first excited state energy separated by an energy gap gp. We have

V1= (M)

an
ds

2 d’H

ds?

1

L L |4
s=0 7(1)2

ds

dH
ds

L L
T | ~v(0)? v?

and

Here N = 2". The ground state at s = 1 is |¢(1)) = |r(20)). The state |1, (T)) is
obtained by evolving with the Hamiltonian H, (%) starting from the state |[x = 0).
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Plugging into the Adiabatic Theorem we get (for any m such that g, > 0),

O (@@ r)P) < %[2”+2_Z+/01 28"2(13}

gp 3

< 1 {4n2 (1+ 1)+28n2]
- Tlg 9p 93
< 32n2 (1+ 1)

= Tgd 97

where we used the fact that g, < ~,(0) = 1.

Fix 0 < € < 1. Let R be the set of permutations 7 for which

> ——32%3 (1+i>
I [avy] \

128

Here N = 2". Then plugging into (4.10) we get

(V)

for all m € R.

VA= 1D )P <

Now choose

V/2¢€?
r= 128n VN

(4.10)

(4.11)

(4.12)

which guarantees that |(¢ (T)|7(2))]* > ;s for all m € R. Assume (to get a contradic-
tion) that the size of R is at least eN!. Now apply the Scrambled Theorem (modified

from reference [16]) in the form given in section 1.1.1 to obtain (for N > 22)

62

T > ——
~  64n

where we have used the fact that in our case

* 1 2 %
h* = (—N_—lz:Hp(z))

z#29
1
1 2
2
z#20
=n.

(4.13)

But (4.12) contradicts inequality 4.13. Therefore R cannot contain e N! permutations
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when N is sufficiently large. In other words, for N > 2%

1

2n3 1
Pr gﬂﬁ —3n <1+—2> Zl—e,
] 7

For example choosing ¢ = % we get Theorem 3 in the stated form.
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Chapter 5

Phase Transitions in 3XORSAT and
Max-Cut

This Chapter is based on joint work with Edward Farhi, Itay Hen, Florent Krzakala,
Peter Shor, Peter Young, and Francesco Zamponi.

5.1 Introduction

Here we present two results concerning phase transitions and the quantum adiabatic
algorithm. For consistency with other studies, we will use the notation

H()) = Hp — Aia;, (5.1)

in this Chapter.

Recall from Chapter 1 that the authors of [37] considered the quantum adiabatic
algorithm applied to an ensemble of random instances of 3-XORSAT. To conform to
the notation of [37], we write the cost function for an instance of this problem as

Hp = E oo, (5.2)
[

where each clause ¢ € {1,...,n} is associated with 3 bits i;, %2, i3, and a coupling
J, € {£1}. Jérg et al [37] studied the ensemble of random instances where each bit is
involved in exactly 3 clauses and which have a unique satisfying assignment. In this
case the number of clauses is equal to the number of bits. Such instances also have
the property that the cost function 5.2 can be mapped unitarily into the form

Hp=— oiegicqie (5.3)
c

by a product of bit flip operators which map the unique satisfying assignment to
the all zeros bit string 000...0. Using numerical diagonalization, the authors of [37]
gave evidence that there is a first order quantum phase transition which occurs at
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Ae = 1 in the ground state. (This was supported by their Quantum Monte Carlo
and quantum cavity results which apply to the random ensemble with no restrictions
on the number of satisfying assignments.) Their results also demonstrate that the
minimum gap is exponentially small as a function of n at the transition point. In
this Chapter we demonstrate using a duality transformation that the critical value of
the transverse field is in fact at A\, = 1 (if a unique phase transition is present as a
function of ). The duality that we construct is analogous to the well known duality
in the transverse field Ising model.
The second cost function we discuss in this Chapter is

Hp = Z olol (5.4)

where the graph G of interactions is 3 regular. The ground state of this Hamiltonian
encodes the solution to a computational problem called 3 regular Max-Cut which is
NP hard in the worst case. Given a graph G, we consider labelings of the vertices
with 2 different labels +1 and —1. The Max-Cut of the graph is defined to be the
maximum number of edges which connect vertices labeled +1 to vertices labeled —1,
where the maximum is taken over all such labelings. The Max-Cut of the graph G can
be obtained from the ground state energy of the Hamiltonian 5.4 (the energy is equal
to the total number of edges of the graph minus twice the Max-Cut). It is NP hard to
approximate the Max-Cut of 3-regular graphs to within a multiplicative factor 0.997
[7] although there is a classical algorithm which achieves an approximation ratio of
at least 0.9326 [29].

We study the Hamiltonian 5.1 where Hp is given by equation 5.4 for a random
regular graph G'. We use the quantum cavity method|[43, 40] within an approximation
that allows us to directly investigate the limit n — oo at finite inverse temperature (.
Working at S = 4 we show that there is a second order phase transition as a function
of the transverse field.

The Hamiltonian 5.4 on a random 3 regular graph will in general be frustrated-the
ground state does not separately minimize each of the terms in the Hamiltonian. As
a result the problem Max-Cut cannot be solved by linear algebra (as was the case
with XORSAT).

There is no “gauge transformation” equivalence between the Hamiltonian 5.4 and

the Hamiltonian
Z Jijol a (5.5)
(i,5)eG

where the J;; € {£1}. However we do expect the solution to the cavity equations
to be similar for these two models since the cavity equations exploit the fact that
a random graph looks like a tree, and on a tree such a gauge transformation does
exist (see reference [68] for a discussion of this point in the case where there is no
transverse field present).

Laumann et al. have used the quantum cavity method to study the spin glass
Hamiltonian 5.5 where each J;; is chosen to be +1 or —1 with equal probability.
Their method is very similar to ours, although the numerics performed in [43] have
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some systematic errors which our calculations avoid. (The method used in [43] is a
discrete imaginary time formulation of the quantum cavity method which has finite
Trotter error, whereas our calculation works in continuous imaginary time[40] where
this source of error is absent. Our calculation also does not use the approximation
used in [43] where the “effective action” of a path in imaginary time is truncated at
second order in a cluster expansion. )

5.2 3-Regular 3XORSAT

In this section we demonstrate a duality mapping for the ensemble of random instances

of 3 Regular 3XORSAT with a unique satisfying assignment. This duality mapping

explains the critical value . = 1 of the quantum phase transition in this model [37].
Consider the Hamiltonian

H(\) = — Z glai2igine — ) Z ol (5.6)
c=1 1=1

corresponding to an instance of 3 regular 3XORSAT with a unique satisfying assign-
ment. The 3 regular hypergraph specifying the instance can be represented by a
matrix M where
1 , if bit j is in clause 1
M;; = .
0 , otherwise.

and where M has 3 ones in each row and 3 ones in each column. The fact that there is
a unique satisfying assignment 000...0 is equivalent to the statement that the matrix
M is invertible over FZ. To see this, consider the equation (with addition mod 2)

M7 =0

This equation has the unique solution ¥ = 0 if and only if there is a unique satisfying
assignment for the given instance. This is also the criterion for the matrix M to be
invertible.

Write F'(A, M, 3) for the free energy of the Hamiltonian 5.6 at inverse temperature
(. Let

F(A,8) = lim ~E[F(\, M, §) (5.7)

where the expectation value is taken over all n x n invertible matrices M with 3 ones
in each row and in each column. (We have implicitly assumed that this limiting curve
exists). We prove in the following section that

F\ M, B) = /\F(i, MT . B). (5.8)

Note that if M is invertible then so is its transpose and therefore M* corresponds to
another instance of 3 regular 3XORSAT with a unique satisfying assignment. Using
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this fact in equation 5.7 we get
1
va)

which says that the function % f(A, B) is invariant under the transformation A — 1.
Suppose there is a phase transition associated with a discontinuity in some derivative
of f(A,B) when A = A, € (0,00). Then there must also be be a phase transition at
A= /\lc If there is only one transition point then it must occur at A\, = 1.

F0,8) = VAS(5. )

Applied to the adiabatic interpolating Hamiltonian

“(1-di " f1-— 021*0022’0023’6
He = (1-93 (45 )+32< . )

i=1 c=1

the duality that we construct in the next section shows that the spectrum of H(s) is
the same as the spectrum of Hpyar(1 — s) where Hpy 4z, is obtained by replacing the
problem Hamiltonian hypergraph by its dual. The ground state energy per spin (av-
eraged over all 3 regular instances with a unique satisfying assignment) is symmetric
1

about s = 7 and the first order phase transition observed in [40] occurs at s = 3

5.2.1 Duality Mapping

We now prove equation 5.8 by constructing a duality transformation. For each ¢ =
1, ...,n define the operator . _
X =002 02C, (5.9)

We also define, for each clause ¢, a bit string °

¢ = M le..

Here é. is the unit vector with components (é.); = ;.. Note that ¢¢ is the unique
bit string which violates clause ¢ and satisfies all other clauses. Such a bit string is
guaranteed to exist since M is invertible. Let y¢ denote the ith bit of the string §*.
Define, for each ¢ =1,...,n,

z. =] [oi]*. (5.10)
i=1
Note that
{an Xc} =0
and

[Ze, Xe]=0forc#c.

For each bit i = 1, ...,n let ¢;(4), c2(Z), c3(2) be the clauses which bit ¢ participates in.
Then

O'; = ch(i)Zcz(i)203(i)° (511)
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This follows from the fact that
Meé; = é.,0) + €cy(i) + €csa)
and so

e = M (écl(z) + écz(i) + écs(i))
= g 4 g 4 gl

The above equation and the definition 5.10 show equation 5.11. Now using 5.11 and
5.9 write

H(\) = —fo“’c AZU
= - ZXC - AZ Zey(iyZeali) Lea(i)-
c=1 ]

1 n
= A _XZX Zch(anz Zies i) (5.12)
c=1

The X and Z operators satisfy the same commutation relations as the operators o,
and o,. Comparing 5.12 with equation 5.6 we see that the spectrum of H () is the
same as the spectrum of AH(5). This proves equation 5.8.

5.3 3 Regular Max-Cut

In this section we discuss the application of the quantum cavity method[43, 40] to
the ensemble of Hamiltonians

Z olo )\Za (5.13)

(4,5)€G

where G is chosen to be a random 3 regular graph. Recall from the introduction that
the classical cost function in the above Hamiltonian corresponds to an instance of the
computational problem 3 Regular Max-Cut.

The quantum cavity method was introduced in [43] and the continuous imaginary
time approach that we use was initiated in [40]. Quantum Cavity methods have now
been used to study a number of problems including the ferromagnet on the Bethe
lattice[40], the spin glass on the Bethe Lattice[43], 3 regular 3-XORSAT [37] (as we
have discussed in the previous section), and the quantum Biroli-Mézard model [25].
There are different levels of approximation within the quantum cavity method. The
technical term for the approximation we have used is the 1 step replica symmetry
breaking (1RSB) ansatz with Parisi parameter m = 0. This level of approximation is
more powerful than the replica symmetric ansatz which has been used successfully on
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the ferromagnet[40] but less powerful than the full 1RSB calculation which has been
used to study the 3 regular 3-XORSAT problem[37].

5.3.1 Numerical Results

We have numerically solved the 1RSB quantum cavity equations (in continuous imag-
inary time) with Parisi parameter m = 0 at an inverse temperature 8 = 4. A de-
scription of the equations that we solve as well as the algorithm that we use to solve
them is given in appendix E. The method we use is due to Krzakala et al [40].

We compare our cavity method results (at § = 4) to ground state quantities (ob-
tained by numerical diagonalization) for 50 random instances of Max-Cut at each size
n = 16 and n = 24. These diagonalization results were obtained by A.P Young[65].
The instances used for the numerical diagonalization were restricted to those which
have exactly 2 minimal energy states (note that this is the smallest number possible
since the problem is symmetric under flipping all the spins) and for which the energy
density of the classical problem at A = 0 has the value —1.25 corresponding to a
Max-Cut of %n . The restriction to instances with a fixed Max-Cut was done to
tighten the spread in the energy curves over the random ensemble.

In Figure 5-1 we have plotted the energy per spin from the cavity method numerics
and the numerical diagonalization. The inset in Figure 5-1 shows a blow up of the
data near the classical problem A = 0. It is hard to discern the existence of a phase
transition from this plot as we do not see evidence of a discontinuity in the first
derivative of the energy per spin. The critical behaviour is easier to see using an
order parameter such as the Edwards-Anderson order parameter which is defined
through equation E.7 in the appendix. This order parameter captures a property of
the distribution p over paths which arises from the path integral expansion of the
partition function (see the appendix for details) and is not expressed as a simple
physical observable. Figure 5-2 shows the Edwards-Anderson order parameter which
shows a second order (continuous) phase transition at a critical value of A, ~ 1.8. A
different order parameter is computed in the numerical diagonalization. The order

parameter gp defined by
1 .
2 __ %
dp = (ng _ n) E (Uzo-i)

1<g

was computed by numerical diagonalization in the ground state for the random sets
of instances at n = 16 and n = 24. The x magnetization, computed with the cavity
method, shows a kink signaling the second order phase transition as can be seen in
Figure 5-3.

We can compare our results to studies which have been performed for the spin
glass where the Hamiltonian is given by equation 5.5 with couplings J;; € {£1} with
equal probability. This problem has been studied both in the classical[8, 48] and
quantum(43] cases. In the classical case A = 0 Boettcher has performed numerics on
random regular graphs of increasing sizes up to 4096 vertices and has computed the
average ground state energy density at each number of vertices. By extrapolating
his results to the limit n — oo he obtains the limiting value —1.2716(1)[8]. This is
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consistent with the 1RSB result from [48] which is —1.2717. Note that the limiting
value of the energy density which we computed for our problem as A — 0 (seen
in the inset of Figure 5-1) is not far off from these values. In [43], Laumann et al
show that there is a second order transition line for the spin glass as a function of
A and temperature 7. Because they use a discrete time formulation of the cavity
method their simulations begin to have substantial systematic Trotter errors at low
temperature. These errors are associated with dividing up the interval [0, 5] into a
finite number N, of slices. The correct answer would correspond to the limit N; — oo
where imaginary time is treated as a continuous variable. They nevertheless estimate
the critical value of the field \.(T) by fitting their results which are computed at
N, = 6,7,8,9,10,11 and a range of temperatures as low as T ~ 0.15[43]. At 3 =4
their estimate of the critical value of the transverse field is A, = 1.85[43]. This value
is close to what we obtain for Max-Cut at 3 = 4 as can be seen in the inset of Figures
5-2 and 5-3.
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Figure 5-1: The black dots show the energy per spin for 3 Regular Max-Cut at 5 = 4
computed in the 1RSB cavity method with Parisi parameter m = 0 as a function
of transverse field A. The inset shows the behaviour near A = 0 . The blue circles
show numerical diagonalization results for the ground state averaged over 50 random
instances of Max-Cut on 16 bits which are restricted to the subset which have exactly
two degenerate lowest energy states with energy per spin equal to —1.25. The red
asterisks show numerical diagonalization results for the ground state averaged over 50
random instances of Max-Cut on 24 bits with exactly two degenerate lowest energy
states with energy per spin equal to —1.25.
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Figure 5-2: The black dots show the Edwards Anderson order parameter computed
with the 1RSB cavity method with m = 0 at 8 = 4. The blue dots show the order
parameter gp in the ground state, averaged over 50 random instances of Max-Cut on
16 bits which are restricted to the subset which have exactly two degenerate lowest
energy states with energy per spin equal to —1.25. The red dots show the order
parameter gp in the ground state, averaged over 50 random instances of Max-Cut on
24 bits which are restricted to the subset which have exactly two degenerate lowest
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Figure 5-3: The magnetization along the transverse direction computed with the
1RSB cavity method with m = 0 at 8 = 4. The inset shows the region around the

phase transition.
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Details of the Cavity Method Simulations

Here we describe the numerical simulations in more detail, referring to some technical
terminology from Appendix E.

Our simulation was run on a Sicortex computer cluster in an embarrassingly par-
allel fashion. For the data in Figures 5-1, 5-3 and 5-2 we ran two independent simu-
lations at each value of \. 59 sweeps of the cavity iteration from each data set were
used for equilibration, and then the subsequent 151 sweeps from each of these two
independent simulations were used to compute observables. We have confirmed our
numerical results with those obtained from an independent implementation of the
continuous time cavity method[67].

We used population sizes (see appendix E) Np = 200 and Ny = 15000. We found
numerically that there is a systematic error associated with taking Nz to be too
small and that this error increases as § is increased. We believe that Ny = 15000 is
large enough to make this error small for our simulation at 8 = 4. In appendix E.3
we support this by showing that the results obtained from numerics at Nz = 10000
differ only very slightly from those obtained with Nz = 15000 at this value of 3. The
simulations shown at Nz = 10000 had one data run for each value of \ , with 59
sweeps used for equilibration and data used from the subsequent 351 sweeps.

For unknown reasons our computer code sometimes (primarily at higher values
of the transverse field A and larger values of Ng) did not output the data file. This
computer bug did not seem to compromise the results when the output was produced
(we checked this by comparing with results from the independent implementation[67]).
In Figures 5-1,5-3, and 5-2 we have only plotted data for values of \ where both
independent simulations at Nz = 15000 outputted data files. This is responsible for
the gaps in the data that can be seen on the plots.

5.4 Discussion

Using the quantum cavity method we have given evidence that there is a second
order quantum phase transition at temperature 7" = 0.25 for random instances of 3
regular Max-Cut in a transverse field. This suggests that there may be a second order
phase transition at zero temperature (i.e in the ground state),in contrast to the zero
temperature first order phase transitions in random 3 regular 3-XORSAT [37] and for
scrambled cost functions (from the previous Chapter and [16]) which are associated
with exponentially small gaps and failure of the quantum adiabatic algorithm.
What does this have to do with the quantum adiabatic algorithm? The fact that
we did not find a first order phase transition is good news. Further investigation
is needed to determine the performance of the quantum adiabatic algorithm. Our
collaborators Itay Hen and Peter Young are currently using Quantum Monte Carlo
simulations to study the eigenvalue gap for this problem. Note that for the random
ensemble which we studied using the quantum cavity method the number of satis-
fying assignments is unrestricted. As a result the minimum eigenvalue gap of the
Hamiltonian H(A) can be zero due to degeneracy at A = 0. For the moment let us
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put that issue aside and discuss whether or not polynomial time quantum adiabatic
evolution succeeds in moving past the critical point.

It is possible that the eigenvalue gap at the critical point is only polynomially small
as a function of n and the quantum adiabatic algorithm succeeds in finding a solution
in polynomial time. On the other hand the quantum adiabatic algorithm will not
succeed if the gap is exponentially small at the critical value of the field. This would
provide an interesting example where a continuous phase transition is associated with
an exponentially small gap (we are aware of one example where this occurs [23] but
this example has many strange properties). A third possibility is that the gap at the
critical point ). is only polynomially small in n but that effects near zero transverse
field (such as perturbative crosses|2, 4, 5, 18]) cause the adiabatic algorithm to fail
for this problem. It is a topic for future research to distinguish which (if any) of these
scenarios holds for this model. The same questions can also be asked about the spin
glass model studied by Laumann et al [43].
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Appendix A

Estimators in the Continuous
Imaginary Time Ensemble of Paths

In this appendix we derive equations 1.18 and 1.20. These derivations have appeared
previously in reference [14].

Estimator for a Diagonal Operator D

To derive the estimator for D given by equation 1.18 we write

Tr(De PH]
Trle-BH] —

T [D S (AP / it / " b / Vi) Viltn1) Vi)

m=0
(A1)

where V[(t) is given by equation 1.14. (The m = 0 term in the above sum is
Z(lﬂ Tr[e#P].) Inserting complete sets of states in the basis {]z)} which diagonalizes
D we obtain

Tr[De AH] 1 i {

TriePH] — Z(5) & > (alDlz)(alVzm) (zmlV [zm-1)-. (2] V]z)

B ta
/ dt., dtm L / di e—(E1t1+E'2(t2 t1)+...+E1(B—tm))
0 0 0
D =

—~

where the expectation value is with respect to the measure p, and D(z(t = 0)) =
(2(0)] D|2(0)). Noting that the measure p is invariant under a translation of the path
by a time z € [0, 5] (this corresponds to the transformation ¢; goes to (¢; +z) mod /3
for i € 1,...,m followed by a reordering of the labels 4 to maintain time ordering), we
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have that
(D(2(t =0))), = (D(2(t = z))), , for all x€[0,4].

We obtain the stated estimator for (D) by averaging over all z € [0, A]

Tr De‘ﬁH]
<D> - TT ﬁH] /B/ D

Estimator for (\V)

As in the previous section, we begin by expanding the operator e ¥

Tr[A\Ve PH]
Trle-oH ]

= TT’ [)\V i \)me~AHo

=0

/dt/ dtp1.. /dtﬂ/}(tm)VI(tm_l)...VI(tl).

For m =0,1,2... we have

ﬁ tm+1 12
/ dt s / .. / A1V (s ) Vi (b)- Vi (£2)5(81)
tm+1
/ dto ) / / A3V (tmss)Vi(tn) . Vi(12)V

t2
_ / dtr [ty / Vit Vit 1) Va(t)V
0 0 0

Using this expression we obtain

Tr]A\VePH] B 1 > ma1 . BHo
Tr,»[e—BH] - Z(ﬂ)TTIi(_l)n;](—'/\) e g

/ it [ / t2dt1VI(tm)V1(tm1).‘.V1(t1)5(tl)}
= —((1 = 3dmo)d(t1)),

= —((1 = bmyo) Zé(tl))p (since only ¢; can ever be 0).
I=1
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In the last two lines of the above m appears inside an expectation value (...),. In
this context m is considered to be a function of the path. Now we can use the fact
that the measure p over paths is invariant under translations of the path in imaginary

time to write

rIA\Ve PH B
<Av>z% - _<(1—5m,0)-;—/0 >t~

= —<E>p'

So (A\V) is —% times the average number of jumps in a path of length £.
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Appendix B

Algorithm for Sampling from the
Single Spin Path Integral

In this appendix we present an algorithm which samples from the normalized prob-
ability distribution over single spin paths o(t) for ¢t € [0,a] with fixed boundary
conditions. This algorithm was first presented in reference [18].
The Hamiltonian is
H = ho, — co,

and we consider the path integral with boundary conditions by, b, :

o0 o tw to
(0, = b2|e’aHloz =by) = Z c“’/ dtw/ dtw_l‘../ dt e o oWt
p—r 0 0 0

where
by 0<t<ty
—b t; <t<ty
o(t)=9 .

by tw Lt< o

For each of the four possible sets of boundary conditions we can define a probability
distribution over paths o(t) (which in the expression below are restricted to those
which satisfy the given boundary conditions)

e QL T
(bale=>H]|by)

Poy (0 (1)) =

It will be useful for us to make the change of variables from the times (t1,...,t,) to
the waiting times (uy, ..., %,) defined by

U; = tj—tj,1 ]22
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Then the weight assigned to each path is

Cwe—h[b1u1 —bruz+bruz—...+b2 (/\~Z}f=1 uk)

]dul duw
P52 (0 (1)) = (bale=H|by)

(B.1)

We are now ready to describe our algorithm which, given boundary conditions by, by
, samples from the distribution py, p, -

Path Integral Sampling Algorithm
1. Start at t=0 in state B; = b; defined by the boundary conditions. Set i=1.

2. Draw the waiting time u; until the next flip from the exponential distribu-
tion with parameter [v/h? + ¢ + B;h], which is described by the probability
distribution function

flw) = [\/71—2_4:0—2—}— Bih]e—ui[m+3ih]

If Z;zl u; > o then go to step 3. Otherwise define B;,; = —B; and set
i — %+ 1 and repeat step 2.

3. Take the path you have generated (which will in general be longer than «),
and look at the segment [0, a]. If this path satisfies the boundary condition
at t = « then take this to be the generated path. Otherwise, throw away
the path and repeat from step (1).

We now show that this algorithm generates paths from the distribution (B.1).
Before conditioning on the boundary conditions being satisfied, the probability of
generating a sequence of waiting times in (uy, uy+duy ), (U2, ug+dus), ... (U, Uy +dy,)
followed by any waiting time u,,,; such that u,; > a — Z;":l u; is given by

w

fur) f(ug)-.. f (ue)durdus...du, Prob(uy 1 > a — Zu,)

i=1

() f (1) f ()t T T B

= [(f{[ﬂﬁ% B,h])

e~ Yim uiVhPR® o= i wiBih gy dug,e (@ Ei= W)l h2+02+SBw+lh]J

_ 2 2 _ [« . .
wem oV HhE o= [TooMhdt gy, du,, if w is even

c? [ 1+ (%)2 + By (%)] Ve o= [Loo®hdt gy, du,, if wis odd .
In the last line we have used the difference of squares formula to simplify consecutive
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terms: [v/c2 + h? + h][V/c2 + h2 — h] = ¢*>. When we condition on the given boundary
conditions (whatever they may be), this generates the correct distribution over paths.
(To see this note that two different paths with the same boundary conditions by, by
are generated by the above procedure with the correct ratio of probabilities.)
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Appendix C

Analysis and Derivation of
Estimators at Fixed Energy

Our analysis of the new Monte Carlo method of chapter 2 is based on properties of

the operator
—AE)
A = —=
(£) <Ho - EV)

as was seen from the Introduction. We first derive some properties of this operator
and then we derive equations (2.14) and (2.15). The material in this appendix has
appeared previously in [14].

We take E < 0, and A(E) is defined to be the positive value of A such that the
ground state of H()\) has energy E. We will show the following properties of this
operator:

1. All eigenvalues of A(E) are real and < 1 in absolute value.

2. [1hy(M(E))) is an eigenvector of A(E) with eigenvalue +1. It may also be the
case that |1y(—A(E))) is an eigenvector of A(E) with eigenvalue —1. There are
no other eigenvectors of A(E) with eigenvalues +1.

The second property says that the subspace of states spanned by eigenvectors of A(E)
with +1 eigenvalues is either 1 or 2 dimensional. We will see that the case where it
is two dimensional occurs only when H(—A(E)) has ground state energy FE.

To show that eigenvalues of A(E) are real whenever E/ < 0, note that the spectrum
of A(E) is the same as the spectrum of the operator

1
VHo — EA(E)ﬁ

which is Hermitian.
Now suppose (to reach a contradiction) that |r) is an eigenvector of A(E) with
eigenvalue R > 1. Then

[HO 4 /\(E)%V] Iy = Elr)
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which says that there exists an eigenvector of H (sz)) with eigenvalue E. In section
2.2 we proved that the ground state energy of H(\) is strictly decreasing for positive
A, which means that no eigenvector of H (%) can have energy smaller than or equal
to E. This is a contradiction and so all positive eigenvalues of A(FE) are < 1.

Now, since we have proven that all eigenvalues of A(F) are < 1, if it is the case
that some negative eigenvalue of A(E) is < —1 then the eigenvalue W of A(E) which
is largest in magnitude has negative sign. If this were true, then the limit

: 1 2k+1
I 7 (B
would be equal to a negative constant. But this cannot be the case since all matrix
elements of A(F) are positive or zero. So we have shown property 1.

We now proceed to show property 2 which was stated earlier in the appendix,
and in the process we prove the inequality 2.7 from section 2.2. The real nonzero
eigenvalues of A(E) can be related to eigenvalues of H(\) for some value of A. In
particular, suppose that w is a real nonzero eigenvalue of A(E) with eigenvector |w).
Then

(Ho - B)wlw) = —ME)V|w)

SO

Let us write the eigenvalues of A(E) as
1= al(E) > CLQ(E) > .2 a,gn(E) > —1.

(which follows by property 1.) Then the values of A at which H()) has an eigenvalue
with energy E are

AE)

a;(E)

for j € {1,...,2"}. Write A_(E) for the negative value of lambda such that H(A_(E))
has ground state energy E. The values of A which are smallest in magnitude (and
hence closest to the axis A = 0) are a’\l((EE)) = AE) > 0 and a;\ig) = A (E) <0 and
these correspond to the ground state at energy E, with |A_(E)| > A(FE). All other
values are greater than A(£) in magnitude. This proves inequality 2.7, and also shows

property 2 described above.

2

Derivation of the Estimators (. and Az,

Having derived properties 1. and 2. of the operator A(FE) in the previous section, we
now proceed to use these properties to prove equations 2.15 and 2.16.
Our treatment below applies to both the generic case where inequality 2.7 is strict
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as well as the nongeneric case where equality holds as long as in the latter case m is
always even. In either case we have

Tr [(A(E))™] = (ME))™ F(E,m). (C.1)

(Recall the definition of F(E,m) from equation 2.9.) We can write this as

on

(AE)™ F(E,m) = (ai(E))"

i=1

Taking the log and differentiating both sides gives

d m _ m—1 da;
°E [log (A(E)™) + log (F(E,m))] = ST (a(B))" ;m(a]—(E)) ik (C.2)

Now take the limit as m — oo. Note that in the nongeneric case the fact that m is
taken to be even ensures that the denominator of equation C.2 does not vanish in
the limit of large (even) m. The limit of the RHS is zero for any fixed value of E.
This is because in the large m limit the only terms which contribute to the sum in
the numerator are those corresponding to values of j for which |a;(E)| = 1. For these

values of a;(E) (note j is either 1 or 2" for these values) it is always the case that
da;
dE

= 0 so these terms contribute zero to the sum.

So we have shown that

, 1 dx 1 dF(E,m)
l - = . .
oo <m)\(E)dE+F(E,m) dE ) 0 (C3)
Hence
po L1 dF(E,m) - 1 d)
m—oom F(E,m) dE  ME)dE’

The left hand side of this equation can be rewritten as an ensemble average, which
results in

1 1 dF(Em) 1 = 1 dx
lim — -~ = lim (— —_— C4
mseo m F(E,m) dE = Jm E \E) dE (C4)
So for fixed m sufficiently large, one can estimate the quantity —X(lj;—)j—}’} using the

ensemble average é(Em—m) This proves equation 2.15.

We now derive an estimator for the quantity A(F) itself as an ensemble average.
For this purpose we make use of the fact that
F(E,m—2

lim F(E,m —2) )

Jim = — ME)?.
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Expanding the numerator and denominator as sums over paths, we obtain

PEm=2) Sy (1l = Viena{zl = VIz) 107 25

_ Zda, L (C5
F(E,m) > e 2] = VIzm)oo o = V) I, 525 )
Now rewrite the numerator as
F(E,m—2)
= > ((le = Vlzm)(zm| = Vl]zm-1)(zm—1] = V|zm_2)...(22] — V|21)
{z1,-.,zm}
ot [ B BB - —
i=1 E,—E [T (21|V?|21)

where 0., , is the Kronecker delta. Since our distribution f(z, ..., 2,,) is invariant
under cyclic permutations of the bit strings {z;}, we can write

F(E,m-2)
_ (<z1| Vo) (ol = VIzmos) (ol = V|zm_a)oda] — Vza)
{z1,..,zm}
e 1 ] 1
]I:[l Ej —E E ;5zi+221(Ei+1 - E)(Ez - E) <Z,|V2’Zz> >

where 2,1 = 21 and 2,42 = 2. Inserting this formula into equation C.5 gives the
final expression for A\(E)? as an ensemble average

, 1 & 1 B 2
Jim <'75 ;52i+22i(Ei+1 - E)(E; - E)W>f = AE)". (C.6)

This proves equation 2.16.
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Appendix D

Convergence of The Markov Chain

We show in this section that the Markov Chain defined in section 2.4 can be used to
estimate any quantity which is invariant under cyclic permutations of the path. This
appendix has appeared previously in reference [14]. In order to streamline the proof,
it will be useful to define a different Markov Chain over paths which has the update
rule (for some fixed 0 < p < 1)

1. With probability p do 1 update of the Markov Chain defined in section 2.4.

2. With probability 1 — p apply a random cyclic permutation to the path by
letting {21, 22, .-, Zm} = {25, 2j41, -, Zms 21, -..2j—1} for uniformly random j €

{1,...,m}.

In the next two sections we show that the above Markov Chain has limiting distri-
bution f (defined in equation 2.8) for any choice of the parameter 0 < p < L. This
Markov Chain with fixed 0 < p < 1 induces a random walk on equivalence classes
of paths where an equivalence class is the set of all paths related to a given path by
cyclic permutation. In this equivalence class random walk, step 2 does nothing. So
the limiting distribution over equivalence classes is the same whether or not step 2 is
performed. If one only estimates quantities which are invariant under cyclic permu-
tations (note that the estimators we have discussed have this property) then one can
use the algorithm with p = 1 (so step 2 is never performed).

To show that the above Markov Chain converges to the limiting distribution f
over paths, it is sufficient to verify that the update rule constructed above satisfies
the following two conditions [51]:

e Ergodicity: Given any two paths A and B, it is possible to reach path B by
starting in path A and applying the Markov chain update rule a finite number
of times.

e Detailed Balance: For any two paths A and B,
f(A)P(A — B) = f(B)P(B — A) (D.1)

where P(X — Y) is the probability of transitioning to the path Y given that
you start in path X and apply one step of the Markov chain.
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We now show that this Markov Chain satisfies these conditions.

Ergodicity

In order to show ergodicity of the Markov Chain defined above, we first note that a
path can be specified either by a list of bit strings {1, ..., 2,,}, or by one bit string
Zstart foOllowed by a list of bits in which flips occur {b1, ..., b,, }, with each b, € {1, ...,n}.

We now show that by applying the Monte Carlo update rules illustrated in figures
2-2 and 2-3, it is possible to transform an arbitrary path A <— {zs4r¢, {b1, .-, b} }
into another arbitrary path B «— {ystart. {1, -, Cm } } Where yssars and zgyqr differ by
an even number of bit flips. This is sufficient to show ergodicity because any path
B can be cyclically permuted into a path which starts in a state ¢yq that differs
from 24,4 by an even number of flips (and our Markov chain includes moves which
cyclically permute the path). We assume here that m > 4, since we are interested in
the limit of large m anyways. In order to transform path A into path B, we give the
following prescription:

1. First transform Zzser¢ into yseare. To do this, note that one can move any two
flips b; and b; so that they are just before and just after zgq¢ (i.e b, = b; and
b = b;), by applying the flip interchange rule illustrated in figure 2-2. So long
as you do not interchange the first and last flip in the list, the bit string zyq
will remain unchanged. Then one can flip both of these bits in the bit string
Zstars Dy interchanging the two flips b, and b,,. This describes how to flip any
two bits in 24+, assuming that flips in these bits occur somewhere in the path.
Now suppose that you wish to flip 2 bits in 2.+ but one or both of the bits does
not occur in the current list of flips in the path. In that case you must first take
some pair of flips which occur in some other bit g, and then move them until
they are adjacent using the flip interchange rule (without ever moving them
past 2zgqrt). Once they are adjacent, you can replace them with a pair of flips in
another bit using the flip replacement rule illustrated in figure 2-3 . Assuming
m > 4, there will always be two pairs of flips in the path which can be replaced
by flips in the two bits that you desire to change in zgqp¢.

2. After zsq+ has been transformed into vg.-, one must then make the list of
flips equal to {ci, ..., ¢, }. This can be done by interchanging flips and replacing
pairs of flips as described above. Since this can always be achieved without
interchanging the first and last flip in the path, the bit string ., will remain
unchanged by this procedure.

Detailed Balance

Here we demonstrate that the Markov Chain defined above satisfies the detailed
balance condition from equation D.l. To show this, fix two paths A and B and
consider the probability of transitioning between them in one step of the Monte Carlo
update rule. This probability is zero except in the following cases
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1. A= B. In this case detailed balance is trivially satisfied.

2. A cyclic permutation of the bit strings (which is not the identity) maps the path
A into the path B. In this case f(A) = f(B) and the probability of transitioning
from A to B in one move of the Markov Chain is also equal to the probability of
the reverse transition from B to A (this is because for every cyclic permutation
which maps A to B the inverse permutation is also cyclic and maps B to A).
So detailed balance is satisfied.

3. A and B are the same path except for at one location. In other words, A can be
described by the sequence {2}, ..., 24} and B can be described by the sequence
{2B, ..., 2B} where the corresponding bit strings are all the same except for one
pair 2! and zP. Write ¢; for the bit in which 22 and 21, differ, and g, for the
bit in which 2/ and z{, differ. We have to consider two cases depending on
whether or not ¢ = ¢» :

e Case 1: ¢, # . Detailed balance follows in this case since the transition
probabilities follow the Metropolis Monte Carlo rule

P(A — B) [ Er-E 1
P(B — A) "EF —E min{l E-B—E}

EE
f(A)  EF—E P(B—A)

JNTT 1

f(B)y = EA-E P(A—B)’

K3

e Case 2: q; = ¢o. In this case, from equation 2.17 we have

PA—»B)  Ef-E

1

P(B—A)  EP-FE

1

and
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Appendix E

The Quantum Cavity Method

In this section we review the continuous time quantum cavity method[40, 43]. The
purpose of this section is to motivate and then describe the equations which we have
solved numerically in our study of random 3 regular Max-Cut. We first derive the
cavity equations for a Hamiltonian with two local interactions on a finite tree. We
then briefly mention the approximations which are used to investigate the infinite size
limit for homogeneous Hamiltonians defined on random regular graphs (homogeneity
means that the interaction is the same on each edge of the graph). Finally we describe
the numerical procedure which was used in chapter 5 to solve the quantum cavity
equations for Max-Cut in the 1RSB ansatz with Parisi parameter m = 0.

E.1 The Quantum Cavity Method For a Two local
Transverse Field Spin Hamiltonian on a Tree

We now review the quantum cavity equations in the continuous imaginary time for-
mulation [40].
We will consider transverse field spin Hamiltonians of the form

H=H0—A2n:a;

i=1
where Hj is diagonal in the Pauli basis. We will further restrict Hy to be two local,
that is
HO = Z H@'j
(t.9)eT
where H;; only acts nontrivially on spins 7 and j and the graph of interactions 7' is a
tree.

We begin with the distribution p over paths which arises from the continuous
imaginary time path integral (recall from equation 1.17):

1 B
P)= — 1" — [ (P(®)|Hol P(t))dt
p(P) Z(B)F dt,dt,_,...dtie” Jo
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Here we have changed notation slightly from chapter 1-we use P(t) for the path in
imaginary time and r for the number of flips (these were called z(¢) and m in chapter

1).

A path P can be specified by a number of flips r a sequence of bit strings
{z1, 22,23, ..., Zr41 = 21} where z;;; differs from z; by a single bit flip, and times
{t1,tq,...,t,} at which transitions occur. A path P of n spins can also be specified
as a collection of n one-spin paths P® for i € {1,...,n} where P® is specified by
7(¢) (the number of transitions in the path of the ith spin), a single bit b(¢) € {0,1}
Wthh 1s the value taken by the spin at time ¢ = 0, and a list of transition times

{49,601,

Then we can also write !

p(P) =

n
ArO gD gp® 5 | = [ (P Hol P(t))dt
Z(/B) 1;[ 1 2 r(3) €

The quantum cavity equations allow one to determine p;,;(P®) , the marginal distri-
bution of the path of spin 7 when the interaction H,; between spins ¢ and j is removed
from H. This marginal distribution is defined through
. 1
Hinss (PY) = ~ Z p(P )€f° OIS PO)
27 Pkt

where V;_,; is a normalizing factor.

We now derive the quantum cavity equations which are a closed set of equations
for the cavity distributions {u;_,;}. We begin by writing

1

b PO) = = 3 p(p)eld i
Pk
_ b w0 i) r(k) 2y () g ) g4 (R)
= — (V0@ aly) S (T WdeP e, e,
R PkR):kzi ~ Lk

)

e f(f <P(t)’HO_sz |P(t))dt>

where N;_,; is a normalizing constant. Now let 7"~/ be the component of G which is
connected to spin ¢ after removing the edge between i and j (see figure E-1). Then

!Note that the time ordering which is enforced in equation 1.15 simply says that we don’t “double
count” paths. This constraint is also enforced by making a change of variables to an ordered set of
times for each spin.
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(E.1)

o JEPOIE myerion HZm|P(t>>dt) '

where C;_,; is a constant. From this we can finally obtain the quantum cavity equa-

tions
:U'z—)g(P(l))
1
= - ()\rz)dt(z ). dt(()> S TT #eoi (P®) e — 5 (PO HKIP@)dt | g 9)
el p) . k€di\j
kedi\j

where z;_,; is the normalizing constant.
Now we show how to compute quantities such as the magnetization using the
cavity distributions {y;_,,}. Firstly, writing p; (P®) for the marginal distribution of

P with respect to p(P) we have

2% (P(l = 5) Z

Pk et

1 Z H /Lka P(k)) e — [2(P(t)| His| P(£))dt

Zi
P(k):kehi Lkedi

(E.3)

with normalization z;. (In the last line we have used equation E.1.) From this marginal
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distribution y; one can compute, for example

i ()

L) = ==, E4
(o) =75 (B.4)
where in the numerator one computes the average number of transitions r in P® with
respect to the distribution p;. Similarly we have

a7 o0
(o) = (5 / PO (1)dt),.

We can also compute quantities which involve two neighboring spins. The joint
distribution g;;(P®, PW) of P and PV is given by

. . 1
y P(1)7P(J) - - § : P
/’LJ( ) Z(ﬁ) o p( )
k#1,7

1 ; Ny (B g
= f'ui_’]_(p( Nigji(PD)e Jo (P Hy | P()dt (E.5)

1]

with normalization z;;. These joint distributions (for each edge ij on the tree) can be
used to compute the expectation value of Hy. By combining this with the estimators
E.4 one can estimate the thermal average of the energy.

E.2 1RSB Quantum Cavity Equations with Parisi
Parameter m = 0

We now specialize to the problem at hand-namely, Max-Cut on a random 3-regular
graph. We briefly discuss the approximations which can be used in the cavity method
to compute thermodynamic properties in the limit n — co. We then go on to explain
how we solve the 1RSB cavity equations with Parisi parameter m = 0.

The replica symmetric is the assumption that in the thermodynamic limit all the
cavity distributions are the same (u;_,; = u for all directed edges ¢ — j). Roughly
speaking this assumes that a random regular graph is modeled by an“infinite tree”
which is obtained by assuming translation invariance for the recursion E.2. For a 3
regular antiferromagnet, this gives (from equation E.2)

,U(P(O)) = _;“ (N dt,dty...dt,) Z {M (P(l)) 7 (P(z)) e~ f0ﬁ<P(t)’["0"l+0002]|P(t)>dt] .
P p2)

One can then attempt to solve for a distribution u over paths which satisfies this
recursion.

The 1RSB ansatz is described in {66} and [47] at the classical level and in the
quantum case in reference [25]. The 1RSB ansatz makes the assumption that in the
thermodynamic limit the distribution p for a random regular graph is a weighted
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convex combination of distributions x which have very little overlap (their support is
on nonoverlapping sets of paths). In the 1RSB cavity method the Parisi parameter
m € [0, 1] is used to assign the “states” « different weights in the distribution. By
choosing m € [0, 1] appropriately one obtains the correct weighting corresponding to
the distribution p. The choice m = 0 corresponds to the assumption that each of
these distributions « is weighted evenly in the distribution p. In the 1RSB case with
m = 0 we solve for a distribution @(u) over marginal distributions p which has the

property
o If u;, and p;, are drawn independently from (), then fi defined by

A(P) (E.6)

= %()\’"dtldtz...dtr) > [u (PW) i, (PP) eI <P<t>l[UOUWWHP(”W}‘
p) p(2)

is also distributed according to Q).

Numerical Solving for @

We now describe how we solve for the distribution ¢ which has the property just
described. “Population dynamics” methods such as the one we use have been used
previously in the quantum case, but it has its origins in the classical method outlined
in [48]. Our method uses the continuous imaginary time formulation of the quantum
cavity method[40] but uses the single spin path integral sampling technique described
in reference[18] which is also described in appendix B.

Since we cannot represent an arbitrary distribution Q(u) in a finite amount of
computer memory, we represent the distribution () by a number Np, of representatives:
that is, marginal distributions p,, pi9, ..., n, which are each assigned an equal weight
in the distribution. Our procedure is to repeat the following sweep iteratively until
the fixed point @) is reached:

Distribution Sweep

For k from 1 to Np do:

1. Choose 7; and 75 independently and at random from 1, ..., Np.

2. Generate [i according to equation E.6 using the Cavity Marginal Generating
Subroutine (below) with inputs p;, and u;, and set pp = fi.

End do

The marginal generating subroutine takes as input two distributions p;, and g,
and outputs a new distribution fi according to equation E.6. Each cavity distribution
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pt is stored as a list of Np representative paths P!, P . P(Nr) which are given
weights in the distribution w®, w®, ., w™&) (with 3>, w® = 1).
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Cavity Marginal Generating Subroutine

For k from 1 to Ny do

1. Choose a path PUL according to p;,and a path PY2) according to fi;,.

2. Generate a path P according to the distribution

1 _ B L
= (™ _\ o Jo (P()|[Go1+502]| P(2))dt
AP0, pamy W dhdta.din) e ’

where A(PUV, PU2)) is a normalizing constant. This is achieved by using
the method outlined in reference [40] (with our procedure for sampling from
the single spin path integral which was given in appendix B).

3. Set P*) = P and let w*) = A(PU), pU2)),
End do

The new marginal distribution /i is represented by the paths PO, . PWR) with

weights

oM @@ w\VR)

~ ~ Ty eeey ~ 3

Z 7 A

where Z =", w®).

Estimators

The distribution @Q(u) is a probability distribution over marginal cavity distributions
w. FEach cavity distribution is associated with a state x and we have assumed that the
distribution p is approximated by the uniform distibution p over these states. Recall
that in order to compute single site properties such as the expected values of o, or
o, we need to obtain the true marginal distribution from the cavity distribution (see
equation E.3 on a tree). To do this we follow the procedure
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True Marginal Generating Procedure
e Choose i1 ,i3 and 73 independently and at random from 1, ..., Np.

e Generate i as follows using the elements f;,,4;, and p;, of the current pop-
ulation:

For k from 1 to Ng do

1. Sample paths PUV) according to p;,, PU2 according to u;, and PU3) accord-
Ing to fisq
2. Generate a path P according to the distribution

1
A(P(jl) , Pl2) pls))

bl

(Vdtydty...dts) e Jo POIEE1Hozton)lPE)dt

where A(PU1) Pl2) P(1)) is a normalizing constant. This is achieved by
using the method outlined in reference [40] (with our procedure for sampling
from the single spin path integral which was given in appendix B).

3. Set P¥) = P and let w¥) = A(PUV), pU2) pla)),
End do

The true marginal distribution i (which since m = 0 is ideally sampled from the
states uniformly) is represented by the paths P ... PINR) with weights

v @@ w(VR)

~ ~ g eeey ~ 9

Z  Z Z

where Z =3, w®.

Using this procedure we obtain a true marginal £ which is uniformly sampled from
the set of thermodynamic states x of the system. We can then compute, for example

o1 = S
= B[ [ PO

where the outer expectation values E[-] are averaged with respect to the distribu-
tion over fi which is obtained by repeating the true marginal generating procedure
many times. We can also use the true marginal generating procedure to compute the
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Edwards Anderson order parameter

gea = E

((%fj P(”(t)dt)ﬁ)zl . (E.7)

Note that this quantity does not represent a physical average with respect to the
Gibbs distribution; we first compute the magnetization for a given state fi and then
square it before averaging over the states fi. It should now be clear that we can also
compute link quantities in a similar manner. This is done by first sampling cavity
distributions according to @ and then using equation E.5. From this we can compute
the internal energy and other two site expectation values.

E.3 Data with Ny = 10000

In figures E-2, E-3 and E-4 we compare the cavity method numerics taken with
Nk = 10000 and Ng = 15000 path representatives (see the previous section for the
definition of Ng). In both cases the number of distributions Np = 200. The data
with Np = 15000 is the same data which is plotted in figures 5-1,5-2 and5-3.

Energy density

-3 © Cavity Method f=4 N =15000 o
Cavity Method B=4 N_=10000 o}

-3.2 T I 1 L I
0 0.5 1 15 2 25 3

Figure E-2: The energy density computed with the cavity method at 3 = 4 and two
different values of Ng. Note that the value at A = 0 differs very slightly between the
two data runs.
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Edwards Anderson Order Parameter Qep
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Figure E-3: The Edwards Anderson order parameter computed with the cavity
method at 8 = 4 and two different values of Ng.

X magnetization
T T T

I
0 Cavity Method =4 N_=15000
Cavity Method B=4 N_=10000

09

08

Figure E-4: The x magnetization computed with the cavity method at 3 = 4 and two
different values of Ng.
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