8,151 research outputs found

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Network-Aware Electric Vehicle Coordination for Vehicle-to-Anything Value Stacking Considering Uncertainties

    Full text link
    The increased adoption of electric vehicles (EVs) has led to the development of vehicle-to-anything (V2X) technologies, including vehicle-to-home (V2H), vehicle-to-grid (V2G), and energy trading of EVs in the local grid. The EV coordination can provide value to the grid and generate benefits for EVs. However, network constraints and uncertainties in renewable energy and demand pose significant challenges to EV coordination and restrict the realization of these benefits. This paper develops a rolling-horizon optimization problem for V2X value stacking to fully unlock the value of EV coordination, considering power network constraints (such as voltage limits) and uncertainties in the energy system. By coordinating EVs to perform V2H, V2G, and energy trading, our approach exploits the most valuable services in real-time. We also analyze the expected extra costs caused by the prediction errors to evaluate the impact of uncertainties on V2X value stacking. We validate our value-stacking model using real data from Australia's National Electricity Market (NEM), ISO New England (ISO-NE), and New York ISO (NY-ISO) in the US. The results show that V2X value stacking achieves significant benefits to EVs through energy cost reduction. The uncertainty in the load has a higher impact on the value-stacking performance than PV generation, indicating the importance of load prediction.Comment: The 59th annual IEEE Industrial and Commercial Power System Technical Conference (I&CPS 2023

    Optimizing energy costs in a zinc and lead mine

    Get PDF
    Boliden Tara Mines Ltd. consumed 184.7 GWh of electricity in 2014, equating to over 1% of the national demand of Ireland or approximately 35,000 homes. Ireland's industrial electricity prices, at an average of 13 c/KWh in 2014, are amongst the most expensive in Europe. Cost effective electricity procurement is ever more pressing for businesses to remain competitive. In parallel, the proliferation of intelligent devices has led to the industrial Internet of Things paradigm becoming mainstream. As more and more devices become equipped with network connectivity, smart metering is fast becoming a means of giving energy users access to a rich array of consumption data. These modern sensor networks have facilitated the development of applications to process, analyse, and react to continuous data streams in real-time. Subsequently, future procurement and consumption decisions can be informed by a highly detailed evaluation of energy usage. With these considerations in mind, this paper uses variable energy prices from Ireland’s Single Electricity Market, along with smart meter sensor data, to simulate the scheduling of an industrial-sized underground pump station in Tara Mines. The objective is to reduce the overall energy costs whilst still functioning within the system's operational constraints. An evaluation using real-world electricity prices and detailed sensor data for 2014 demonstrates significant savings of up to 10.72% over the year compared to the existing control systems

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Energy Management in Microgrids: A Combination of Game Theory and Big Data‐Based Wind Power Forecasting

    Get PDF
    Energy internet provides an open framework for integrating every piece of equipment involved in energy generation, transmission, transformation, distribution, and consumption with novel information and communication technologies. In this chapter, the authors adopt a combination of game theory and big data to address the coordinated management of renewable and traditional energy, which is a typical issue on energy interconnections. The authors formulate the energy management problem as a three‐stage Stackelberg game and employ the backward induction method to derive the closed‐form expressions of the optimal strategies. Next, we study the big data‐based power generation forecasting techniques and introduce a scheme of the wind power forecasting, which can assist the microgrid to make strategies. Simulation results show that more accurate prediction results of wind power are conducive to better energy management

    Predictive Data Analytics for Energy Demand Flexibility

    Get PDF
    • 

    corecore