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Abstract

The depleting fossil fuel and environmental concerns have created a revolution-
ary movement towards the installation and utilization of Renewable Energy
Sources (RES) such as wind and solar energy. The RES entails challenges,
both in regards to the physical integration into a grid system and regarding
management of the expected demand. The flexibility in energy demand can fa-
cilitate the alignment of the supply and demand to achieve a dynamic Demand
Response (DR). The flexibility is often not explicitly available or provided by
a user and has to be analyzed and extracted automatically from historical
consumption data. The predictive analytics of consumption data can reveal in-
teresting patterns and periodicities that facilitate the effective extraction and
representation of flexibility. The device-level analysis captures the atomic flex-
ibilities in energy demand and provides the largest possible solution space to
generate demand/supply schedules.

The presence of stochasticity and noise in the device-level consumption
data and the unavailability of contextual information makes the analytics task
challenging. Hence, it is essential to design predictive analytical techniques
that work at an atomic data granularity and perform various analyses on the
effectiveness of the proposed techniques. The Ph.D. study is sponsored by
the TotalFlex Project (http://www.totalflex.dk/) and is part of the IT4BI-
DC program with Aalborg University and TU Dresden as Home and Host
University, respectively. The main objective of the TotalFlex project is to
develop a cost-effective, market-based system that utilizes total flexibility in
energy demand, and provide financial and environmental benefits to all involved
parties. The flexibilities from various devices are modeled using a unified format
called a flex-offer, which facilitates, e.g., aggregation and trading in the energy
market. In this regards, this Ph.D. study focuses on the predictive analytics
of the historical device operation behavior of consumers for an efficient and
effective extraction of flexibilities in their energy demands.

First, the thesis performs a comprehensive survey of state-of-the-art work
in the literature. It presents a critical review and analysis of various previously
proposed approaches, algorithms, and methods in the field of user behavior
analysis, forecasting, and flexibility analysis. Then, the thesis details the flex-
ibility and flex-offer concepts and formally discusses the terminologies used
throughout the thesis.
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Second, the thesis contributes to a comprehensive analysis of energy con-
sumption behavior at the device-level. The key motive of the analysis is to
extract device operation patterns of users, the correlation between devices op-
erations, and influence of external factors in device-level demands. A novel
cost/benefit trade-off analysis of device flexibility is performed to categorize
devices into various segments according to their flexibility potential. More-
over, device-specific data preprocessing steps are proposed to clean device-level
raw data into a format suitable for flexibility analysis.

Third, the thesis presents various prediction models that are specifically
tuned for device-level energy demand prediction. Further, it contributes to
the feature engineering aspect of generating additional features from a demand
consumption timeseries that effectively capture device operation preferences
and patterns. The demand predictions utilize the carefully crafted features
and other contextual information to improve the performance of the prediction
models. Further, various demand prediction models are evaluated to determine
the model, forecast horizon, and data granularity best suited for the device-
level flexibility analysis. Furthermore, the effect of the forecast accuracy on
flexibility-based DR is evaluated to identify an error level a market can absorb
maintaining profitability.

Fourth, the thesis proposes a generalized process for automated generation
and evaluation of flex-offers from the three types of household devices, namely
Wet-devices, Electric Vehicles (EV), and Heat Pumps. The proposed process
automatically predicts and estimates times and values of device-specific events
representing flexibility in its operations. The predicted events are combined
to generate flex-offers for the device future operations. Moreover, the actual
flexibility potential of household devices is quantified for various contextual
conditions and degree days.

Fifth, the thesis presents user-comfort oriented prescriptive techniques to
prescribe flex-offers schedules. The proposed scheduler considers the trade-off
between both social and financial aspects during scheduling of flex-offers, i.e.,
maximizing the financial benefits in a market and at the same time minimizing
the loss of user comfort. Moreover, it also provides a distance-aware error
measure that quantifies the actual performance of forecast models designed for
flex-offers generation and scheduling.

Sixth, the thesis contributes to the comprehensive analysis of the financial
viability of device-level flexibility for dynamic balancing of demand and supply.
The thesis quantifies the financial benefits of flexibility and investigates the
device type specific market that maximizes the potential of flexibility, both
regarding DR and financial incentives. Henceforth, a financial analysis of each
proposed technique, namely forecast model, flex-offer generation model, and
flex-offer scheduling is performed. The key motive is to evaluate the usability
of the proposed models in the device-level flexibility based DR scheme and their
potential in generating a positive financial incentive to markets and customers.

Seven, the thesis presents a benchmark platform for device-level demand
prediction. The platform provides the research community with a centralized



repository of device-level datasets, forecast models, and functionalities that fa-
cilitate comparisons, evaluations, and validation of device-level forecast models.
The results of the thesis can contribute to the energy market in materializing
the vision of utilizing consumption and production flexibility to obtain dynamic
energy balance. The developed demand forecast and flex-offer generation mod-
els also contribute to the energy data analytics and data mining fields. The
quantification of flexibility further contributes by demonstrating the feasibil-
ity and financial benefits of flexibility-based DR. The developed experimental
platform provide researchers and practitioners with the resources required for
device-level demand analytics and prediction.





Dansk Resumé (Summary
in Danish)

Brugen af fossile brændsler har skabt en revolutionær bevægelse inden for ved-
varende energikilder som for eksempel vind og sol. Brugen af vedvarende en-
ergi skaber dog også nye udfordringer, da de fysisk skal integreres i den ek-
sisterende infrastruktur og dernæst skal produktionen styres så den matcher
det nuværende behov. Da behovet for energi er fleksibelt er det muligt at
opnå ligevægt mellem produktion og behov, såkaldt dynamisk Demand Re-
sponse (DR). Graden af fleksibilitet er dog ikke information som direkte er
til rådighed eller leveret fra forbrugere, og det er i stedet nødvendigt automa-
tisk at udtrække denne viden ved at analysere eksisterende data om energi-
forbrug. Gennem forudsigende analyse af det eksisterende energiforbrug kan
man udtrække interessante mønstre, som kan bruges til at kortlægge graden
af fleksibilitet i energinettet. Ved at indsamle strømforbruget for enkelt en-
heder bliver strømforbruget kortlagt på det lavest mulige niveau, hvilket giver
et større løsningsrum af mulige planer for produktion i forhold til behov.

Analysering af forbrugsdata på enhedsniveau besværliggøres dog på grund
af støj i det indsamlede data, samt manglende information om den aktuelle
kontekst da dataene blev indsamlet. Det er derfor nødvendigt at designe nye
metoder for forudsigende analyse specifikt til data indsamlet på enhedsniveau,
samt at analysere ydeevnen for de foreslåede metoder. Dette Ph.D. studie er
sponsoreret af TotalFlex Projektet (www.totalflex.dk), og er en del af IT4BI-
DC programmet med Aalborg Universitet og TU Dresden som det respektive
Hjemme og Værtsuniversitet. Det primære mål for TotalFlex projektet er at
udvikle et omkostningseffektivt system baseret på det eksisterende marked,
der ved brug af viden om det fleksible energibehov opnår både økonomiske og
miljømæssige fordele for alle involverede parter. Det fleksible energibehov er for
alle enheder er modelleret ensartet i form af et flex-offer. Brugen af et ensartet
format gør det muligt at foretage aggregering og handel på tværs af energi-
markedet. Med dette Ph.D. studie fokuserer vi på at analysere eksisterende
forbruges data på enhedsniveau gennem brugen af forudsigende analyse, for
effektivt at klargøre fleksibiliteten i deres energibehov.

For det første, indeholder denne afhandling en omfattende analyse af state-
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of-the-art fra den eksisterende litteratur. Den præsenterer en kritisk analyse
og vurdering af de foreslåede algoritmer, metoder inden for brugeradfærd anal-
yse, forudsigelse og fleksibilitetsanalyse. Dernæst bliver koncepterne flex-offer,
fleksibilitet og den øvrige terminologi, som efterfølgende vil blive anvendt i
afhandlingen, formelt beskrevet.

For det andet, bidrager afhandlingen til en gennemgående analyse af hvor-
dan energi forbruges på enhedsniveau. Motivation for denne analyse er at
etablere brugsmønstre for enheder, korrelationer mellem brugsmønstre for flere
enheder og effekten af eksterne faktorer for energibehovet på enhedsniveau. En
cost/benefit analyse af enheders fleksibilitet bliver udført for at kategorisere en-
heder i forskellige segmenter ud fra deres potentiale for fleksibilitet. Derudover
præsenteres nye enhedsspecifikke præprocesserings metoder til at rengøre og
transformere data på enhedsniveau til et format brugbart for fleksibilitetsanal-
yse.

For det tredje, præsenterer afhandlingen forskellige modeller optimeret til
forudsigelse af energibehovet på enhedsniveau. Derudover bidrager den til fea-
ture engineering som en del af processen med at generere features fra tidsserier
over forbrugsbehov, som repræsenterer præferencer for bestemte enheder og
mønstre. Forudsigelsen af behovet gøres ved brug af disse features og anden
kontekstuel information til at forbedre præcisionen af forudsigelsesmodellen.
Dernæst evalueres flere forudsigelsesmodeller for at bestemme hvilken kombi-
nation af model, prognose horisont og data granularitet er bedst egnet til flek-
sibilitetsanalyse på enhedsniveau. Derudover bliver effekten af forudsigelses-
modellens på fleksibilitets baserede DR evalueret, for at identificerer hvilken
grad af fejl et marked kan absorbere før det ikke længere skaber profit.

For det fjerde, foreslår afhandlingen en generel proces for automatisk gener-
ering og evaluering af flex-offers fra tre forskellige gængse enheder, våd-enheder
, elektriske køretøjer og varmepumper. Den foreslåede proces forudsiger og es-
timerer automatisk tiden og værdien for enhedsspecifikke begivenheder. Disse
begivenheder repræsenterer hver enhed muligheder for fleksibilitet. De forud-
sagte begivenheder bliver kombineret for at generere flex-offers til brug for en-
hederne i fremtiden. Derudover bliver det konkrete potentiale for fleksibilitet
af gængse enheder kvantificeret i forhold til forskellige kontekster og dage.

For det femte, præsenterer afhandlingen teknikker til at ordinere flex-offers
med fokus på brugerkomfort. De foreslåede teknikker tager udgangspunkt i
balancen mellem de sociale og finansielle aspekter ved planlægning af flex-
offers. Konkret gøres dette ved at maksimere markedets finansielle fordele og
samtidig minimerer tabet af komfort for brugerne. Derudover præsenteres også
et afstands bekendt mål for fejl som kan kvantificere den faktiske ydeevne af
forudsigelsesmodeller designet for generering og planlægning af flex-offers.

For det sjette, bidrager afhandlingen til den omfattende analyse af de fi-
nansielle fordele ved dynamisk balancering af produktion og behov ved brug af
fleksibilitet på enhedsniveau. Afhandlingen kvantificerer de finansielle fordele
ved fleksibilitet og undersøger hvilket enheds specifikt marked maksimerer
potentiallet for fleksibilitet, med fokus på både DR og de finansielle incita-



menter. Herefter bliver en finansiel analyse af hver af de præsenterede teknikker
forudsigelse model, generering af model for flex-offer og planlægning af flex-
offer, udført. Den primære motivation er at udfører en brugbarhedsanalyse af
de foreslåede modeller til DR på enhedsniveau, og deres potentiale for at skabe
positive finansielle incitamenter for både markeder og forbrugere.

For det syvende, præsenterer afhandlingen en platform til at benchmarke
forudsigelse af energibehovet på enhedsniveau. Platformen giver forskningsmilj-
øet et centralt lager af datasets på enhedsniveau samt forudsigelsesmodeller.
Derudover indeholder platformen også funktionalitet til at facilitere sammen-
ligning, evaluering og validering af forudsigelsesmodeller på enhedsniveau. Re-
sultatet af denne afhandling bidrager til energimarkedet ved at materialisere
visionen om at bruge fleksibiliteten i energiproduktion og energiforbrug til dy-
namisk at opnå en balance mellem produktion og forbrug af energi. De ud-
viklede modeller til at forudsige energibehov og generation flex-offers bidrager
også til både analyse af energidata og data mining. Kvantificeringen af flek-
sibilitet bidrager også ved at demonstrere muligheden for, og de finansielle
fordele ved, DR baseret på fleksibilitet. Den udviklede eksperimentelle plat-
form giver forskere og praktikere de nødvendige resurser til at analyserer og
forudsige energibehovet på enhedsniveau.
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Chapter 1

Introduction

1.1 Background and Motivation
Concerns about the environment, energy security, and the depletion of fossil
fuels have motivated many countries to increase the share of renewable energy
sources in their total energy production and reduce the number of sources that
depend on fossil fuels. This ambition has resulted into various challenges raised
by European and international policies and programs. The EU member states’
aim is to produce 20% of their total energy demand from renewable energy
sources (RES) by 2020 and attain a more ambitious target of 27% of their total
energy by 2030. Moreover, various countries have set their own RES targets,
as summarized in Table 1.1.

Table 1.1: 2020 RES target and current status of various European countries (2015)
(Source: Eurostat [1])

Country Status2015 Target2020
EU 16.7 20
Belgium 8.0 13
Bulgaria 18.2 16
Czech Republic 15.1 13
Denmark 30.8 30
Germany 14.6 18
Estonia 28.6 25
Ireland 9.2 16
Greece 15.4 18
Spain 16.2 20
France 15.2 23
Croatia 29.0 20
Italy 17.5 17
Cyprus 9.4 13
Latvia 37.6 40
Lithuania 25.8 23
Luxembourg 5.0 11
Hungary 14.5 13
Malta 5.0 10
Netherlands 5.8 14
Austria 33.0 34
Poland 11.8 15
Portugal 28.0 31
Romania 24.8 24
Slovenia 22.9 25
Slovakia 12.9 14
Finland 39.3 38
Sweden 53.9 49

About Tableau maps: www.tableausoftware.com/mapdata

0.0 100.0

Achieved RES Target (%), 2014
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Figure 1.1: RES supply, electricity demand, and market prices for DK1 price area
Denmark. (Source: www.emd.dk/el/)

So as to achieve these targets, a major transformation in the grid system
has to be achieved. Firstly, a higher percentage of RES have to be installed
and integrated into the grid system. Secondly, the electrification of most of the
energy-drawing load units such as electric vehicles (EV), heat pumps (HP),
household appliances, etc., are required. However, the integration of a higher
percentage of RES into the grid system is challenging due to the changes in
market dynamics that come with it. Furthermore, it exposes the market players
to a financial risk due to uncertainties in supply, grid congestion, and changes in
market dynamics (prices and balances). Similarly, the electrification of energy
consumption units (mentioned above) increase uncertainty in demand, which,
in combination with intermittent RES, creates greater Demand Response (DR)
challenges. Figure 1.1 depicts an actual scenario of RES integration for the DK1
price area in Denmark. The RES supply for some of the hours is higher than
total demand, and the excess energy is either sold at a lower price or curtailed to
balance the market. However, for some hours, the supply from RES is only 30%
of the total energy demand, and the rest of the demand is fulfilled by utilizing
expensive fossil fuel-based energy sources. Hence, the low dispatch capacity
of RES makes it costly to support generations at peak periods. Further, the
introduction of distributed energy resources, e.g., grid connection of household
PV, has introduced additional stress on the existing grid system, which was
originally designed for the one-way flow of electricity.

The development of an intelligent grid system and the exploitation of avail-
able flexibility in demand from load units are key to confronting the challenges
of integrating larger percentages of RES and electrification of load units. In
this regard, various technologies and solutions have been proposed in different
areas, such as Demand Response schemes [2, 3], Energy Storage systems [4, 5],
Energy Management Systems [6–10], etc. Specifically, DR schemes propose
various incentives to motivate energy consumers (prosumers) to actively par-
ticipate in the demand response so that their energy demand (or supply) can
be varied to obtain a dynamic energy balance in the market. The PhD work
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was being carried out as a part of one of the DR initiatives called TotalFlex [8],
that provides a mechanism to extract and utilize the flexibility in demand units
as an efficient solution using the concept of flex-offers proposed in the EU FP7
project MIRABEL [11]. The TotalFlex project addresses the challenges of bal-
ancing the energy consumption and demand by utilizing the novel concept of
the flex-offer, which utilizes the flexibility in the operation of household and
industrial load units to create the flexible consumption offers. The aim of the
Ph.D. work is to exploit the flexibility potential of the household electrical
loads for a dynamic energy planning and demand response and contribute to
confronting the challenges of intermittent RES supply.

The flex-offer captures the flexible part of an energy demand for a house-
hold load, which can be exploited by market players such as TSO, DSO, and
Aggregator to balance demand and supply better or to delay the costly grid
upgrade. Consumers also directly benefit from this market approach by being
offered better electricity prices and reduction in their total bills. The cus-
tomers also contribute to the society by adopting or providing flexibilities in
their consumption and helping to solve the load management problem for RES
integration.

However, load usage patterns are stochastic and depend on user behavior
and contextual information such as working habits, availability, etc. Further-
more, special events such as gathering and holidays might drastically change
load usage, which influences the performance of energy demand and flexibility
prediction models. The flexibility based demand response relies on the accuracy
of the predicted flexibility as represented by a flex-offer. Hence, a higher error
in the forecasted flexibility will increase market imbalances instead of solving
the problem of integrating higher RES. The performance of a forecast model
and confidence in the predicted flexibility can be drastically improved simply
by moving the flexibility analysis to a lower data granularity, i.e., household
or transformer level. However, a market player prefers to capture the best
available flexibility which is only provided at the device-level (atomic flexibil-
ity) that gives the market more control over the load and manage the market
balance. The device-level load data along with the contextual information are
rarely available, and if available, they are very noisy. Hence, the extraction of
useful patterns that provide the flexibility in load usage is a challenging task.

Different loads have different operating behavior in terms of operating dura-
tion, energy consumption, operating cycles, etc. Thus, a flexibility extraction
and prediction model should be general enough to capture flexibility from a
variety of loads. Further, a general format to represent the flexibility of vari-
ous load types is required, such that trading and aggregation (if required) are
simplified. Demand flexibility can be utilized by a market player for various
purposes from day-ahead planning to intra-day balancing and auxiliary ser-
vices. Thus, market players are always interested in prediction of flexibility for
various horizons.

The introduction of the flex-offer concept and the requirement of designing
a mechanism for user behavior analysis and prediction of future energy demand
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Figure 1.2: The steps of business analytics
(http://www.gartner.com/newsroom/id/2881218)

to extract flexibility in energy demand have led to his Ph.D. work. This Ph.D.
work focuses on predictive energy data analytics with a focus on load opera-
tion pattern analysis and demands flexibility prediction. More specifically, it
deals with the issue regarding accurate and precise demand forecast, flexibility
detection, and flexibility forecast at the device-level, and uses the forecast for
automated generation of flex-offer. Further, it aims to validate the concept of
flexibility-based demand response by quantifying its financial viability.

1.2 Energy Data Analytics
Data analytics is the qualitative and quantitative process of transforming data
into insights to enhance productivity and business gains. It is a part of the
decision support system that helps to add to the human cognitive capacity for
decision making by providing valuable insight into a business’s performance,
its existing behavior, and its future path. Data analytics involves discovering,
interpreting, and representing meaningful patterns in data, and it covers the
journey from data collection to decision making and ends with action. Depend-
ing on the business’s requirements, complexity, and values and the intelligence
it provides, data analytics can be divided into different segments (see Figure
1.2).

Descriptive analytics is the first stage of data analytics and focuses on the
collection, aggregation, and consolidation of data. It is the most commonly
used analytics and lays the foundation for more advanced analytics. It aggre-
gates raw data to yield useful information that provides a clear and accurate
picture of the past and current performance of the business. Descriptive ana-
lytics provides valuable insight into the past and helps to answer “What has
happened or is happening now and why?”.
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Predictive analytics focuses on utilizing past information to predict proba-
ble future outcomes. It utilizes a variety of data mining, machine learning, and
statistical methods to detect patterns and relationships in data and provides
actionable insights that help businesses with effective planning and decision
making. The predictive analytics estimates the likelihood of the future event
and helps to answer: “What could happen in the future?”

Prescriptive analytics is the part of the analytics that focuses on finding
the best course of actions for the future or current situations. It acts on the
outcomes of the descriptive and prescriptive analytics and explores a number of
possible actions to suggest a solution that could lead a business into a position
of taking advantage or minimizing the risks of the future opportunities. It also
provides the impact of each possible future action to ensure a business takes
the best course of decision. It not only provides answers to what will happen
but also answers why it will happen.

Data analytics for energy domain is a hot topic and fundamental in imple-
menting flexibility-based demand response to achieve the RES target. With
the increase in the number of energy resources (distributed generation), the
connectivity of the grid becomes complex, and the structure will generate an
enormous amount of heterogeneous data every second, such as device-level en-
ergy consumption data, household production data, grid capacity state data,
etc. The right set of data analytics will help to transform these data into
insights that help to maintain the grid stability. Furthermore, the predictive
analytics will provide both short-term and long-term predictions of energy de-
mands at various points of the grid that will enable the local optimization of
the resources for balancing demand and supply dynamically. The general steps
of predictive analytics are depicted in Figure 1.3. Moreover, the prescriptive
analytics will give support in taking the best action for the future scenario by
optimizing the market objective.

Within the energy data analytics, the Ph.D. work will focus on a compre-
hensive analysis of the energy consumption behavior of household devices so
as to provide insights into the available flexibilities in their operations. Fur-
thermore, it will perform predictive analytics of device-level consumption and
develop solutions for demand and flexibility forecasts, leading to the generation
of flex-offers for the flexible part of the energy demands. The provided solutions
will help a market to obtain a clear picture of the available flexibilities within
their portfolio and utilize the predicted flex-offers for various purposes, such as
to plan their supply better, to obtain local balances, to correct any deviation
in the spot market, etc.
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Figure 1.3: Predictive analytic process cycle
(http://blogs.sas.com/content/subconsciousmusings/2013/01/11/)

1.3 Demand Flexibility
Demand flexibility refers to the possibility of preponing or postponing a portion
(or even whole) of electrical energy demands from consumption and production
of various Distributed Energy Resources (DERs), satisfying user imposed and
other constraints. The TotalFlex project proposed a general way of capturing
and representing flexibilities in DERs using the concept of flex-offer proposed
in MIRABEL. Flex-offer offers a robust and generic way to describe flexibility
in electricity consumption and production of various DERs. An advantage of
flex-offers is that they can explicitly specify available flexibilities in a gener-
alized way and later they can be aggregated and disaggregated across various
dimensions, e.g., different DERs. A single flex-offer typically includes:

• Energy profile, having a number of discrete slices, specifies electricity
consumption and production options over a device’s active period of op-
eration.

• Time flexibility interval specifies a time duration in which device’s oper-
ation can be preponed or postponed.

When using a flex-offer, no specific knowledge about the underlying DERs
is needed, whether the demands come from heat pumps, EVs, wet-devices, etc.
An example of a basic flex-offer is shown in Figure 1.4.

Figure 1.4 shows a simple example of a device-level flex-offer generated
from the extracted flexibility of a dishwasher. The flex-offer in the figure states
that the dishwasher could be activated anytime between 9 PM - 4 AM and
it operates for 2-time units. The figure also shows the energy profile for the
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Figure 1.4: A sample flex-offer for dishwasher.

dishwasher, which represents the flexible demand for each unit time of the
dishwasher’s operation. It further has a constraint that the energy profile of
the dishwasher cannot be changed, i.e., once activated it should be operated
continuously for 2-time units.

Within demand flexibility, this Ph.D. work focuses on the flexibility extrac-
tion and flex-offer generation from the household consumption units, specifi-
cally dishwasher, washer dryer, Electric Vehicles, and Heat Pumps. The house-
hold appliances and other devices are becoming intelligent, and already today
they can be set to run later, or response to energy price signals, e.g., washer
dryer can be scheduled to operate later or operate freezer at cost optimized
mode. Hence, the key assumptions of the Ph.D. work are the operation of
some of the devices can be automatically controlled and users are willing to
provide flexibility as their contribution to the demand management for some
financial benefits. The control can be either performed by the existing market
players such as BRP, DSO or may be delegated to a new entity such as an
Aggregator. Further, the key working hypothesis of this Ph.D. work is, there
exists detectable and predictable flexibility in usage patterns. The Ph.D. the-
sis models the flexibilities from various device types into a unified format of
flexible consumption offers, i.e., flex-offers.

1.4 Device-level Behavior Analysis
Device usage behavior analysis is the task of understanding when, how long,
and how frequently devices are used in a household. A behavior analysis should
provide a clear insight into the patterns and preference of users over a device
usage. A better and sound understanding of the device usage behavior is funda-
mental to evaluate the possibility of device (user) participation in the dynamic
DR schemes. A better understanding of the usage behavior enables the market
players to exploit the information for more efficient portfolio planning, which
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Figure 1.5: Influence of user activities on device activation probabilities.

aligns with the RES integration goals. Further, it helps in deciding what de-
vices can be considered flexible enough to participate in DR and what devices
are not, e.g., washing machine can be flexible but not television. Henceforth,
to get the clear understanding of flexibility potential of a device, we should
have a clear understanding how and when a user operates the device.

However, an increase in types of electrical appliances in households (EV,
heat pump, and dishwasher), flexible working environment, the purpose of use,
etc. makes the behavior analysis a complex task. Similarly, the energy con-
sumption behavior of a household varies according to the contextual property
of the house and the people living there, e.g., the size of the house, age, the
number of occupants, their occupation, etc. Further, it is essential to under-
stand the interaction and inter-dependencies between the various devices with
perspective to everyday activities, e.g., cooking, cleaning, heating, traveling
(EV). This information is crucial in providing foresight on the probable de-
vice usage based on the current user activity (see Figure 1.5). Insight into the
energy consumption behavior and saving potential is a useful tool for market
players to motivate users to contribute their flexibility.

The device-level data are often very noisy and obscure, creating difficulty
in tracking the actual operating behavior of devices (when switched on and
switched off). Further, as discussed before, a device usage behavior is inter-
linked with the various contextual information of a household, and this infor-
mation is usually not available, increasing uncertainty over the analysis. This
Ph.D. thesis provides solutions on the device-level data preprocessing. Further,
the Ph.D. thesis utilizes the descriptive analytics on device-level data to extract
meaningful flexibilities from devices usage behavior.
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1.5 Device-level Demand Prediction
Prediction of future demand, supply, RES production, grid conditions at var-
ious nodes of the grid system help to improve the observability and effective
planning for anticipated disturbance in the system. Specifically, an optimal
scheduling of supply and demand in flexibility-based DR immensely relies on
the prediction of the future device usages and the associated energy profiles.
Moreover, this information is also fundamental to estimate available flexibili-
ties in energy demands and generate (potential) flex-offers for the flexible part
of future device operations.

The potential of flex-offers to be used to solve the local problems at the
various hierarchy of existing grid system requires forecast models capable of
handling data of various granularities. Previous research has shown that the
energy-demand data at an aggregated level exhibits more regular patterns than
the disaggregated data at the device-level. Most of the previous solutions that
deal with a data characteristic of aggregated household or deregulated market
level cannot be easily reused to formulate models for device-level data with
highly fluctuating and uncertain characteristics. Similarly, as discussed before,
depending on the requirement, flex-offers can be used in various markets such
as the day-ahead market for planning, intraday and balancing market to correct
deviations, etc. and market needs forecast models able to predict at various
horizons. The capacity of flex-offers to capture flexibilities from a wide variety
of devices (both producing and consuming energy) demands a model able to
cope with the heterogeneous operating properties and evolving users’ behavior.
As mentioned in [12] most of the existing techniques are designed for static
analysis of time series data and fails to maintain the efficiency with the evolving
time series in distributed system architectures.

The complex energy market model combined with hierarchical grid archi-
tecture reflects the need of efficient and robust forecast models. Specifically,
demand forecast along with automated detection of flexibility for a wide variety
of flexible objects requires more dynamic, efficient, maintainable, and highly
accurate models for seamless adaptation of flexibility based DR by the existing
energy market. The main challenge of device-level forecasting is incorporated
highly stochastic user consumption behaviors in a prediction model. Within
the device-level demand forecasting, this Ph.D. thesis focuses on designing and
evaluation of generalized device-level demand forecast models and also design-
ing models for predicting all parameters required for generation of flex-offers.
In this regards, the thesis evaluates the usability and effectiveness of existing
forecast models for device level forecasting. Further, the thesis extends the
flex-offer generation technique to the device-level, utilizing the input from the
device-level demand forecast and flexibility forecast. In addition, this thesis
will evaluate forecast horizon and data granularity best suited for the flexibil-
ity market regarding utility it brings to the market players.
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1.6 Thesis Overview
The remaining part of the thesis follows the structure shown in the Figure 1.6.
The chapters of the thesis focus on exploring solutions specific to research ques-
tions imposed by flexibility based demand response (i,e., prescriptive analytics
of flexibility based market) and have different goals, summarized below.

Literature Review Chapter 2 provides an overview of the existing works
in the literature focusing on components of demand flexibility concept and
provide directions towards solutions to the research questions shown in Figure
1.6. Specifically, the chapter presents review and analysis of various previously
proposed approaches, algorithms, and methods in the field of user behavior
analysis, forecasting, and flexibility analysis.

Flexibility Concept Chapter 3 details the flexibility and flex-offer con-
cepts proposed in the MIRABEL and TotalFlex projects. The flexibility-based
DR concept proposed by the projects leads to the research questions (shown in
Figure 1.6) that have to be addressed for its effective implementation. In this
regards, the chapter presents a strategy of mapping device operation sequences
from various household devices into a generalized flex-offer format. Further, it
introduces datasets used in the experiments and proposes a cost-benefit based
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categorization of flexibility for devices in the datasets. Moreover, the chapter
also discusses the spot and regulation markets and details the use of demand
flexibility by these markets to confront RES challenges.

Utility to Energy Market Chapter 4 unravels the first research question
regarding the economic value of flexibility based demand response to a mar-
ket. The chapter performs an analysis on the impact of introducing demand
flexibility in the energy market. Specifically, it investigates the changes in the
market dynamics (energy prices and balances) brought by changing or shifting
a certain amount of energy demand. Further, the chapter analyses the best
flexibility type for a given market objective. The impacts are quantified based
on the financial benefit or loss incurred to a market by adopting the demand
flexibility.

Device Usage Analysis Chapter 5 investigates the second research ques-
tion of assessing the types and sizes of flexibilities available in users daily rou-
tine. In this regard, the chapter presents a descriptive analytics on the device-
level energy consumption, utilizing real-world data sets. Specifically, it explores
users’ device usage preference and the possibility of extracting flexibility from
their usage patterns. Further, it discusses different device specific data pre-
processing steps required for device-level flexibility analysis and quantifies the
available flexibility in devices operations.

Flexibility and Demand Forecasting Chapter 6 resolves the third re-
search question regarding the feasibility of predicting device-level energy de-
mands and associated flexibilities. In this regards, the chapter assesses the
accuracy and usability of the state-of-the-arts forecast models for device-level
energy demand and flexibility forecasting. Henceforth, the chapter investigates
the data granularity and forecast model best suited for the proposed flexibil-
ity based DR. The flexibility based DR depends on the accuracy of proposed
forecast model, where an error in predicted demand may lead to higher mar-
ket imbalances generating a substantial loss to the market. In this regard, the
chapter analyses the financial benefits of flexibility in relation to the intrinsic
quality of the demand forecast models.

Flex-offer Generation Chapter 7 explores solutions to the fourth research
challenge of extracting and generating flex-offer from flexible household devices.
In this regard, the chapter presents a generalized flex-offer generation and eval-
uation process (FOGEP). The FOGEP maps a device operation sequences to
flex-offer attributes and presents device-specific steps involved in the flex-offer
generation. It further discusses the input and output in each step and also
present forecast models and context information required for the step. The
chapter demonstrates the use of FOGEP for three different household device
types, namely wet-devices, heat pumps, and electric vehicles.
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Flex-offer Scheduling Chapter 8 investigates the solutions for the fifth
research challenge of efficient scheduling of flex-offers with minimal loss of user
comfort. In this regards, the chapter presents a novel user-comfort oriented
prescription technique for scheduling of flex-offers. The scheduling technique
performs a trade-off between the loss of user comfort and financial gain and
prescribes a schedule that optimizes the combination of these two factors. The
chapter also proposes a Flexibility-Aware Error (FAE) measure to quantify the
performance of forecast models designed for a flexibility market.

Device-level Demand Forecast Platform Chapter 9 packages some of
the functionalities and systems proposed during the exploration of solutions for
the research questions (see Figure 1.6) into a device-level forecasting platform.
In this regards, the chapter presents the DeMand system, an open online tool
for device-level data analysis, design and evaluation of prediction models, and
flex-offer generation.

Conclusion Chapter 10 summarizes the contributions, concludes the the-
sis, and presents future work.

The papers included in this thesis are listed in the following. Chapter 3
is based on Paper 2, 3, and 4, Chapter 4 is based on Paper 1, Chapter 5
is based on Paper 2, Chapter 6 is based on Paper 3, Chapter 7 is based on
Paper 4, Chapter 8 is based on Paper 5, and Chapter 9 is based on Paper 6.
As mentioned earlier, paper 3 and 5 are under review.
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Chapter 2

Related Work

2.1 Literature Review
Demand Response: The integration of a higher percentage of renewable en-
ergy sources into the power grid creates huge challenges, both in regards to
the physical integration and in regard to the management of the expected de-
mand. Numerous smart grid projects are aiming at the efficient utilization of
intermittent RES production to mitigate the effects of imbalances due to the
integration of Renewable Energy Sources (RES), [13–16]. Further, various op-
timization techniques for bidding strategies considering the imbalance penalty
has been studied in [17] [18] [19]. An optimal bidding strategy recognizing
the imbalance penalty and allowed imbalance band has been discussed in [18].
Further, two different approaches for tuning the optimal bidding strategy to
account the fluctuations of the generated power has been discussed in [17]. Con-
currently, there are many types of Demand Response (DR) programs that have
been adopted by energy markets [20], e.g., price-based DR [21–23], demand
reduction bidding [24, 25], load shift strategy [26–28], etc. Further, techniques
for integrating household devices into demand side management for leveling
of fluctuating RES production has been explored in [29,30]. In particular, the
TotalFlex [8] project proposes a DR technique to actively control electricity con-
sumption, including individual household devices, to confront the challenges of
intermittent RES supply.

The mandatory requirement for Distribution System Operators (DSO) to
install smart meters in all households and the introduction of smart devices
has enabled an avenue of utilizing devices flexibilities for dynamic DR. Mar-
ket players can utilize flexibility to compensate their deviation to a previous
commitment, delaying the huge investment, or any other purpose. At the
same time, consumers can participate in the flexibility-based DR contributing
flexibilities in their device usage in response to financial or other incentives.
Dynamic pricing schemes such as time-of-use, peak-time, consumption level
pricing, etc. set energy prices such that users are motivated to shift the energy

15
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consumption to off-peak period or align with RES production in response to
financial benefit [21, 31–33]. However, users are insensitive towards price sig-
nals that limits the applicability of such approaches for a large deployment [34].
Moreover, these approaches require frequent user involvement and thus might
suffer response fatigue (reduce in a number of participants) in the long run [35].

As an alternative to avoid frequest user involvement, direct centralized con-
trol of flexible devices has been extensively proposed for an automated man-
agement of flexibilities. Demand management with centralized control relies on
a central unit responsible for direct control of energy consumption of devices.
The unit controls devices at an individual or an aggregated level [16,27,36] to
reduce user cost [37], to level peak loads [21, 31, 38], or to generate financial
benefits to the distribution utilities [34], etc. For the individual device-level,
the central unit collects the base and flexible energy consumption requests of
devices and optimally schedules them within the flexibility bounds [39,40]. The
proposed approaches rely on the flexibility information to be provided by the
consumer along with the demand request and thus still possesses challenges of
response fatigue. At an aggregated level, the devices are grouped according to
type or are clustered based on their energy consumption behavior [16,29]. The
central unit estimates the base and flexible energy demand from the group of
devices and generates the load reduction or shift plan accordingly. This has
challenges of satisfying individual user constraints such as temperature com-
fort range, minimum charge level for EVs, and maximum shiftable time for
wet-devices [41]. Further, the flexibility highly depends on the individual user
behavior and device technical details. Thus, the analysis at an aggregated
level cannot accurately capture the flexibility, i.e., loses a major portion of the
flexibility.

Device-level Consumption Data: The dynamic extraction and utiliza-
tion of atomic flexibilities for DR require the access to the historical consump-
tion data for devices. However, the device-level data are rarely available and
even if available are very noisy to perform any analysis. There have been var-
ious efforts on disaggregating household energy demand into demands from
individual load [42–46]. However, the disaggregation is a challenging task due
to various reasons such as multiple operating states of devices, variation in
energy demand for similar devices, similar consumption signal from different
devices, etc. Furthermore, an initiative for providing a publicly available dis-
aggregated energy dataset has been taken in [47, 48] together with a proposed
hardware architecture for collecting household energy data.

Flexibility Analysis: Demand reduction and shifting potential and op-
portunity from the household devices have already been demonstrated through
various studies, specifically for wet-devices [16,32,49], heat pumps (HP) [50–53],
and electric vehicles (EV) [27,38,39,54,55]. Further, positive attitude of users
to adapt to the changes by providing flexibility in their consumption behav-
ior has been established in [16, 56]. However, users should be aware of their
incentive for behavioral change, and it should be large enough to drive them
towards offering flexibility [35]. Most of the work in the literature discusses the
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potential and benefits of device-level load-shifting. However, the main question
of how device flexibility in the next days can be automatically predicted from
users’ past consumption behavior is still unanswered. Various methods for ex-
tracting flexibilities from electricity time series has been discussed in [57], but
the analysis utilizes the household level data. Further, [52,58] present methods
for estimating the demand flexibility from heat pumps. However, it does not
explicitly discuss the modeling flexibility in a way it can be effectively traded
in the energy market. Further, the analysis only focuses on one flexible de-
vice type and misses the analysis on device type such as wet-devices, electric
vehicles, etc.

Device-level Forecasting: Most of the flexibility-based DR projects (dis-
cussed above) depend on accurate forecast of both non-shiftable and shiftable
energy demands. However, the stochasticity associated with device-level de-
mand makes forecasting a difficult task, and the situation worsens in the ab-
sence of context information. Further, a market highly depends on the forecast
accuracy for bidding. There have been improvements in the forecasting tech-
niques for RES [59, 60], but the forecast error remains too high. The higher
forecast error causes a higher imbalance in the market, consequently increasing
the loss. An experiment for estimating the cost associated with wind power
prediction error [61] shows that, depending on the forecast horizon and granu-
larity, the prediction error can reduce the total revenue by up to 10%.

In the past few decades, forecasting methods focusing on various research
domains have been proposed. Forecast methods proposed in the literature
include quantitative time series methods (e.g. Moving Average, Exponential
Smoothing, ARIMA) and Machine Learning models (Artificial Neural Net-
work, SVM, Fuzzy Logic). Various linear and non-linear regression methods
have been proposed in the literature [62], as well as autoregression [63], time-
varying (time-varying auto-regression [64]), etc. has been proposed to deal with
forecasting in various domains. Recently, we have seen a surge in research and
development of various forecasting techniques focusing on the energy domain.
Existing forecasting techniques in the energy domain are based on both clas-
sical time series models and Machine Learning models [65, 66] implementing
various methods, e.g., ANN, FUZZY Logic, SVM, expert system, statistical
model, etc. over a variety of different energy dataset and time horizon. Most
of the work related to forecasting energy demand and supply are tailor-made
and tuned to specific problems, regional data, or time-horizon with the result
that a slight variation according to these specific modeling assumptions will
degrade performance. Previous research [67, 68] has further proposed incorpo-
rating other external information is to obtain robustness and generalizability
of the model, but still, these assumptions fail under the highly flexible and
dynamic market for energy supply and demand management as proposed by
TotalFlex.

A signature-based pattern matching technique to predict the device future
consumption is proposed in [69]. The proposed system only predicts the power
consumption for the next couple of hours for currently operating devices. Sim-
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ilarly, [70] narrows the scope to predicting the deactivation times of currently
operating devices. These approaches conflict with the forecast horizon require-
ment of flexibility based DR, which requires beforehand flexibility information
for efficient scheduling of supply and demand. A probabilistic model for pre-
dicting the device status, operation time, and duration is proposed in [71]. The
analysis was performed with simulated data and does not address the dynamic
and stochastic behavior associated with real-world device operation data.

Forecast Evalutaion: The unpredictability of the user behavior creates
challenges in achieving a higher accuracy for device-level demand forecasting.
Further, the traditional error measures such as RMSE, MAE, Precision, etc.,
which perform a point-wise comparison of the actual and predicted values do
not quantify the actual performance of the forecasting models in relation to the
flexibility market. For example, 1-hour difference between predicted and actual
activation of a device is an error with a traditional metrics. However, since
devices are in an idle state for most of the time between consecutive activations,
1-hour difference might not be an error considering demand flexibility as long
as the operation of the device finishes before next activation. A distance-based
device-level forecast method has been proposed in [71]. However, the work is
evaluated on simulated devices that do not capture the stochasticity associated
with real device usage, and no evaluation of the effects of incorrect predictions
on the market and users has been performed.

Utility Evaluation: The implementation and acceptance of the flexibility-
based DR depends on the financial benefits it generates to its stakeholders.
Although there have been some works on quantification of the benefit of load
shifting [34, 72], the analyses are based on markets with a less integration of
RES compared to Denmark where RES fulfills more than 40% of the electricity
demand. Further, most of the previous work focuses on the quantification of
the reduction in the customer’s energy bill [72–75]. However, in a grid system
with higher percentages of RES, it is rather players like BRPs and DSOs that
generate substantial savings by avoiding the regulation market and network
congestion, respectively.

Summary: Despite the immense possibility of economically extracting flex-
ibility, to obtain dynamic demand and supply balance, and users’ willingness
to provide flexibility in their energy demand, there is a number of important
challenges that have been either only partially addressed or still remain unex-
plored.

(a) The economic assessment of the benefits of demand flexibility in various
energy markets and for various stakeholders needs to be further explored.

(b) Descriptive analytics of device-level data with a focus on flexibility market
also need to be further explored.

(c) A general representation of the flexibility is needed, which has been dis-
cussed in [76] but not generalized to all device types [77–79].
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 User Behaviour Analysis (Chapter 5)

Forecasting (Chapter 6)

Flex-offer Generation (Chapter 7)

Optimization(Chapter 8)

Utility Modeling (Chapter 4)

 Forecasting Platform (Chapter 9)

Figure 2.1: Thesis contributions

(d) An assessment of effectiveness and usability of the standard forecast mod-
els for device-level energy demand forecasting at various data granularity
and horizon need to be further explored. Further, a metric to evaluate
the performance of forecast model that consider the demand flexibility is
still missing.

(e) A simple and robust process to capture flexibility from all household
devices with minimal user intervention is still missing [80].

(f) A comprehensive open platform for benchmarking, comparing, and reeval-
uating device-level forecast models is still missing.

2.2 Thesis Contribution
To fill the missing gaps for effective implementation of device-level flexibility-
based demand response market, this thesis makes the following contributions:

• This thesis models the flexibilities from various device types in a uni-
fied format represented as flex-offers that facilitate, e.g., aggregation and
trading (Section 3.1).

• This thesis proposes a number of structural models to capture the rela-
tionship between the market power prices and regulation volumes. Fur-
ther, it formulates the effect on the regulating power prices that are
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caused by the fluctuation in the market balance as a consequence of shift-
ing flexible demands (Section4.1).

• This thesis quantifies the utility of flexibility-based demand response to
energy market for various flexibility types and market objectives. Further,
it decomposes the actual utility into the direct utility and the utility due
to the side effects of shifting flexible demand (Section 4.3).

• This thesis proposes data pre-processing techniques specific to the device
level data analytics (Section 5.2).

• This thesis presents state-of-the-art analytics of device level energy con-
sumption that analyzes the patterns and periodicity associated with indi-
vidual devices with a focus towards characterizing and detecting flexibility
to be used in the flex-offer framework (Section 5.3).

• This thesis quantifies the flexibility potential of devices in various dimen-
sions and experimental settings (Section 5.3).

• This thesis proposes a number of features that reliably capture usage
patterns and address the requirements of a device-level demand forecast
(Section 6.1).

• This thesis formulates a set of equations for quantifying the financial ben-
efits of flexibility in relation to the intrinsic quality of a demand forecast
model (Section 6.2).

• This thesis proposes a generalized flex-offer generation and evaluation
process to capture flexibility from a variety of household devices (Section
7.1).

• This thesis presents an economic assessment of flexibility in the spot
and regulation markets and proposes the best market to trade flexibility
(Section 7.3).

• This thesis proposes a novel flexibility-aware error (FAE) measure to
evaluate the performance of forecasting models (Section 8.2).

• This thesis proposes a novel user-oriented prescription technique for schedul-
ing of predicted flexible demand that considers both the social and finan-
cial aspects of demand shifting (Section 8.3).

• This thesis presents an open benchmark platform for device-level demand
and flexibility forecasting (Section 9.1).



Chapter 3

Flexibility Concept and
Terminology

In this chapter, we detail the flexibility and flex-offer concepts proposed in
MIRABEL and was further enhanced by the TotalFlex project. The concepts
are discussed in relation to the operating sequence of a smart device. The
presented concept and flex-offer representation will be used throughout the
thesis as a basis for predictive analytics on the flexibility potential of household
energy demand. In this chapter, we first present various actions representing a
general operating sequence of a smart device and model flex-offer as an attribute
representing a combination of these actions. Then, it presents an overview of
all the dataset used in this thesis along with the cost-benefit categorization
of flexibility potential of household devices. Finally, it discusses the Nordic
electricity market that will be used for demonstrating and validating market
potential of the flex-offer concept.

3.1 Smart Devices
In this section, we consider different types of smart devices, whose electricity
consumption can be externally controlled (e.g., dishwashers, HPs, EVs). We
describe the sequence of activities involved in an operation of a smart device.
Finally, we present the flex-offer (FO) concept that captures the flexibility
incorporated in the various activities.

3.1.1 General Operation of Smart Devices
A smart device is a (IoT enabled) device that can be controlled by an external
controller such as smart meter, etc. Figure 3.1 depicts the general sequence of
actions performed during an operation of a smart device. An operation of a
smart device starts with a user performing the Switch-on action that signals
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Figure 3.1: Sequence diagram for smart devices.

an Energy Controller (EC) to utilize the device to perform a certain task(-s).
An EC is a device-aware external unit that decides on the execution time and
the amount of energy to be consumed for a task. Henceforth, to operate the
device, the EC triggers the Activate action within a time range bounded by the
Earliest Start Time (EST) and Latest Start time (LST). The EST and LST are
the earliest and the latest timestamp for the EC to trigger the device activation.
In this thesis, the time is discretized into equal-sized units.Immediately after
the activation of the device, the EC sends the first Consume action to the
device.

The Consume action signals the device to perform a task consuming et ∈ R
amount of energy at the time t. Further, the value of et, selected by the EC, lies
within a range [e(min,t), e(max,t)] defined by a minimum e(min,t) and a maximum
e(max,t) energy bounds, i.e., e(min,t) ≤ et ≤ e(max,t). After the execution of the
task, the device sends an Executed acknowledgment to the EC, reporting the
actually consumed amount of energy and other device/task status details. The
EC consecutively executes the Consume action for every 1 hour interval until
the completion of all task(-s). Hence, 〈e1 , . . . , ed〉 represents an energy profile
for d ∈ N consecutive time intervals, denoted as the operation duration. For
example, the device could be an electric vehicle (EV) that consumes electrical
energy et for each time unit of charging, i.e., each Consume action. Then,
〈e1 , . . . , ed〉 represents the energy profile for the duration of d time units of
charging. Finally, at the end of the operation, the EC sends the Deactivate
signal to the device.
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3.1.2 Flexibility and Flex-offers
The term flexibility denotes a flexible energy demand and is represented in
two dimensions. The first dimension is the time flexibility, which represent
the possibility of preponing or postponing a portion of a demand for energy.
The second dimension amount flexibility, is the range between maximum and
minimum energy demand at a particular point in time. For example, if we
consider a demand for a dishwasher, time flexibility represents the possibility of
shifting the activation time to better match an anticipated surplus production
from RES. Similarly, the amount flexibility represents the volume of power
demand from, say, electric heating that can be scaled up or down according to
the market requirement.

Time

Figure 3.2: Energy demand and supply, before and after demand flexibility management
(using flex-offer). The non-flexible part of the demand includes lightning, TV, etc.

Hence, in relation to Figure 3.1, we define the flexibility as the potential
to amend the energy profile and the time the Activate action occurs, and we
represent this flexibility as a so-called flex-offer (FO) [11].

Definition 1. A flex-offer f is a tuple f = ([tes, tls], p), where [tes(EST), tls(LST)]
is the time interval during which to trigger the Activate action and p is the
energy profile. p is a sequence of slices 〈s1 , . . . , sd〉, where a slice st is a con-
tinuous range [emin, emax ] defined by the minimum emin and maximum emax
energy bounds, and d is the number of slices in p.

Figure 3.3 shows an example of an FO f representing the energy demand for
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Figure 3.3: A sample FO from EV.

a single charging event of an EV. The FO in the figure states that the EV could
be charged starting anytime between 4 PM and 12 AM. The FO has an energy
profile with five consecutive slices: s1 = [0 .6 , 2 ], s2 = [1 , 3 ], s3 = [0 .9 , 2 .7 ], s4
= [0 .8 , 2 .6], and s5 = [0 .4 , 1 .2 ], where the first and the second elements rep-
resent the height of the light-shaded (emin) and dark-shaded (emax) bars in
the figure, respectively. The time flexibility tf(f) of the FO f is the difference
between LST and EST, i.e., tf (f ) = tls− tes = 8 hours. Further, tle represents
the Latest End Time (LET) of the last slice and is calculated as tle = tls + d.
Similarly, the amount flexibility af (f ) is given by the sum of the difference
between amount bound of all slices, i.e., af (f ) =

∑d
i=1 e(max,i)− e(min,i) = 5.8

kWh.
Similar to Figure 3.3, an FO can represent the flexibility of all the afore-

mentioned device types, by applying the device-specific flexibility constraints.
For example, emin and emax will be equal for a washer-dryer as it operates at
a fixed power level for a given setting. Depending on the device type the time
flexibility can be of three types:

• Forward Time Flexibility: The flexible energy demand can only be shifted
forward in time, to a time later than the initial planned start time for
the demand.

• Backward Time Flexibility: The flexible energy demand can only be
shifted backward in time, to a time before the initial planned start time
for the demand.

• Bi-directional Time Flexibility: The flexible energy demand can be shifted
in both directions of time.

The flex-offers extracted from individual devices representsmicro flex-offers.
The computational complexity of optimally utilizing the flexibility of each mi-
cro flex-offer derived from millions of individual devices is too high to make
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direct scheduling feasible. Thus, multiple micro flex-offers are aggregated into
fewer larger flex-offers, known as macro flex-offers. The quantity of energy
flexibility for each timestamp in a macro flex-offer will depend on the aggre-
gation technique used, the profile of the individual micro flex-offers, and the
market requirement. Various techniques to aggregate micro flex-offers to macro
flex-offers have been described in [81]. However, we will apply a simpler view
on aggregation (where required) in this thesis in order not to take the focus
away from the detection and generation of atomic flex-offers and investigating
its impact on the energy market. The simplified aggregation technique assumes
that the energy profile of a flex-offer spanning multiple time units can be bro-
ken into multiple independent offers, one for each time unit. In this case, the
aggregation simplifies as a simple grouping of the flex-offers (with the same
time flexibility) at each time unit, resulting in the energy profile of a macro
flex-offer being simply the sum of the values for the underlying micro flex-offers.
For example, a macro flex-offer with an amount flexibility of 100 MWh could be
aggregated from 50K micro flex-offers each with 2 KWh of amount flexibility.
Although this simplified view may seem unrealistic at first, we emphasize that
the thesis aims to investigate the case of a huge amount of micro flex-offers,
were far from all flex-offers need to be considered to sustain the market balance.
The above assumptions are therefore reasonable for the selected smaller part
of the flex-offers that are activated during the balancing.

3.2 Device-level Data
This section presents detailed device-level energy consumption datasets used in
this thesis along with generalized device-level data collection architecture. Fur-
ther, we categorize the available devices into different categories according to
their flexibility potential. Finally, we present the device type specific attributes
that represent activities involved in an operation of a smart device.

3.2.1 Data
1) Zensehome [82]: Zensehome is a smart house system manufactured by
the Zense Technology, a partner of the Totalflex consortium. Zensehome data
is a closed device-level dataset containing the average power readings in watts
for individual devices. The dataset is available for 13 different households and
buildings; each containing 3 to 100 devices that include devices like dishwasher,
washer dryer, lights, freezers, etc. The dataset is logged at a frequency of once
every 15 minutes and is collected from January 2014 to October 2015. Table 3.1
shows characteristics of the collected data across some of the individual houses.

2) INTrEPID [48]: This is an open data that contains energy consump-
tion profiles for household devices recorded at various frequencies. The dataset
contains energy consumption profiles for 61 households in Denmark and Italy,
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Table 3.1: Data details for each house.

Device Type/ House Number 4351 12680 41222 50404
Lightning 25 18 15 78

Refrigerator 3 1 1 4
Washer Dryer 0 2 2 2

Heating 1 5 2 8

each containing time series profiles from 10 - 15 devices. However, in this
thesis, we only use the energy profiles for wet-devices from 30 different house-
holds, each containing at least one of the devices washers, dryer, or dishwasher.

3) Heat Pumps: This is a closed data of power demand for HPs from
50 households in Denmark collected at a 5-min resolution. The HP dataset
includes the ambient and room temperatures, and are annotated with various
context values such as family size ranging from 1-5 adults per house, house area
ranging from 80-700 m2, etc. Table 3.2 depicts the parameter values for HPs
and contextual information for some of the houses used in the experiments.
The thermostat parameters of a particular HP and house are determined by
fitting a model to the historical dataset, discussed in Section 7.2.

4) EVnetNL [83]: This is a closed EVs charging data of privately owned
cars, charged at public charging stations. The dataset contains the charging
profiles for 30K Smart Card (30K EV assuming each EV represented by one
smart card) collected over a duration of 1 year (Jan-Dec 2015). The dataset
consists of 11M charging log points collected at a resolution of 15 minutes.

5) REDD [47] : This is an openly available data consisting of energy
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Table 3.2: LTI model parameters values and contextual information for selected houses.

House No. R[◦C/kW ] C[Wh/◦C] η Adult Children Area(m2) Model
1 2.22 60.43 3.58 2 0 199 DHP-L 8
2 2.3 81.13 4.36 - - 215 Fighter 1245
3 3.4 106.12 4.6 3 1 180 Fighter 1245-8
4 9.01 13.66 2.2 2 2 146 DHP-OPTI PRO
5 5.41 184.54 2.06 - 1 201 Queen VV9 DC

consumption profiles for six different houses, each containing profiles for 16 to
24 individual devices, and is collected in April to June, 2011. Data is available
for a varying number of days for the different houses; ranging from 15 to 35
days; see the third column of Table 3.3. Some days only have partial records,
and across all houses, the total number of days with a record for at least one
hour of the day is 130 days. The REDD dataset is collected at the main level,
circuit level, and plug level, where the plug level data is used to log devices
in cases, where multiple devices are grouped to a single circuit. The plug
level data were collected using a wireless plug monitoring device and circuit
level data were collected using a emonitor connected to a circuit breaker panel,
as illustrated in Figure 3.4. The available dataset was recorded at various
frequencies: 15kHz for main phase, 0.5Hz for circuit level, and 1Hz for plug-
level. For the main phase, data were written to the log in buffers of one second
and for the circuit and plug level once every three seconds. Figure 3.5 shows
an example of power demand for devices over the course of a day.

Table 3.3: Data details for each house.

House Number Days Span Days #Channels #Devices
House 1 36 35 18 11
House 2 34 15 9 9
House 3 44 23 20 13
House 4 48 30 18 12
House 5 44 9 24 15
House 6 23 18 15 11

Table 3.3 shows characteristics for the collected data across the individual
houses in the dataset. The Days Span column represents the total number of
days between the start and ending date in the time series, whereas #days is
the total number of days with at least one hour of available data. Similarly,
#channels represents the number of data collection points (plug and circuit)
in a house and #devices is the number of unique devices available in the house.

6) Market Data: In this thesis, the financial potential of the proposed
methods are evaluated on the Nord Pool spot and regulating market in the
DK1 (West Denmark) region, the region which produces the largest part of the
wind power production in Denmark. We obtained the time series dataset from
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Table 3.4: Sample Market Data

Date Hour
Up

Regulation
Price

Down
Regulation

Price

Up
Regulation
Volume

Down
Regulation
Volume

Spot
Price

Wind
Power

Production

Energy
Demand

1/1/2014 0 222.43 113.00 200 0 113.01 1709.2 1893.8
- - - - - - - - -
- - - - - - - - -
1/1/2014 9 189.83 137.91 0 0 189.84 1359.6 1896.9
1/1/2014 10 183.71 164.6o 0 -84 183.72 1413.3 2027

the Danish TSO Energinet.dk1. For the financial evaluation, we utilize the
hourly resolution market data set of a length corresponding to the experiment
(detailed in individual chapters). The data set consists of 9 different attributes
as shown in Table 3.4.

3.2.2 Device Categorization
Our analyses of the devices in a household pertain to the possibility extracting
the operational flexibility, which is evaluated based on the cost and benefit of
utilizing it under the TotalFlex scenario. In that respect, we define cost and
benefit as follows:

• Cost: The loss of user-perceived quality caused by accepting flexibility.

• Benefit: The available time and energy flexibility for the device.

According to this cost and benefit trade-off for flexibility, we have classified
type of devices into three different flex-categories.

• Fully-flexible : High benefit at low cost
For example, a refrigerator exhibit repeating patterns in energy consump-
tion, which allows higher flexibility in its operation without any loss in
user experience (temperature).

• Semi-flexible : Benefit and cost are comparable.
For example, the flexibility in shifting activation time for the oven is as-
sociated with a cost of users’ willingness to delay their cooking.

• Non-flexible : Low benefit and high cost
For example, the operation of devices such as lighting or television, is not
flexible or comes with high loss in user experience.

Our flex-categorization of all devices from the datasets is shown in Table 3.5.
This categorization may be somewhat arguable, but minor changes will not have
a significant impact on our flex-detection analyses. Further, we also categorize

1//www.energinet.dk/EN/El/Engrosmarked/Udtraek-af-markedsdata/Sider/default.aspx
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Table 3.5: Device Categoraization

Fully-Flexible Semi-Flexible Non-flexible
Dishwasher Furnace Bathroom_gfi

Electric_heat Microwave Miscellaneous
Refrigerator Stove Electronics
Washer_dryer Oven Kitchen_outlets
Heat Pump Lighting

the operation of devices into three different operation-states as rendered in
Figure 3.5:

• Inactive State : The device is in a non-operating mode.

• Operating state : The device is functioning or performing some task.

• Steady State : The ideal or low power consumption state between two
peak consumption of a single operation.

3.2.3 Operation of Different Device Types
This thesis focuses only on three different flexible device types.

Wet-device: A device used for washing and cleaning, i.e., one that op-
erates with water, is considered a wet-device, e.g., dishwasher, washer dryer,
etc. For wet-devices, the Switch-on action from Figure 3.1 represents the event
of pressing a ready button by a user, usually after loading the device. In a
typical household wet-devices are used 1-2 times a day, and for a short time
duration (1-2 hours), thus they are assumed to provide a substantial flexibility
to the EC on selecting the timestamp to trigger the Activate action between
EST and LST, where LST ≥ EST. For example, a dishwasher is usually acti-
vated after dinner and not used until the next morning or even later. Though
wet-devices may have varying energy demand during the heating and washing
cycles, they are usually operating at a fixed power level (depending on the se-
lected program). Thus, the maximum and minimum energy bounds, which are
parameters of the Consume action, are equal and describe the specific energy
amount required by the device, i.e., et 6= e(min,t) = e(max,t). The Deactivate ac-
tion represents the completion of all tasks such as heating, washing, spinning,
etc.

Electric Vehicle (EV): After the daily driving, a user plugs in an elec-
tric vehicle (EV) for charging which generates the Switch-on action shown in
Figure 3.1. EVs are usually used plugged in for a longer duration than the
actual charging time. Thus, as in the case of wet-devices, an EV also provides
a larger time margin to the EC for triggering the Activate action. The EC
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executes the Consume actions that specify the energy amount 〈e1 , . . . , ed〉 as-
signed for charging the battery. Depending on the driving requirements, the
user may desire to entirely or partially charge the battery, which provides the
e(min,t) and e(max,t) bounds for et, i.e., e(min,t) ≤ e(max,t). For example, if the
user set the minimum required charge level to 70%, then e(min,t) = 0.7∗e(max,t).

Heat Pump: A heat pump is a device used to transfer thermal energy from a
heat source to the heat sink, usually for in-door heating/cooling. If we consider
an air-source HP, it has to operate continuously to maintain the internal room
temperature. Thus, the EST and LST are equal and set to the beginning of the
heating period, e.g., 12 AM. The EC has to trigger the Activate and Consume
actions immediately after the Switch-on action from the user. The value of et,
determined by the EC for each Consume action, depends on various factors
such as internal and external temperature, the thermal capacity of the house,
etc. Further, the minimum and maximum bounds for et also depend on the
comfort (temperature) range θmax and θmin.A wider comfort ranges yield wider
e(min,t) and e(max,t) bounds for et. Further, it might also generate a situation
where for some of the time units emin = 0, i.e., the HP has to consume no
energy in maintaining the room temperature at the user defined range. Thus,
the amount of energy consumed in each time unit can be varied from 0 to the
maximum capacity of the HP.

3.3 Nordic Power Market
In this section we present detailed discussion on the Spot and Regulation mar-
kets, major components of the Nordic power market.

3.3.1 Spot Market
The Spot market is a wholesale electricity pool market where the selling and
buying bids for energy are settled a day ahead of the actual dispatch. The
market price/MWh for each hour in the next day is settled by a competitive
auction that usually occurs 12-36 hour ahead of the actual supply and demand
occurs. The bidding on the market closes at 12:00 AM and the final spot
prices for the next day are broadcasted already at 12:45 PM. The spot price
for each hour represents an intersection point between the aggregated curves for
demand and supply for each hour, considering various market and transmission
constraints. Figure 3.6 illustrates the price settlement using a 2 sided (demand
and supply) auction mechanism in the spot market.

3.3.2 Regulation Market
The regulating power market is activated shortly before the time of the actual
delivery and purchase of the power, when the market is anticipated to have any
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imbalance in supply or demand. The regulating power could be activated for
any duration of time. In this thesis, we assume that the duration of activation
of regulating power is in unit of an hour. This assumption is not essential
for our analysis and could be changed if a more fine-grained control should be
desired. Regulating power can be either up or down as a consequence of the
following situations. If the supply is less than the demand, the BRP has to buy
up-regulating power – at up-regulating power price – in order to maintain the
energy balance in the market. The required amount of up-regulating power is
fulfilled by other energy suppliers or by decreasing the demand by an amount
equivalent to the difference. On the other hand, if the supply is greater than the
demand, the BRP has to sell down-regulating power – at down-regulating power
price – to maintain the energy balance in the market. The down-regulating
power is sold to the reserve energy market or the demand is increased by an
amount equivalent to the difference. The regulating power prices differ from
the spot price, thus the BRP suffers financial loss when using the regulating
power. The BRP may eventually settle the regulating loss with the energy
suppliers that did not fulfill their commitment or the cost is transferred to the
customers.

Regardless of the market situation, the regulating power market closes two
hours before the actual deliveries and purchases take place. However, the clear-
ance for the regulating power market is done only if needed to balance the
market and take place 15 min before the actual deliveries and purchases of
energy. The suppliers or buyers of energy in the regulating power market must
therefore fulfill their bids within 15 min of being given notice. Here, we define
various parameters associated with the regulating power market.

• Spot price, ps(t): Energy price at the spot market.

• Up-regulation volume, vu(t): The amount that is less than the actual
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demand in the spot market.

• Down-regulation volume, vd(t): The amount that exceed the actual de-
mand in the spot market.

• Up-regulating power price, pu(t): Price paid for the up-regulating power.

• Down-regulating power price, pd(t): Price received for down-regulating
power.

At any point in a time, one of the regulation volumes in the pair (vu(t), vd(t))
will be zero. For notational convenience, we will in the following represent the
regulation volumes with a single notation.

• Up/Down-regulation volume, vu/d(t): denotes the non-zero regulating
element, or zero if both elements in the pair are zero.

3.4 Summary and Discussion
In this chapter, we detailed the flexibility and flex-offer concepts. Further,
we mapped the attributes of flex-offer to the operation sequence of smart de-
vices, namely Wet-devices, Heat Pumps, and Electric Vehicles. Further, we
presented the device-level data collection method and datasets used in the ex-
periments of the thesis. The household devices were categorized based on the
possibility of extracting flexibility from their operations and the associated loss
of user comfort, i.e., user acceptance of loss in perceived quality due to delay
in device operation for a given financial incentive. Finally, we discussed the
Nordic energy market and the applicability of demand flexibility to solve the
demand and supply problems in the market. Specifically, we analyzed the spot
and regulation markets. In the next chapter, we focus on evaluation of util-
ity of the flexibility concept to validate the financial viability of the proposed
flexibility-based DR.
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Utility of Flexibility
Concept

What is the economic value of flexibility-based demand response to
the market?

A higher integration of RES into the grid system often creates challenges
in demand management, which often results in market imbalances and finan-
cial loss. For example, in Denmark, the total volume of the regulating power
market for the DK1 (West Denmark) price area was 395.4 GWh in 2013, with
a maximum power imbalance of 750 MW [84]. Since the trading of this high
amount of energy in the regulation market reduces the revenue, a BRP has al-
ways been interested in a dynamic market scheme that reduces their deviation
and minimizes their losses. Hence, in this chapter, we perform an assessment
of the utility of flexibility-based demand response scheme in perspective to fi-
nancial benefits to market players. Here, the utility is measured in terms of the
reduction in regulation cost and regulation volume that a BRP (market) can
achieve utilizing demand flexibility. A positive result from experiments would
motivate additional market operators such as Transmission System Operator,
Distribution System Operator, etc. to implement, contribute, and adopt the
flex-offer concept. With the overall goal of assessing the utility of the device-
level flexibility, this chapter focuses on the following topics. First, it proposes
and evaluates a number of structural models to select a model which best
capture the relationship between the market power prices and regulation vol-
umes. Then, the selected model is used to quantify the effect on the regulating
power prices that are caused by the fluctuation in the market balance as a
consequence of shifting flexible demand. Henceforth, it evaluates the financial
benefit obtained with various types of energy flexibility and market objectives.
The overall financial benefit is further analyzed by decomposing it into the di-
rect benefit and the benefit due to the side effects of shifting a flexible demand.
Finally, the results of the various experiments are compared to determine the

33
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size and type of energy flexibility that maximizes the benefits of integrating
flexibility in the market.

4.1 Relation between Energy Market and
Flexibility

The utilization of flexibility for demand management involves shifting of some
portion of demand from an originally planned timestamp to a new timestamp
within a given time flexibility. This concept of demand management comes with
side effects that change the market dynamics. A Lack of detailed information
and dataset constraints the modelling of an experiment that could address all
possible side effects. For example, the available dataset do not tell us detail
information regarding the type of the device consuming the specific energy, this
limits a model that can address the change in overall demand due to shifting of
flexible demands. However, the thesis will now go on to carefully model some
of these side effects on the market in order to simulate a real world scenario
of utilizing the energy flexibility and its side effects on the market. We will
in the following use the convention that t refers to the original timestamp of
an available flexible demand and use t′ to denote the timestamp whereto the
flexible demand is shifted. A t′ can be greater, or smaller than t depending on
the type of time-flexibility, i.e., forward, backward, or bi-directional.

4.1.1 Modeling The Effect of Flexibility on Energy
Markets

We analyse the displacement in the market states (at both timestamps t and
t’) and the corresponding changes in the regulation prices as a consequence of
shifting flexible demand. In addition to evaluating the models in the litera-
ture, we propose various new structural models to capture the dynamic pricing
mechanism of the current electricity market, i.e., the relationship between the
market power prices and regulation volumes. We evaluate the models and se-
lect the model with best performance as the final model to be used in the
experiments.
Displacement of market balance
The shifting of flexible energy from one timestamp to another will displace
the anticipated market balance for both timestamps. This displacement will
change the regulation volumes in the market and might also reverse the mar-
ket balance state (e.g., from demand > supply to supply > demand). At
any timestamp the market will be in one of three different states S = {up-
regulated, down-regulated, balanced}, and, as such, the configuration (t, t′) of
the two timestamps may be in any of the market state configurations from the
Cartesian product S × S, as detailed in Table 4.1. A shifting of flexibility may
affect the anticipated market states at both times t and t′. Let us capture these
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Table 4.1: Possible market state at timestamps t and t′ (represented as pairs).
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Figure 4.1: Possible market states transition for t and t′ (arrows represent addition and
removal of flexible demand).

state transitions by defining a shift of a flexible demand f as

a(t, t′) f→ b(t, t′),

where a(t, t′) ∈ S × S and b(t, t′) ∈ S × S are the market state configurations
before and after the shift, respectively.

With |S×S|=9 market state configurations both before and after the shift,
we would naively have to consider 81 different situations, when analyzing the
effect of a shift of energy from t to t′. However, there are logical constraints
that reduce this number of possible situations considerably. Namely, at time
t, only the up-regulated state may shift to any of the three states in S, while
for the remaining two states the shift of energy will result in a down-regulated
state. For example, shifting of flexible demand f from an up-regulated market
at t may change the market to down-regulated or balanced condition or can
continue to be in up-regulated condition. However, shifting of flexible demand
f from a balanced or down-regulated market will always change the market to
the down-regulated condition. Similarly, at time t′, only the down-regulated
state may result in any of the three states in S, while the remaining two states
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Figure 4.2: Example of changes in market states due to utilization of energy flexibility.

will be in the up-regulated state after the shift. For example, the initial pair
of market states (up, down) can shift to one of many possible pairs such as
(down, up), (balance, up), (down, down), etc., whereas, the (down, up) pair
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Figure 4.3: Dependency of energy prices on the regulation volumes

will always remain (down, up) irrespective of the size of the shifted flexible
demand. These constraints reduce the number of possible situations to only 25
out of the 81, as illustrated in Figure 4.1.

Examples for 9 out of 25 possible situations, one example for each possible
pair of initial market states, are shown in Figure 4.2. In each of the examples,
the left–hand side of the figure shows the anticipated market states a(t, t′) be-
fore utilizing the flexibility, and the right–hand side represent the new market
states b(t, t′) after utilizing flexibility, i.e., shifting the flexible demand from t
to t′.

Changes in regulating power prices
Experiments on the relationships between the market power prices and reg-
ulation volumes, and the cost associated with a market imbalance has been
discussed in [40]. Further, the effect of the level of the spot price and the vol-
umes of regulation bid on regulating power prices has been analysed in [40] [85],
respectively. The regulating power prices are generally affected by the market
balance, i.e., supply and demand. A displacement in the market balance, due to
the utilization of flexible energy, will consequently affect the regulating power
prices in the market. Our economic analysis of flexibility incorporates a model
for this relationship between regulation volumes and regulating power prices
that we have inferred from historical data (described in further detail below).
All experiments are performed using the obtained model to estimate updated
prices at the timestamps t and t′ affected by a shift in demand.

Figure 4.3, illustrates the dependency of regulating power prices on the reg-
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ulation volumes in the market. The regulating power prices are clearly seen
to follow the spot price trend with a margin. The size of the margin depends
on the regulation volume in the market, with a few outliers where the margin
does not reflect the regulation volume. These outliers may occur due to the
dependency of regulating power prices on additional exogenous factors such as
hydrology - reservoir levels and inflow, temperature, wind speed, nuclear avail-
ability, etc. [84]. The figure further reveals some difference in the relationship
between spot and regulating power prices according to the type of regulation
(up or down) and, arguably, there seem to be some dependence on the regula-
tion volume as well. In [40], it was found that the most predictive features of
the regulating power price were, in fact, the spot price, the regulation volumes,
and the regulation type (up or down). Based on data from the Nordic energy
market in 1999, the paper inferred a model that defines a linear relationship on
spot price and regulation volume with a conditioning effect given by the type
of regulation. The parameterized model in [40] (in the following referred to as
Model 1) is as follows

pu/d(t) = 1 · ps(t)
+ 1vd(t)<0(−0.069 · ps(t) + 0.023 · vd(t) − 4.3)
+ 1vu(t)>0(0.028 · ps(t) + 0.042 · vu(t) + 13.07) (4.1)

Here,1a<b denotes the indicator function for the predicate a < b, and pu/d(t)
is the predicted up-regulating power price pu(t) in case of up-regulation and the
predicted down-regulating power price pd(t) in case of down-regulation. That
is

pu/d(t) =


pu(t) for vu(t) > 0
pd(t) for vd(t) > 0
ps(t) otherwise (i.e. vu(t) = vd(t) = 0)

Since this analysis, the market may have changed in certain aspects. To account
for these potential changes, we consider two alternative models. The first model
maintains the same structural relations as in [40], but with a parameterization
that is re-estimated with our more current 2014 data. This model (in the
following referred to as Model 2) is as follows

pu/d(t) = 1 · ps(t)
+ 1vd(t)<0(−0.5101 · ps(t) − 0.0324 · vd(t) + 55.8372)
+ 1vu(t)>0(0.0657 · ps(t) + 2.6157 · vu(t)) − 12.281) (4.2)

In order to account for the dramatic changes in the energy market since
1999, we created 14 different structural models which exhaustively defines all
possible linear combinations of main effects and multiplicative interactions be-
tween the three predictive features: spot price, regulation volumes, and reg-
ulation type (up or down). Out of the 14 constructed structural models, we
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selected the model that best quantify the effect on regulating power prices that
are caused by the fluctuation in the market balance. The search for the best
structural model was performed as follows. We partitioned the data from 2012
- 2014 into three parts, with the data from Jan 2012 - June 2013 in a training
set, data from July 2013 - Dec 2013 in a validation set, and the latest data from
Jan 2014 - Feb 2014 set aside as a test set used for later evaluation/experiment.
The alternative model structures – each with individually optimized parame-
terization obtained by using the Matlab curve fitting toolbox on the training
dataset – are compared based on the Mean square Error (MSE) achieved on
the validation set. The model with the least (MSE) is selected as the final
structural model. Finally, with the model structure in place, the combined
training and validation data was used for estimating the final parameterization
of the model. The final learned model (in the following referred to as Model
3) resulting from the structural model selection and the associated parameter
estimation is as follows:

pu/d(t) = 1 · ps(t)
+ 1vd(t)<0(−0.3362 · ps(t) + 0.0005 · (ps(t) · vd(t)))
+ 1vu(t)>0(0.2378 · ps(t) + 0.0034 · (ps(t) · vu(t))) (4.3)

As for the previous two models, we see that the prediction of the regulat-
ing power prices exhibits a direct relation on the spot price in the first term,
with the following terms accounting for the price adjustment. In contrast, the
price adjustment terms differ structurally from the previous models. Not sur-
prisingly, all three models show that in the condition, where there is neither
up- nor down-regulation the spot price equals the regulating power prices, i.e.,
ps = pu = pd. Furthermore, the negative coefficients for the down-regulated
market and positive coefficients for the up-regulated market constraint the mar-
ket price to pu > ps > pd, which is similar to the price trend obtained by [40].

4.1.2 Modeling Financial Aspect of Flexibility
At any point in time, the loss due to regulation is computed as the regulated vol-
ume times the price difference between the regulating and spot prices. Hence,
under the normal energy market condition, i.e., without utilizing a flexibility
shift from t to t′, the combined regulation cost at the two time points is

R(t, t′) = vu/d(t) ∗ |pu/d(t)− ps(t)|
+ vu/d(t′) ∗ |pu/d(t′)− ps(t′)| (4.4)

Now, consider a flexible load f(t) and let us define the resulting regulation
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volumes after this load has been shifted from time point t to t′ as follows

vu/d(t) = vu/d(t) − f(t)

=


vu(t) − f(t) for vu(t) > f(t)
f(t) − vu(t) for 0 < vu(t) < f(t)
vd(t) + f(t) for vu(t) = 0 (and vd(t) > 0)

.

vu/d(t′) = vu/d(t′) + f(t)

=


vd(t′) − f(t) for vd(t′) > f(t)
f(t) − vd(t′) for 0 < vd(t′) < f(t)
vu(t′) + f(t) for vd(t′) = 0 (and vu(t′) > 0)

.

Notice the notation, where underbar and overbar denotes a shift to, respec-
tively, lower and higher volumes of the market demand due to a shift of the
flexible load. In section 4.1.1 we saw that a change in regulation volume af-
fects the regulating power price. After the flexible load is shifted, the expected
combined regulation cost E(t, t′) is therefore computed in a similar way as in
Equation 4.4, but with estimated prices taking the changed volumes into the
account. That is,

E(t, t′) = vu/d(t) ∗ |pu/d(t)− ps(t)|

+ vu/d(t′) ∗ |pu/d(t′)− ps(t′)|, (4.5)

where pu/d(t) and pu/d(t′) are updated regulation price at timestamp t and
t′, respectively, calculated by using regulating power price prediction Model 3
from Section 4.1.1.

The expected change in regulation cost due to shifting a flexible load is then

∆R(t, t′) = R(t, t′)− E(t, t′) (4.6)

A positive value for ∆R(t, t′) represents a savings, i.e., decrease in the regula-
tion cost, and a negative value represents an increase in a regulation cost. The
decision regarding the shifting of flexible demand is therefore made based on
the value obtained for ∆R(t, t′), and is shifted only if ∆R(t, t′) is positive. The
details regarding the market objective and methods for selecting the best time
for shifting the flexible demand are discussed in the next section.

4.2 Market Objectives of Utilizing Flexibility
Let us define a data set X = {f1, f2, . . . , fn} of n flexible demands. To ease
notation, we will assume the same fixed time flexibility for all the demands,
but this assumption is easily generalized to varying time flexibilities across
demands. Let T denote the set of possible time flexibilities and τ ∈ T be a
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specific given flexibility. We will in the following analyses investigate flexibility
ranges of all units (hours) of a day. That is, τ ∈ {0, 1, . . . , 24} for forward
and backward time-flexibility and τ ∈ {0, 1, . . . , 12} for bi-directional time-
flexibility (see Section 3.1), where, in particular, τ = 0 corresponds to in-flexible
demands.

Recall that a flexible demand fi(t) at time t can shift its load to any unit
(hour) within the flexibility of τ . Hence, the new time t′ for the flexible load
of this demand can be any of

t′ ∈


t, . . . , t+ τ

t− τ, . . . , t
t− τ, . . . , t+ τ

.

where, t′ ≥ t for forward time flexibility, t′ ≤ t for backward time flexibility,
and t− 12 ≤ t′ ≤ t+ 12 for bi-directional time-flexibility.

Let C(ti, t′i; τ) denote the benefit (or negative cost) of moving the i′th flex-
ible load fi(t) at most τ time units to the new point in time t′. The objective
is to maximize the total benefit of utilizing flexibility for all flexible demands
in the data set X. In other words, we are optimizing the objective benefit
criterion

C(X; τ) = max(t′1,...,t′n)

n∑
i=1

C(ti, t′i; τ) (4.7)

We will be using a greedy procedure that optimizes the above benefit criterion
for one flexible demand at a time and in this way lower bound the total benefit
1. With a more sophisticated procedure the benefits could therefore be even
bigger than what we demonstrate in the experimental section. Based on the
requirement of a regulation market, the energy flexibility can be used to achieve
various objectives such as minimizing regulation cost and volume, or even more
elaborate objectives such as minimizing loss from underutilized wind energy.
To demonstrate our approach, we will focus on minimizing regulation cost and
volume, as follows

Minimizing regulation cost: The benefit criterion in Equation 4.7 will
in this case maximize the savings that can be obtained in the regulation costs
by time shifting the flexible demands. This benefit can be expressed by using
the regulation change from Equation 4.6 on the right-hand side of Equation
4.7. That is,

C(ti, t′i; τ) = ∆R(ti, t′i; τ),
1The lower bound will be tight if the optimal shifts for individual flexible loads are inde-

pendent, which is, however, rarely the case. Consider, for example, C(ti, t′i; τ) = ∆R(ti, t′i),
the change in regulation cost from Equation 4.6. Here, the move of a flexible demand may
affect the benefit associated with shifting of other flexible demands and, therefore, the order
of greedy optimization may matter.
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where the τ in the regulation change expresses the maximal shift considered
during the optimization. In more detail, the greedy optimization procedure
proceeds as follows. We use Equation 4.6 to calculate the regulation cost of
utilizing a flexible demand fi(t) at each possible load shift under the given time
flexibility τ for the demand, and then select the most cost-saving shift as the
optimal t′i for this flexible energy demand. Following, the regulation volumes at
the two affected time points are updated, as described in Section 4.1, and new
estimated regulating power prices are calculated by using prediction Model 3
from Section 4.1.1. For example, if the flexible demand fi(t) is shifted forward
by a duration of 3 units (hours), then the regulation volume and associated
predicted regulating power prices are updated at both time points t and t′ = t+
3. The next step in the greedy procedure will now consider one of the remaining
flexible energy demands in X, but with the updated regulation volumes and
prices.

Minimizing regulation volume: The benefit criterion in Equation 4.7
will in this case optimize the balance between the energy demand and sup-
ply. This benefit can be expressed by simply using the difference in regulation
volume before and after each shift on the right-hand side of 4.7. That is,

C(ti, t′i; τ) = (v(u/d)(t) + v(u/d)(t′))− (v(u/d)(t) + v(u/d)(t′))

The greedy optimization procedure will in this case proceed exactly as in mini-
mization of the regulation cost above, except that there is no need for updating
expected regulating power prices.

4.3 Experimental Analaysis

4.3.1 Minimizing Regulation Cost (First Experiment)
The first market objective we consider is to minimize the regulation cost paid
by the BRP due to imbalance in the market. We analyze the reduction in the
regulation cost that a market can achieve for each duration of time flexibility
and a given amount flexibility.

Forward Time Flexibility: The average daily savings that can be achieved
by utilizing the forward time flexibility in the energy demand is shown in Fig-
ure 4.4a and 4.4b. The figures show that with 24 hours of time flexibility and
100 MWh of amount flexibility available for each hour in a day, the market
can achieve the highest average daily saving of 107K DKK. Further, we can
see that savings in regulation cost generally grow with increasing time flexibil-
ity. However, a few drops in savings between the corresponding time flexibility
can also be seen, such as in the case of 200 MWh of amount flexibility the
saving for 22 hours is less than for 21 hours. This is mainly due the greedy
approach we adopted to optimize the shifting of flexible demand (discussed in
Section 4.2). In addition, the varying relationship between the market power
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Figure 4.4: Savings in regulation cost - averaged across days (forward time flexibility).

prices and regulation volumes affects the savings based on the timestamp of the
shifted flexible demand, e.g., if we have flexible demands at time t and t+1 and
only one of them can be economically shifted to timestamp t′, then the savings
might differ based on the flexible demand we choose to shift. Further, we can
see diminishing returns for the larger time flexibilities. We can see that the
savings gradually grow with increasing amount flexibility up to a certain limit,
in this case up to 100 MWh, after which it gradually decreases. This behav-
ior is more clearly demonstrated by the bell shaped structure in Figure 4.4b.
The saving decreases because for this particular market (DK1) with its average
regulation volume of 63MWh, shifting of larger flexible demands (>100MWh)
creates a higher fluctuation in the market and requires higher regulating power
to balance the market. As a result, the cost paid for the side-effect is greater
than the saving generated from the shifting of flexible demand, i.e., regulation
cost increases and the shifting of flexible demand becomes uneconomical as it
in some sense does more harm than good. This effect can be further seen in
Figure 4.5, where we see a gradual decrease in the average percentage count of
flexible demands that are shifted. Recall that in this chapter a flexible shiftable
demand represents a macro flex-offer created by aggregating flexibilities from
a number of smaller demands. Thus, it can only be shifted as a whole, not in
parts.

The daily relative savings/MWh of flexible energy demand is shown in
Figure 4.6. The curve is similar to that of average daily savings, showing
a gradual growth in the savings with increasing time flexibility. The maxi-
mum saving/MWh is achieved for 1 MWh of flexible demand with 24 hours of
time flexibility, after which savings/MWh gradually decreases with increasing
amount flexibility, which is further demonstrated in Figure 4.7. The savings
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Figure 4.8: Direct savings from the volume of flexible amount - averaged across days
(forward time flexibility).

in regulation cost come from two sources, first from the difference in the reg-
ulation cost paid for the volume of flexible demand at the original and new
timestamps, i.e., direct savings. The second from the side effects, the change
in the regulation cost for the remaining part of the regulation volumes at both
timestamps. It is interesting to analyze the savings from these two sources sep-
arately. Thus, we disaggregate the average savings into direct savings and the
savings from side effects, as shown in Figures 4.8a and 4.8b, respectively. The
curves in Figure 4.8a show slightly different patterns in savings compared to
that of total savings, i.e., for lower amount flexibilities (up to 100 MWh) direct
savings are lower, whereas the savings are higher for larger amount flexibilities
(> 100 MWh). Similarly, Figure 4.9b shows that the savings from side effects
are positive for lower amount flexibilities, but negative for higher amount flex-
ibilities. These differences are due to the effect of difference in market power
prices on the overall savings. The lower amount flexibilities has a dual benefit
because they could be shifted to an up-regulated timestamp, if the difference
in the market power prices is high enough to cover the loss due to changes in
regulation volumes.

On the other hand, for the higher amount flexibilities the difference in mar-
ket power prices cannot cover the loss due to a higher fluctuation in regulation
volumes, which results in negative savings for side effects and lowers the total
savings as shown in Figure 4.4a. Further, compared to Figure 4.4b, Figure 4.8b
shows an increase in threshold values of amount flexibility by 50 MWh and 100
MWh for lower and higher time flexibilities, respectively. The threshold value
of the amount flexibility that generates positive savings for the side effects
of shifting flexible demand depends on the energy demand and the average
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Figure 4.9: Savings from side effects of shifting flexible demand - averaged across days
(forward time flexibility).

regulation volumes of the market.
Backward Time Flexibility:
The average daily savings that can be achieved by utilizing the backward

time flexibility in the energy demand is shown in Figure 4.10a and 4.10b. The
trends are similar to that of forward flexibility, but with slightly lower values,
e.g., the best average daily saving is 6.1% less. This is due to the occur-
rence of a few consecutive up-regulations at the beginning of the time series,
which decrease the possible shifting of flexible demand. Further, we see similar
trends for direct savings and savings from side effects. Similarly, the rela-
tive savings/MWh also gradually decreases with growing amount flexibility. A
detailed comparison of savings between various types of time flexibility and
market objectives is shown in Table 4.2.

Bi-directional Time Flexibility: The average daily savings and trends
obtained for the bi-directional time flexibility are very similar to that of forward
flexibility, but with slightly lower values, e.g., the best average daily saving is
11% less. A comparison of savings between various types of time flexibility and
market objective is shown in Table 4.2.

4.3.2 Minimizing Regulation Volume (Second Experiment)
The second market objective, we consider, is to minimize the volume of energy
traded in the regulating market, i.e., regulation volume. In addition, we also
analyze the reduction in regulation cost in this case. As seen above, the result
for forward, backward, and bi-directional flexibility are similar, so we now
describe them jointly.
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Figure 4.10: Savings in regulation cost - averaged across days (backward time flexibility).
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Regulation Cost Regulation Volume

Forward Backward Bi-directional Forward Backward Bi-directional

Direct Side
Effect Direct Side

Effect Direct Side
Effect Direct Side

Effect Direct Side
Effect Direct Side

Effect
1 -10 3070 -6 3071 -181 2939 741 1600 642 1563 571 1450
10 1844 21327 2571 20739 -326 23003 6692 10997 5291 10597 4574 10172
50 30313 48671 37585 40194 22377 52457 23858 27511 13406 33578 14624 30051
100 68685 38303 78114 22351 54459 40803 41970 40026 26913 37416 28214 30187
200 116136 -21969 111981 -31369 84037 -12009 66018 1540 55600 -3370 48125 -7669

Table 4.2: Relative average daily savings (in DKK) for 24 hours time flexibility: compared
over various market objective.
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Figure 4.11: Savings in regulation volume (a) and regulation cost (b) - averaged across
days (forward time flexibility).

Figure 4.11a shows the average daily reduction in the regulation volume
utilizing the maximum time flexibility (24 hours). The figure shows that the
regulation volume can be reduced by up to 442 MWh on average, which ac-
counts for 29.4% of the average daily imbalance in the market. Further, the
curves show that benefits for the market grows up to a certain value of amount
flexibility, and then gradually decreases. In addition to the regulation volume,
the regulation cost also reduces by up to 82K DKK on average, which is ≈ 24%
less than for the first experiment. The most interesting of all, is the disaggre-
gation of the total savings into direct savings and savings from the side effects,
as shown in Figure 4.12a and 4.12b, respectively. For the small amount flex-
ibilities, the trends are different from the first experiment: the direct savings
are negative and become positive with the increasing time flexibility. On the
other hand, for higher amount flexibilities the savings are positive from first
flexible hour and increases gradually. Similarly, the savings from the side ef-
fect are positive for small amount flexibilities and negative for higher amount
flexibilities. This contrasting trend is explained by the market objective, where
the shifting of flexible demand is only possible from an up-regulated market
to a down-regulated market. In addition, it is also due to the varying effects
of flexibility on the market balance and market power prices, based on the
size of shifted flexible demand, as discussed in Section 4.3.1. The complete
comparison of savings can be seen in Table 4.2.
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Figure 4.12: Direct Savings (a) and savings from side effect (b) - averaged across days
(forward time flexibility).

4.3.3 Analysis
The results above show that in general a market can increase its savings in
regulation cost with increasing time flexibility, but the specific trend depends
on the market objective. For the first experiment, the market has diminishing
returns for increasing time flexibility. For example, for 100 MWh of amount
flexibility, 8 hours of forward time flexibility give 71% of the benefit of 24 hours.
In contrast, for the second experiment the savings grow steadily with increasing
time flexibility, where 8 hours of forward time flexibility give approximately a
third of the benefit of 24 hours. On the other hand, the size of the amount flex-
ibility plays an important role in determining the benefits of flexibility in the
market. The financial benefits of the market grow with the increasing amount
flexibility up to a certain limit, after which it decreases and can be negative,
e.g., the highest benefit with 100 MWh of amount flexibility is almost 48%
higher than that for 250 MWh. Further, the relative savings/MWh gradually
decreases with increasing amount flexibility, e.g., the best possible relative sav-
ing/MWh (127 DKK/MWh) for 1 MWh of amount flexibility is twice that for
50 MWh and six times that for 200 MWh.

In addition, until the threshold value of amount flexibility (100 MWh) is
reached, the market has a dual benefit of utilizing the flexibility, i.e., the market
benefits from both direct savings and savings from side effects, whereas, above
the threshold value the market loses a huge amount in side effects due to higher
imbalance in the market. This loss reduces the overall savings and diminish the
benefit of utilizing flexibility in the energy market, e.g., in the first experiment,
savings from side effects for 50MWh is 62% of the best possible saving, whereas
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for 200MWh it reduces to -52%. The higher the amount flexibility, the lower
the possibility of gaining financial benefit from shifting it. This argument is
supported by the fact that, on average flexible demand of size 10 MWh is shifted
65.2% of time, which reduces to 8% for 250 MWh. These results indicate the
maximum size of energy flexibility that can be traded in an energy market with
profitability. In addition, it also provides the guidelines for aggregating micro
flex-offers to macro flex-offers.

A market with an objective to reduce regulation volume can achieve a best
possible average daily reduction of 442 MWh along with a 37.5% reduction in
regulation cost. These results show that, the time shifting of flexible demand
can generate a substantial benefit regardless of the types of energy flexibility or
market objectives. However, the geographical location, size of the market, and
the type of RES will determine the optimal size of time and amount flexibility
that maximizes the benefits, e.g., demand management for solar energy need
flexible load to be shifted to day time, which requires higher time flexibility to
maximize benefit. For the market in this study, forward time flexibility and
objective to reduce regulation cost generates the best possible benefits for the
market. Here, the market can achieve up to 49% (107K DKK) reduction in
the average regulation cost, with 24 hours of forward time flexibility and just
3.87% of average gross demand (2.58 GW) being flexible. Further, with just
1 hour of time flexibility, the market can achieve 17.6% of the savings for 24
hours.

4.4 Summary and Discussion
In this chapter, we presented the answer to the research question "What is the
economic value of flexibility-based demand response to the market?". In this
regard, we evaluated the utility of demand flexibility to the market. Specifically,
we quantified the reduction in the regulation cost and volume that a market
can achieve utilizing demand flexibility. The experiments on the Nordic energy
market showed that regardless of the type of market objective and flexibility, a
market can generate substantial economic benefit. Further, a market can trade-
off between the available time and amount flexibility to maximize its benefit
by better mapping energy demand and supply. Indeed, with just 4 hours of
time flexibility and 100 MWh of amount flexibility, the market could reduce the
regulation cost by 24.9. Finally, we can conclude that "flexibility-based demand
response is economically viable to a market". However, the extent of financial
benefits is specific to a market and depends on the market demand and supply
conditions and types and volume of RES integration. In the next chapter, we
focus on the viability of extracting flexibilities from users’ daily routines.



Chapter 5

User Behavior Analysis

Which flexibilities do users have in their daily routine and are those enough
to support the concept?

In the previous chapter, we quantified the utility of the demand flexibility to
the energy market. However, flexibilities come from users and should be enough
to be effectively utilized in the market. The vision of the flexibility-based DR
scheme is that for users having a flex-offer contract with an energy supplier,
their flexibility is not specified by the user, but instead predicted based on
past users’ behavior. Hence, a comprehensive analysis of users’ device usage
behavior is fundamental for evaluating the existence of usable flexibilities in
their daily routine. This chapter focuses on the device-level analysis of energy
consumption data, which will form the foundation for accurate flexibility detec-
tion (Chapter 6), flexibility prediction (Chapter 6), and automated generation
of flex-offers (Chapter 7). In this chapter, we first introduce various device
operation properties that provide insights on the device usage preference of a
user. Henceforth, we present a number of specific pre-processing steps to clean
device-level data. Then, it performs state-of-the-art analysis of device-level en-
ergy consumption, including patterns and periodicity in device operation and
the correlation between operations of different devices. Subsequently, we show
the existence of detectable time and energy flexibility in user’s daily routine
and device operations.

5.1 Device Operation Properties
We will now introduce the important device operation properties that we in-
vestigate in order to support the challenges of deriving flexibility information
about energy demand. Statistical analyses for these properties will provide
significant information for generalized as well as user-specific device operation
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patterns. Further, they provide information regarding existence of flexibility
in the device operations and correlation between various devices.

1. There exists detectable Intraday and Interday patterns in device opera-
tion.

(a) Weekend and Weekdays patterns are different.
(b) Houses exhibit general and specific intra-day and inter-day patterns.

2. There exist time and energy flexibility in device operation.

(a) A major percentage of energy consumption comes from flexible de-
vices.

(b) An alteration in device energy profile is feasible.
(c) Device activation time can be shifted by some duration.

3. Some devices are correlated

(a) Highly correlated device are operated simultaneously or just after
one another.

(b) There is some fixed sequence of device operation.

5.2 Device-level Data Preprocessing
In this section, we will discuss the preprocessing steps and challenges associated
with the device level analysis. The complete sequence of the steps taken during
the preprocessing of raw input data before allowing the statistical analysis is
visualized in Figure 5.1, and details for each step are described in the following
subsections:

5.2.1 Spike Removal
We define noise as both being the effect of unwanted artifacts and white noise
influencing the time series data in a way that generates abnormal patterns in the
recorded device operation. Noise may be introduced through different sources,
e.g., error during data collection, abnormal behavior of the device, or mistakes
by the users (mistakenly switching device on and off). We have considered
a very high consumption value for very short duration, up to 2 data points
(corresponding to 6 sec), as a noise spike. The first preprocessing step replaces
the spikes in energy consumption with its preceding neighboring value, which
eliminates the obvious artifacts created by the installed measurement devices
or user mistakes in device operation. The data, in general, contains few noise
spikes of this type. To give an impression only 17 consumption spikes were
removed for the oven device-data in house 1, which accounts for 0.004% of
total high consumption values for this device. However, removing these noise
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Figure 5.1: Preprocessing steps.

spikes significantly effects the statistical analysis, as each removed spike would
otherwise be considered as an individual device operation, escalating the device
operation frequency.

5.2.2 Operation State Segmentation
Before proceeding with device-level statistical analysis, we annotate the data
according to the three different states of device operation, as discussed in Sec-
tion 3.2.2. The presence of an unknown, and for some devices, a high number
of intermediate power levels between the minimum and maximum power con-
sumption makes it challenging to segment the data into their respective phases
of operation. Furthermore, variability in the power consumption value within a
given stage of device operation creates ambiguity in defining the correct stage.
We rely on a simple segmentation approach, where we manually inspected the
consumption time series for a device in order to determine decision thresholds
between the different device operation states, e.g., 50 watts for microwave, 20
watts for electric heat, etc. This manual approach is only possible because we
are dealing with a reasonably small number of different devices. In future work,
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we will investigate the possibility of replacing this manual setting of thresholds
with robust and optimal automated threshold detection techniques.

5.2.3 Aberrant Operation Durations Removal
Each device has its own functionality and, furthermore, the user can typically
operate the device with varying parameters to accomplish an objective. For
example, a cooking objective has a high number of parameters according to the
meal being prepared. Despite variation in functionalities for different devices,
their durations in operation are usually constrained by the device objectives,
e.g., usually a dishwasher is not operated for a few seconds or more than a
few hours, and a microwave is not operated for more than a few minutes.
These abnormal behaviors in device operation were filtered out by replacing
the consumption values in these periods with the inactive state values. In
an extreme case, we discovered four instances in house 1 with durations of
oven operation that were less than 3 minutes. When removed, it reduced the
operation frequency of oven in the house by 20%. The rationale behind filtering
out aberrant operation is that these are often caused by user’s mistake, e.g. user
forgetting to turn off the oven when the food is cooked or mistakenly switching
on the device, and these kinds of behaviors are very rare and almost impossible
to capture in analysis and prediction models.

5.2.4 Filling Observation Gaps
Observation gaps in the time series is a major challenge that we face for an-
alyzing the dataset used in this thesis. We have implemented three simple
approaches for handling the missing information in observation gaps. The ap-
proaches differ according to the amount of missing data in the gaps. In the
first case, if an observation gap stretches over a full day, that day is discarded
from the analyses. Second, for observation gaps up to at most 6 seconds (2
consecutive data points), this data is filled-in by simple extrapolation accord-
ing to the last observed value. Finally, for observation gaps of more than 6
seconds and up to a day, the imputation for the gap is based on a computation
of the expected value given time-matching observed values across all days in
the analysed data of the given device (and house). For gaps less than an hour,
the observed data values are averaged across the hour, and for gaps greater
than an hour the observed data values are averaged over a block of time for
each of the five distinct periods that are shown in Table 5.1. In this way, we
fill in ≈ 750(1.67%) missing hours out of the total of ≈ 45, 000 hours for the
entire dataset.

To illustrate our data imputation methods, let us first assume that we are
interested in the operation state for a device and discover a gap of 20 minutes in
a particular hour. Each of the three operation states (see Sec. 3.2.2) are then for
the unobserved time ticks filled-in with the average observation value for each
state, as computed for the considered hour across days with full observations
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Table 5.1: Division of 24 hours into different block periods. The last column shows the
expected value (pobability) of operation for the stove in house 1.

Periods Hours of the day Category Probability of
operation

Night 23.00 - 05.00 Off-peak period 0.03
Morning 06:00 - 08:00 On-peak period 0.67
Noon 09:00 - 13:00 Mid-peak period 0.28

Afternoon 14:00 - 17:00 Low-peak period 0.12
Evening 18:00 - 22:00 Mid-peak period 0.32

on that hour. In another example, say, that we are still interested in operation
states, but now the observation gap is a three hour period from 7:00 to 09:59.
The imputation of the operation states will now proceed as in the previous
example with the minor difference that the imputed values are averaged across
the hours for a block period (see Table 5.1). Notice that in this way, the
imputed values for the first two hours may be different from the imputed values
for the last hour, because they belong to different block periods. Finally, to
illustrate how imputed values may be involved when computing statistics in
an analysis, let us consider the oven, which has imputation values for the
’operating’ operation state, as shown in the last column of Table 5.1. Say that
we observe that the oven is turned on once in the evening and we have the same
three hour observation gap as above. In this case, the expected frequency for
the usage of the oven during that day would be 1+0.67+0.28=1.95 operations.
Notice that to simplify the illustration, we have here assumed that the oven
can only be turned on once during a block period and that operations do not
cross blocks.

5.2.5 Aggregation Granularity
Finally, we aggregate the high frequency data in to the granularity of time that
we target for analyses, e.g. hourly or daily. An example for aggregation of time
series data into hourly resolution is shown in Figure 5.2.

5.3 Data Analysis
In this section, we will discuss statistical behaviors regarding energy profile,
usage pattern, and correlations in the device operations.

5.3.1 Device Energy Profiles
In Figure 5.3, we show a disaggregaion of the total energy consumption for the
different individual devices that are measured in the REDD dataset. It shows
a significant variation in device consumption across the different houses. How-
ever, by aggregating according to the type of device flexibility (Fully/Semi/Non,
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Figure 5.2: Hourly aggregation of time series data for dishwasher.

see Table 3.5), as shown in Figure 5.5, we see a more consistent pattern in
the shares of the total energy consumed by flexible and non-flexible devices.
The figure suggests that on average 50% of the total energy demand from
a house can be considered flexible, supporting Property 2(a). The low per-
centage of consumption from flexible, energy-intensive devices such as heating,
contributed to the seasonal behavior in the device operation (late Spring to
early Summer).

Figure 5.4 shows the minimum, maximum, and average power during op-
eration for different devices in house 1. We see many devices with average
consumption far from the extremes, which for all these devices indicate a po-
tential for device designs that support altering of the energy profile during
operation and, hence, creating flexibility and supporting Property 2(b). Look-
ing at the potential for flexibility due to users’ behavioral changes, additional
experiments (not reported in detail here) have shown a high deviation in to-
tal energy consumption, due to duration of operation and power level, across
operations for an individual device. Also, as we will see in Section 5.3.2, there
can be significant variation in consumption at the time an operation is ini-
tiated. These findings indicate a flexibility potential of shifting the energy
profile or activation time for the device, if users are willing to –or compensated
for–behavioral changes supporting Property 2(c).

5.3.2 Use Patterns
We will now look more into the patterns and (ir)regularities that device oper-
ations exhibit in individual households. If we first consider the interday distri-
bution of total energy comsumption for the individual houses’ in Figure 5.6, we
see a general pattern of a somewhat evenly distributed consumption across the
week, with a slight tendency towards lower consumption during the weekend.
Exceptions are house 5 where most of the consumption occurred on Monday
and Tuesday, and house 1 with higher consumption during weekends.
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individual houses.

The weekday versus weekend difference is further emphasized by the corre-
sponding aggregation, as shown in Figure 5.7. For all but house 1 we clearly
see a higher energy consumption during the weekdays than in the weekends.
This difference supports Property 1(a), but the pattern is, however, surprising
in that it contrasts the common belief that people use most of their high energy
consuming devices, such as washer and dryer, during weekends and holidays.
It should be noted that the REDD data has a high rate of missing data dur-
ing weekends and we are therefore collecting additional data to support this
surprising preliminary result.

To analyze intra-day variation for individual devices within and across
households, we aggregated device operations by the the hours of the day in
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order to compute the percentage of days that a device has been in opera-
tion during a particular hour. Figure 5.8 shows the results obtained for the
dishwasher operation in the six houses. We can clearly see a similarity in op-
eration across the houses, with a higher percentage of operation during the
day and a much smaller percentage during the late night (00.00 am - 06.00
am). Hourly operation patterns were observed for most devices, but patterns
were not necessarily similar across different households. For the stove and mi-
crowave, for example, we observed similar peak operation periods in the morn-
ing and evening hours corresponding to the typical hours for preparing meals.
In contrast, for the washer dryer, we found varying patterns in operation. Some
houses have evenly distributed hours of operation, whereas operations in other
houses were concentrated at certain hours of the day. For example, operation
of the washer dryer in house 3 was highly concentrated in the hours between
5.00pm - 11.00pm, whereas a fairly even distribution of operation was observed
in house 1. In some cases, these peak periods represent very high percent-
ages of device operation, as e.g., for dishwasher usage in houses 2,3,5 seen in
Figure 5.8.

Results (not reported in detail here) also verify obvious variation in the typ-
ical duration for operation of different devices, reflecting their objectives and
functionalities. For example, we see shorter operation durations for the mi-
crowave and high (continuous) duration for the refrigerator as justified by their
different operational objectives. Looking at the aggregated daily frequency1 of
device operations, conclusions are household dependent. For some households
we see a fairly even distribution across days, whereas for other households the
frequency varies dramatically. For example, Figure 5.9 shows the daily fre-
quency of microwave operations for different households (houses 4,6 do not
operate this device). We see a somewhat stable usage pattern for houses 3,5,

1More precisely, the expected frequency, as described in Section 5.2.4.
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whereas houses 1,2 have large daily variations.
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Summarizing the intra-day results from this section, we can support Prop-
erty 1(b), that device dependent intra-day patterns do exist and repeat across
days. On the more challenging side, however, these patterns seems to be highly
household dependent. In addition, small peak periods for operation, as we see
in Figure 5.8, may suggest a potential for shifting activation time, in further
support of Property 2(c).

5.3.3 Device Correlations
Finally, we aim to provide information regarding the coherence and correlation
between device operation occurring due to the usage patterns. We will fur-
ther explore the sequence in which devices are operated, and there frequencies.
Table 5.2 shows the number of times a given pair of devices were operated
together within a one hour interval in house 1. The ordering of the pairs repre-
sents the sequence of activation of the devices. The high degree of correlation
between devices such as the stove and microwave occur due to them supporting
a joint activity, cooking. However, that devices such as the washer dryer and
microwave exhibit a high degree of concurrent operation is more due to the
user’s behavior, preferences, and presence in the house. This conclusion is fur-
ther justified by data from another house(not shown here), where we have very
infrequent concurrent operations between washer dryer and microwave. This
shows that devices can have a higher probability of concurrent operation with-
out sharing similar functionality/purpose. Thus, we can say that occurrence
of high simultaneous operation is specific to a house and does not always guar-
antee high correlations across households, thus providing somewhat conflicting
arguments for Property 3(a). The sequential behavior in the device operations
can be seen for themicrowave and dishwasher, where themicrowave-dishwasher
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Table 5.2: Operation sequence for pairs of devices (house 1 ).

Device1 Device2 Frequency Device1 Device2 Frequency
Oven washer dryer 2 washer dryer oven 2
Oven microwave 8 Microwave Oven 9
Oven electric heat 1 electric heat Oven 1

dishwaser Oven 1 Oven dishwaser 0
dishwaser washer dryer 2 washer dryer dishwaser 3
dishwaser Microwave 2 Microwave dishwaser 10
dishwaser stove 1 stove dishwaser 0

washer dryer microwave 12 Microwave Washer dryer 10
washer dryer electric heat 1 electric heat washer dryer 1
Microwave electric heat 8 electric heat Microwave 4
Microwave stove 6 stove Microwave 2
electric heat stove 4 stove electric heat 2

stove Oven 1 Oven stove 0

sequence occurred 10 times in 36 days, but dishwasher-microwave sequence oc-
curred only twice. This shows that the correlations in device operations vary
according to their sequence of activation, supporting Property 3(b).

5.4 Summary and Discussion
In this chapter, we presented the answer to the research question "Which flex-
ibilities do users have in their daily routine and are those enough?". In this
regards, we demonstrated various repeating inter-day and intra-day, house-
specific or general patterns of energy distribution and device operation across
individual houses’. We also discovered some interesting correlations and se-
quences between device operations, which further provide valuable information
regarding activation times of the correlated devices. Further, we showed the
existence of a peak operating period and a longer idle period for some of the
devices signifying the potential of extracting time flexibility (shifting activa-
tion time) from their operations. Similarly, we demonstrated the existence of
variation in total energy consumption, due to the varying duration of opera-
tion and power level, which support the existence of energy flexibility in the
device operations. We showed that a significant percentage of the total energy
demand for a house could be considered to provide flexibility. Finally, we can
conclude that even though user exhibits stochastic behavior in device usage,
“users have significant time and amount flexibilities in their daily routine". In
the next chapter, we will focus on the automated prediction of device-level
energy demand and associated flexibility.



Chapter 6

Device-level Energy
Demand Forecasting

How can we predict the future device-level energy demand and associated
flexibility?

Previous chapters have shown that there exist substantial flexibilities in
users daily routine with economic values in the market. However, the flex-
ibility has to to be automatically predicted from the historical device usage
behavior. The stochasticity associated with device-level demand makes fore-
casting a difficult task, and the situation worsens in the absence of context
information. In this chapter, we focus on assessing the accuracy and usability
of general forecast models for device-level demand and flexibility forecasting.
First, we present a number of features that reliably capture usage patterns and
address the requirements of a device-level demand forecast. Then, we discuss
three different prediction models to predict the device states for various data
granularities, namely Logistic Regression, Logistic Regression with weighted
class importance, and Pattern Matching as a baseline model. The models
are evaluated based on Area Under the precision-recall Curve (AUC) and F1-
score. A market player is always more interested in the utility that device-level
demand flexibility brings to the rather than the intrinsic model-level quality
(accuracy) of the forecast model. Thus, we evaluate the financial viability of
device-level flexibility-based DR in relation to the achievable forecast accuracy,
i.e., evaluate whether the forecasts are good enough to make money in the
market. In this regards, we formulate a set of equations for quantifying the
financial benefits of flexibility in energy demands and the loss due to forecast
errors. The overall benefit and loss are decomposed and analyzed based on
types of prediction categories represented by contingency table. Finally, we in-
vestigate the forecast model, forecast horizon, and data granularity best suited
for the device-level flexibility analysis and flex-offer generation that maximizes
the benefit of flexibility-based DR.

61
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6.1 Device-level Forecasting
In this section, we discuss device-level demand forecast models that can achieve
satisfactory results even in the absence of context information. The device-level
demand forecast is done in two steps: i) predict the probability of device acti-
vation, and ii) predict the demand and operation duration for the activation.
Any device at a particular timestamp could be in one of the three possible
states, i) idle- switched off, ii) activation - switched on, or iii) operating. The
idle and operating state of a device is represented by 0 and activation state by
1. Further, a threshold value represents the minimum power (watts) demand
for a device to be in the activated or operating state.

6.1.1 Data Resolution
Given the historical device-level demand timeseries at a 15-minute resolution,
we aggregate the dataset at various granularities to analyse the correlation
between the data granularity and the forecast accuracy. Let us define a time
series dataset X of device activation profiles for d− 1 days.

X = {a1, a2, . . . , ad−1} (6.1)

where a value of each ”a” depends on the aggregation level discussed in details
below. We will consider aggregation into the 3 most commonly analyzed data
granularities.

Hourly Resolution: Here, the forecasting problem is to predict the hourly
device activation probability for the next 24 hours. Thus, the device-level con-
sumption data is aggregated to an hourly resolution with the energy consump-
tion replaced by a binary activation value. Specifically, if a reading is above a
threshold value and represents an activation state then the reading is replaced
by 1 else by 0. In this case, the dataset X in Eqn.(1) represents an hourly
device activation profile. Hence, each ai ∈ {0, 1}24 is a vector composed of 24
hourly profiles corresponding to certain day i.

Group Resolution: Here, the forecasting problem is to predict the device
activation probability for each group in next 24 hours. The groups are created
by distributing the 24 hours of a day into m groups, depending on the distri-
bution of the device activation times in the historical data. For example, we
create a set of group G = {g1, g2, g3}, where g1 = {1, . . . , 7}, g2 = {8, . . . , 15},
and g3 = {16, . . . , 24}. The hourly resolution dataset is here aggregated to the
group resolution. Specifically, if any hour in the group has value 1, then the
group gets value 1 otherwise it is set to value 0. In this case, the dataset X
in Eqn.(1) represents the device activation profile for the groups. Hence, each
ai ∈ {0, 1}m is a vector composed of activation profile form groups correspond-
ing to a certain day i.

Daily Resolution: Here, the forecasting problem is to predict the prob-
ability of the device activation in the following day. Thus, the dataset is here



6.1. Device-level Forecasting 63

Feature Used
S.No. Features Notation Description Example Hourly Group Daily

1 Last 24 States, L(x{24}) if h = 0 then {a0
i−1, . . . , a

23
i−1} else {ahi−1, . . . , a

h−1
i } 24 Binary Features {0, 0, 1, . . . , 0, 1} X X

2 Last 7 States, L(x{7}) {ai−7, . . . , ai−1} 7 Binary Features {1, 0, 1, 1, 0, 1, 1} X

3 Hour of a Day H(x{24}) χhour(xi) =
{

1 if hour of the prediction point
0 otherwise

24 Binary Features
hour ∈ {0, . . . , 23}

For h = 2
{0, 0, 1, 0, . . . , 0, 0} X X

4 Days of the Week, D(x{7}) χday(xi) =
{

1 if the prediction day
0 otherwise

7 Binary Features
day ∈ {mon, . . . , sun}

For Thursday
{0, 0, 0, 1, 0, 0, 0} X X X

5 Is weekend, W (x{1}) χ(xi) =
{

1 if weekend
0 otherwise

1 Binary Feature If sat, or sun than 1
else 0 X X X

6 Last Operation, LO(x{7}) χn(xi−7, . . . , xi−1) =
{

1 if xi−n = 1 and ∀{xi−n+1, . . . , xi−1} = 0
0 otherwise

7 Binary Features
n ∈ {1, 2, 3, 4, 5, 6,≥ 7}

If last operation was
2 days before, than
{0, 0, 0, 0, 0, 1, 0}

X X X

7 Season, S(x{4}) χs(xi) =
{

1 if season of the prediction point
0 otherwise

4 Binary Features
s ∈ {winter, spring,
summer, autumn}

If spring, than
{0, 1, 0, 0} X X X

Table 6.1: Features Description

aggregated to the daily resolution. Specifically, if any single reading in the day
is greater than the threshold value, then the day gets value 1 otherwise it is set
to 0. In this case, the dataset X in Eqn.(1) represents daily device activation
profile and each ai ∈ {0, 1} is the activation state corresponding to a certain
day i.

6.1.2 Feature Extraction
We analyse the collected device-level dataset with an aim to extract features
that can reliably capture the device activation patterns and energy demand.
More specifically, we generate additional derived values from the initial mea-
sured data to enhance the information on the device activation and usage pat-
terns. The descriptions of some of the extracted features is described in the
Table 6.1.

The present state of a device is highly dependent on its previous states,
i.e., a device with no recent activities has a higher probability of activation
than the devices recently activated. Thus, we extract the device states in the
previous 24 hours as 24 binary features and an additional 7 binary features to
represent the time since the last operation (1 and 6 in Table 6.1). For the daily
forecast, we extract the device activation patterns for the past l days, where l
is the window size (2 in Table 6.1). We assume that the uses of devices have
some temporal patterns, e.g., an oven is mostly activated during the morning
and evening, and the dishwasher is mostly operated after the lunch or dinner,
etc. Further, we can notice a variation in device activation patterns during the
days of the week. Therefore, we generate 24 binary features to represent each
hour of the day and 7 binary features representing the day of the week (3 and
4 in Table 6.1).

To capture the influence of seasonal factors on the usage patterns, we in-
clude four binary features representing the four seasons of the year (7 in Table
6.1)). In addition, we create various additional features as a multiplicative
interaction between the above-extracted features. We will in the following use
xi = x1

i , x
2
i , . . . , x

m
i to represent m features corresponding to a data point i in

X, and use the convention that xm refers to the mth feature and x{m} refers
to a set with m features.
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6.1.3 Learning Models
In this thesis, we present a simple pattern matching model as a baseline method
for performance comparisons. We further present the logistic regression model
with various extracted features and learning parameters. In our experiment,
the forecast is made at the end of the day (24:00 hour). However, the same
method can be used to build a model to forecast starting at any hour of the
day.

Pattern Sequence Matching: The Pattern Matching (PM) algorithm
works under the premise that days with the same intra-day pattern are likely
to continue to behave somewhat similar the following day. Therefore, to predict
the hourly device activation probability of the day d, the PM algorithm first
searches the days with device activation pattern that matches the pattern of
day d − 1 in the hourly resolution dataset X. This search outputs a set of
indexes for matching days M , defined as M = {i | ai = ad−1}. The probability
of device activation for each hour of day d is calculated as:

p(h) = 1
size(M)

∑
i∈M

ahi+1, (6.2)

where size(M) is the number of elements in the set M and h is the hour of
the day. If set M is empty, we calculate the probability over the complete
dataset. To predict at a group resolution, we follow the same procedure with
group resolution dataset X, and h replaced with g. The hourly forecast model
is described in Algorithm 1:

Algorithm 1 Hourly Forecast
Input: hourly resolution dataset X = {a1, . . . , ad−1}.
Output: p(h) for all hours of day d.
1: Initialize M = ∅ and p(h) = 0
2: H = hour with highest device activation frequency in X
3: for all i such that ai ∈ X do
4: if ai = ad−1 then Append i to M
5: for all hours h do
6: if M = ∅ then
7: if h = H then
8: Update p(h) = 1
9: else
10: Update p(h) = 0
11: else
12: for each j ∈M do
13: Update p(h) = p(h) + ahj+1

14: Update p(h) = p(h)
size(M)

return p(h)
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Similarly, device activation has some repetitive patterns over the days, such
as devices might be activated every second day, some daily, some once a week,
etc. Let Sli = [ai−l+1, . . . ., ai] be the sequence of a daily device activation
pattern for l consecutive days, from day i backward. In our experiments, we
use the l = 7 to capture the weekly behavior of device activation patterns.
Now, the PM algorithm for prediction of the device activation probability of
the day d first searches the sequence of device activation patterns that exactly
matches the sequence of pattern Sld−1 in the daily resolution dataset X. The
search output a set of indexes for the last day of matching subsequences M ,
defined as M = {i | Sli = Sld−1}. If set M is empty, the algorithm searches for
the sequence of device activations which are equal to Sl−1

d−1 and thus successively
until l = 1. The probability of device activation on day d is calculated as

p(d) = 1
size(M)

∑
i∈M

ai+1, (6.3)

The daily forecast model is described in Algorithm 2:

Algorithm 2 Daily Forecast
Input: daily resolution dataset X = {a1, . . . , ad−1}.
Output: device activation probability p(d) of day d.
1: Initialize M = ∅, p(d) = 0, and l = 7
2: while M = ∅ and l > 0 do
3: for all i such that ai ∈ X do
4: if Sli = Sld−1 then Append i to M
5: Update l = l − 1
6: for each j ∈M do
7: Update p(d) = p(d) + aj+1

8: Update p(d) = p(d)
size(M)

9: return p(d)

Logistic Regression: The standard logistic regression [86] model has
been used extensively in the literature for various binary classification problems.
The model defines the relationship between a set of explanatory variables and a
dependent classification variable, and provides the probability or likelihoods of
the possible outcomes. Let Y = {y1, y2, . . . , yn} be binary dependent variables
where each yi ∈ {0, 1} represents the class label for the feature vector xi. Let,
zi represent a linear function of the explanatory variables:

zi = θ0 +
∑m
j=1 θ

jxji ,

where θ = (θ1, θ2, . . . , θm) are the regression parameters associated with the
explanatory feature vector xi = (x1

i , x
2
i , . . . , x

m
i ) The probability that a new

data point belongs to the class label 1 is represented as:
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p(yi = 1|xi; θ) = 1
1+e−zi

,

Let us use πi = p(yi = 1|xi; θ) to simplify the notation, the probability of the
possible outcome to be class 0 is represented as: p(yi = 0|xi; θ) = 1− πi .

Given the training data ((x1, y1), . . . , (xn, yn)), the optimal regression coef-
ficients θ can be estimated by maximizing the log-likelihood function:

L(θ) =
∑
n(yn lnπn + (1− yn)ln(1− πn)),

We are considering a high number of features in the model and therefore intro-
duce L1 regularization in order to counter overfitting the model to the training
data. The L1 regularized log-likelihood function is:

L(θ) =
∑
n(yn lnπn + (1− yn)ln(1− πn)) + λ

∑m
j=1 |θj |

where λ is the regularization parameter. In this thesis, we use two versions
of logistic regression i) standard implementation using statsmodel in Python,
ii) Vowpal Wabbit [87] with weighted class importance - where positive and
negative instances are assigned importance weight relative to the class ratio,
i.e., instances of minority class are assigned a higher weight.

6.1.4 Demand Forecast
We need to estimate the demand at the point of forecasted device activation and
also the duration of the operation. Depending on the device current state and
configuration, demand from a device can range from a few watts to thousands
of watts. This high sparsity in energy demand from a device, 705 unique
demand values for washer dryer operations, creates challenges in estimating
the demands for a particular operation. Thus, to reduce the sparsity in the
data, we discretize the demand values into various bins, with an interval of 500
watts. Further, we average the demands value in each bin to generate a single
value that represent the bin. The next task is to determine the duration of the
device operation, i.e., the time between device activation and transition back to
an idle state. We assume that the device always operates for the duration of 2
hours, i.e., the lower bound of average operation duration of 2.27hrs. Although
this approach seems simplistic at first, we emphasize that it represents 64% of
the actual washer dryer operations duration in the experiment.

The next step to demand forecast includes estimation of energy demand for
the activation and subsequent durations of device operation. The process starts
with the extraction of the energy profiles for all previous activation’s triggered
at the hour h, i.e., the hour to predict. The extracted profiles are comprised of
demand for each unit time of the device operation. The multiple micro-profiles
are aggregated into a single macro-profile by averaging the profiles values at the
respective time unit of operation. The macro-profile value for each time unit is
compared with the bins ranges. The value of the bin whose range includes the
macro-profile value is selected as the estimated demand for the corresponding
time unit. Figure 6.1 shows an example of a day-ahead hourly demand forecast,
with 2 predicted device activation in the day.
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Figure 6.1: Demand Forecast - for next 24 hours

6.1.5 Model Evaluation
Precision, Recall, and Receiver Operator Characteristics (ROC) are commonly
used in the literature for the binary decision problems. However, for the class
imbalanced dataset, the ROC curve does not provide the real picture of the
performance of the model due to the slower increasing rate of the dominant
class (96.9% of instances in our dataset), i.e., false positive rate. Therefore, in
our experiment, we evaluate the performance of the classifiers on Area Under
the precision-recall curve1 as discussed in [88]. Let F̂ = {f̂(1), f̂(2), . . . , f̂(24)}

Actual f(t) Predicted f̂(t) Type Benefit Loss
0 0 True Negative (TN)
0 > 0 False Positive (FP) X X

> 0 0 False Negative (FN) X X
> 0 >0 True Positive (TP) X

Table 6.2: Categories of forecast result: based on actual and forecasted demand.

be 24 hourly forecasted demands, i.e., flexible demands for the day d, and
F = {f(1), f(2), . . . , f(24)} be the actual demands at the time of delivery.
Based on the forecasted and actual demand the results of a forecast model can
be divided into four categories, shown in Table 6.2. The table further shows
the consequences, in terms of benefit and loss, that a market experience for
each category of the result, detailed in Section 6.2. Therefore, a market player
is always interested in quantifying the pros and cons of each result categories

1Precision-Recall curve is a plot of the Precision against the Recall at various threshold
values.
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individually, which leverage them in selecting a forecast model with the best
performance on the desired category. For example, a market can desire a model
with a higher precision or a higher recall, or have a trade-off between precision
and recall.

6.2 Experimental Setup and Mathematical
Formulations

In this section, we will define the savings that can be generated from the energy
flexibility and analyze it in relation to the forecast error.

6.2.1 Analysis on Forecast Performance
In a flexibility market, a precise demand forecast model is crucial for the market
to follow the planned schedules. However, at the device-level, the demand at
a particular time highly depends on various factors, such as user availability,
preference, weather condition, device settings, etc. Therefore, the forecast
model suffers from stochastic user behaviors and external factors that are hard
to capture, leading to a higher imbalance in the market due to the scheduling
of false and unplanned energy demand. A market player is always interested to
know the maximum limit of forecast error that can be handled in the flexibility
market without any further financial loss. In this regard, we will analyse the
effect of each type of forecast result described in Table 6.2.

For the TN results (f(h) = f̂(h) = 0), the market neither has flexible
demands to schedule nor experience any unexpected demands at the time of
actual delivery. Thus, no financial loss or benefit comes with the TN result. In
the case of FP results (f(h) = 0 and f̂(h) > 0), the loss depends on the market
balance at the time of actual deliveries. For example, the up-regulated market
at the scheduled timestamp can achieve financial gain by a reduction in regu-
lation volume. On the other hand, the FP will increase the anticipated total
demand due to inaccurate estimation, which in turn causes the financial loss
due to the change in the market prices, discussed in Section 6.2.3. Similarly, in
the case of FN results (f(h) > 0 and f̂(h) = 0), an unscheduled demand could
increase the up-regulation volume causing financial loss or decrease the down-
regulation volume generating financial benefits. Finally, for the TP results, the
market generates financial benefit by pre-scheduling the flexible demand to re-
duce the regulation cost. In the next section, we will quantify the benefit that
can be achieved by shifting of forecasted flexible demand and the corresponding
loss due to the forecast error.

6.2.2 Scheduling of Flexible Demand
The extent to which a forecasted demand, i.e., flexible demand can be shifted
is constrained by the time flexibility associated with the demand. Let τ ∈
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{0, 1, 2, . . . , 24} be time flexibility associated with each forecasted demand
in F̂ , where, in particular τ = 0 corresponds to inflexible demands. Now,
F̂ = {(f̂(1), τ1), (f̂(2), τ2), . . . , (f̂(24), τ24} represents a vector of tuples, where
τi is the time flexibility for f̂(i). To ease notation, we will assume the same
fixed time flexibility for all the demands, but this assumption is easily gener-
alized to varying time flexibilities across demands. Let, V = {vu/d(1), vu/d(2),
. . . , vu/d(k)} represents regulation volumes for the next k hours from the time
of forecast, where k = 24 + τ . Now, the scheduling task is to assign the flexible
demands F̂ to V such that the market minimizes their total regulation vol-
ume

∑k
i=1 |vu/d(i)| without violating the constraints. The shifting of flexible

demand is subject to the following constraint: i) si ∈ {i, i+ τ} where si is the
scheduled time for f̂(i).

The scheduling problem has a finite solution space and could be solved
by a greedy approach or a brute force algorithm. The greedy approach can
find the best schedule for a single flexible demand, but does not guarantee
the optimality for a large number of demands. On the other hand, even for
the current problem the brute force algorithm takes significant time to find
the optimal solution and creates a problem for generating schedules for a large
number of devices. Therefore, we present the scheduling task as an optimization
problem and solve it using the GLPK solver with PuLP in Python. The worst
case running time for the solver, to find an optimal solution, is < 3ms.

6.2.3 Change in Regulation Price due to Scheduling
The inaccurate estimation of demand changes the anticipated regulation vol-
ume. Since, the regulation prices in the market depend on the volume and type
of regulation [40], the change in volume affects the regulating power prices in
the market. Thus, to evaluate the change in regulation price due to an error
in the forecast, we use the hypothetical relationship between energy prices and
regulation volume as proposed in [89].

pu/d(i) = 1.ps(i)
+ 1vd(i)<0(−0.334 · ps(i) + .0005 · (ps(i) · vd(i)))
+ 1vu(i)>0(0.238 · ps(i) + .0034 · (ps(i) · vu(i))) (6.4)

Here, 1a<b denotes the indicator function for the predicate a < b, and pu/d(i)
is the predicted up-regulating power price pu(i) in case of up-regulation the
predicted down-regulating power price pd(i) in case of down-regulation.

6.2.4 Savings in Regulation Cost due to Scheduling
For each hour in V, the loss due to the market imbalance is computed as a
product of the regulation volume times the price difference between regulating
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and the spot price. Hence, the total regulation cost for V is calculated as:

R =
k∑
i=1

vu/d(i) ∗ |pu/d(i)− ps(i)| (6.5)

where pu/d(i) and ps(i) are regulation price and spot price, respectively.
Given, the regulation volume and forecasted flexible demand F̂ , the market

generate a demand schedule that minimizes the regulation volumes. Let the
new expected regulation volumes be V̄ |{∀i, vu/d(i) ≤ vu/d(i)}, where the over-
bar denotes the change in regulation volume due to shifting of flexible demand.
Hence, the total expected regulation cost E is given by:

E =
k∑
i=1

vu/d(i) ∗ |pu/d(i)− ps(i)| (6.6)

The objective of scheduling the flexible demands is to reduce the regulation
cost of the market. Thus, the expected regulation cost E is always less than or
equal to R, i.e., E ≤ R. Therefore, savings in regulation cost due to shifting of
flexible demand is given by: ∆R = R− E

At the time of actual delivery, if the demand deviates from the previously
forecasted demand the market player, i.e., BRP that caused the specific imbal-
ance is financially responsible for the deviation. The total financial loss due to
the error in demand forecast is calculated as:

L =
k∑
i=1
|f(i)− f̂(i)| ∗ |pu/d(i)− ps(i)|

+ 1f(i)6=f̂(i)(vu/d(i) ∗ |pu/d(i)− ps(i)|) (6.7)

Notice the notation, where overbar denotes the updated regulation price cal-
culated using the update regulation volume, i.e., vu/d(i) = vu/d(i) ± f(i),
i.e.,updated regulation volume due to the inaccurate estimation of demand.
Recall the classification of forecast results in Table 6.2, ∆R and L represents
the benefit and the loss for the table, respectively. The ∆R−L gives the total
benefits of shifting flexible demands.

6.3 Experimental Analysis

6.3.1 Evaluation of Device-level Forecast Models
In this section, we will analyze the performance of the three different classi-
fiers, i) Logistic Regression (LR), ii) Logistic Regression with weighted class
importance(LR-W), and iii) Pattern Matching (PM), for various data granu-
larities. The experiments are performed using the demand timeseries data for
a washer dryer.
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Figure 6.2: PR curve - for various λ values (hourly)
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Figure 6.3: PR curve - for various feature sets (hourly)

First, we analyze the performance of the classifiers for the hourly data
granularity. To compare the classifiers, first we evaluate the variation in the
performance when changing the regularization value λ, shown in Figure 6.2a
and 6.2b. The performance of both models (LR and LR-W) degrades with
increasing λ values, mainly because increasing the penalty drives parameters
θ to zero and deselect most of the features in x (feature vector). The best
regularization parameter for the classifiers is estimated via cross-validation over
each λ value. The cross-validation gives the best average performance with λ =
1 and 1E − 6 for LR and LR-W, respectively, and the models achieve an AUC
of 0.21 and 0.23 for the respective λ values. Further, Figures 6.3a and 6.3b
show the performance of the classifier for various sets of features x{m}. Here,
both LR and LR-W achieve the best performance with the complete set of all
extracted features. Thus, we argue that the best strategy is to feed a classifier
with all the features and tune the model correctly so that it self-selects the
most relevant ones.

The precision-recall curve for all 3 classifiers is shown in Figure 6.4a, and
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Figure 6.4: Performance of classifiers (hourly).
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Figure 6.5: Performance of LR-W across washer dryers.

LR-W model has the highest area under the curve of 0.23 compared to 0.21
and 0.06 for LR and PM, respectively.

Further, the results show that the predicted class probabilities for LR and
PM are clustered in a small region, i.e., have lower prediction confidence. On
the other hand, LR-W predicts the positive and negative class with a higher
confidence that gives smooth precision-recall curve and the model achieves a
precision of 1, i.e., 0 unexpected demands, for some threshold values. The lower
confidence in prediction is due to the class imbalance and stochastic behaviors
associated with the device-level demand. The lower prediction confidence cre-
ates fluctuating (nonlinear) precision and recall curve as shown in 6.4a. Thus,
to select the threshold value that gives the best performance of the model, we
analyze the F1-scores of the classifiers as shown in Figure 6.4b. LR, LR-W,
and PM achieve the best performance at a threshold value of 0.16, 0.42, and
0.12, respectively. However, the best threshold value depends on the objective
of analysis, discussed in Section 6.3.2.
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Figure 6.6: PR curve - for oversampling (hourly)
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Figure 6.7: Performance of classifiers (hourly versus group).
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(daily).
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across all resolution.

From the figures, we can see that none of the classifiers show a good perfor-
mance at an hourly resolution, and a simple model such as PM has a perfor-
mance comparable to a complex model (LR). Further, as shown in Figure 6.5,
the quite low AUC achieved by LR-W for 2 different washer dryers, shows the
stochasticity associated with device-level demand forecasts. Nevertheless, the
comparable performance across the two devices illustrates that the proposed
device-level forecast model is generalizable. The lower performance of the clas-
sifiers is typically also due to a very high percentage of the majority class. Thus,
we evaluate the performance of the classifiers with oversampling of the minor-
ity class, shown in Figures 6.6a and 6.6b. However, oversampling increases the
sensitivity of the classifier towards the minority class which further degrades
the performance giving more FPs. Therefore, for the device-level demand fore-
cast, where the minority class is the target of the classification, weighted class
importance yields better performance compared to over-sampling approach.

Figures 6.7a, 6.7b, and 6.8 compare the performance of the three classi-
fiers on hourly and group resolution. The figures show that a classifier has a
significantly better performance at the group resolution, with LR and LR-W
achieving an improvement in AUC of 0.40 and 0.39, respectively. Especially,
PM reports the best performance improvement with an increase in AUC of
0.42. These results suggest that device usage patterns are more repetitive in a
cluster of hours, e.g., the user frequently activates a washer dryer in group g3 (4
PM-12 AM) depending on his/her presence at home. Figure 6.10 compares the
performance of the classifiers at a daily resolution, and Figure 6.11 compares
the best F1-score. The figures clearly demonstrate that the classifiers achieve
the best performance at a daily resolution with AUC of 0.85, 0.84, 0.62 for LR,
LR-W, PM, respectively. At the daily resolution, the imbalance shift towards
the positive class and the weighted measure does not contribute to the perfor-
mance gain. Therefore, the performance of LR surpasses LR-W. Moreover, we
can conclude that, at an device-level, the predictability increases with the data
aggregation level.

The above results exhibit the stochasticity associated with an device-level
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Figure 6.12: Saving for varying time flexibility: LR(λ : 1, Features: All)
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Figure 6.13: Saving for varying time flexibility: LRW(λ : 1E − 6, Features: All)
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Figure 6.14: Saving for varying time flexibility: PM

demand where it is hard to capture any patterns at an hourly resolution. More-
over, in the absence of context information, the unusual behaviors in the usage
patterns are wrongly represented by forecast models which degrade their overall
performance. However, our main interest is to evaluate the viability of flexibil-
ity market utilizing a device-level demand forecast in a stochastic environment.
Therefore, in the next section, we will analyze the financial implication on the
regulation market relative to the performance level of our forecast models (clas-
sifier with demand appended).

6.3.2 Evaluation of Utility of Forecast Models
Here, we will quantify the financial benefit (savings in regulation cost) of de-
mand flexibility in relation to the achievable device-level demand forecast ac-
curacy. First, we evaluate the theoretically maximal savings in regulation cost
for a hypothetical 100% accurate demand forecast model. The experiment on a
demand timeseries for a washer dryer shows that with the hypothetical model,
a market (BRP) can generate the maximum savings of 6.1 DKK over the test
period. Henceforth, we evaluate the performance of the forecast models relative
to the percentage of the maximum savings they can achieve.

Percentages savings for hourly resolution demand forecast models at varying
time flexibilities are shown in Figures 6.12, 6.13, and 6.14. The figures show
savings for the LR and LR-W models configured for the best performance
(discussed in Section 6.3.1). We can see that best savings grows with increasing
time flexibility but has a diminishing return for larger time flexibility. The
models achieve the best savings for the 24 hour time flexibility. However, for
shorter time flexibilities, the models always have losses (negative savings) due to
a decrease in the number of genuine demands (TPs) that can be shifted. Thus,
all further experiments are performed considering 24 hours of time flexibility.
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Figure 6.15: Savings from demand flexibility of a device- relative to forecast
category.(Group)
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(b) LRW(λ : 1E − 6, Features: All)

Figure 6.16: Savings from demand flexibility of a device- for various F1-score. (Hourly)

The Figures 6.12, 6.13, and 6.14 show that, given 24 hour time flexibility, the
LR has the best savings of 42% compared to 40% and 35% for LR-W and PM,
respectively. This contrast the hourly level forecast result where the LR-W has
better AUC than LR and PM.

In general, the savings is positive for a higher precision value, but the cor-
responding recall value determines the size. For example, in Figure 6.12 the
savings with a precision of 0.56 is 40% less than with 0.28. The savings de-
creases due to the lower recall where the loss due to the FP cases is higher than
the gain due to the TP cases. The figures illustrate that savings are positive
only for a portion of the precision-recall curve and negative for the rest. The
positive region represents precision-recall values with accuracy enough to cover
the losses due to FN and FP cases, and these regions are specific to the forecast
model, e.g., LR-W has positive savings for more points than PM.

Figures 6.15a, 6.15b show the savings for various probability thresholds
relative to the forecast categories, i.e., TP, FP, and FN. We can clearly see
that at lower thresholds, the number of FPs is too high to generate any savings,
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Figure 6.17: Savings from demand flexibility - PM (Hourly)

e.g., at a probability threshold of 0.02, LR and LR-W have FPs equivalent to
47% and 83% of the total instances, respectively. However, with an increase
in the probability threshold, the FPs and TPs decreases as does the loss. The
figures illustrate that a flexibility market can generate substantial savings even
in the presence of a vast number of FPs. For example, a savings of 24% for LR
and 11% for LR-W can be achieved even with 84% of total forecasted flexible
demand being false. These savings are mainly attributed to the change in
regulation prices, where for some FPs the loss due to increase in up-regulation
price at i is lower than the gain due to a decrease in down-regulation price at
i+ τ . With a further increase in threshold, the number of TPs drops to 0 and
so do the savings.

Since the savings depend on the timestamps of the correctly forecasted in-
stances and the number of FPs, the precision and recall values for positive
savings are inconsistent with the models. For example, LR has a savings of
7.5% for the (precision, recall) value of (0.13, 0.52) , whereas, LR-W has a
loss of -9.8% for (0.13, 0.54). In addition, the savings does not follow the pat-
terns of the precision-recall curve. This behavior creates difficulty in selecting
a probability threshold value for a model that guarantee the positive savings,
i.e., the probability threshold that gives the desired precision. To this end, we
evaluate the savings relative to the F1-score at various probability threshold
values, shown in Figures 6.16a, 6.16b, and 6.17. The figures show that for all
the models, the savings follows the respective F1-score, and the model achieves
positive savings at a point of the highest F1-score. Thus, the problem of set-
ting the optimal probability threshold can be solved by selecting the threshold
value with the highest F1-score. This rule of thumb is valid for all cases with
significant savings, i.e., all experiments with best positive savings of > 1.1%.
The highest F1-score achieved by the LR, LR-W and PM are 0.28, 0.3, and
0.21, respectively.

Figures 6.18a, 6.19a, and 6.20a illustrate the savings from the demand
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Figure 6.18: Savings from demand flexibility of a device- relative to precision-recall (LR).

flexibility utilizing the demand forecast at the group resolution. The figures
demonstrate that the savings increases with the data aggregation, however,
the increase is not proportional to the improvement in forecast accuracy. For
Example, the best F1-score for LR is double of hourly resolution, but at the
same time, the maximum savings increase only by 29%. Similarly, we can see
a 93% improvement in the best F1-score for LR-W, but the savings increase
only by 27%. Because the best savings for PM lies at the point of the best
F1-score, PM surpasses the savings from LR by 10% despite having lower pre-
diction accuracy (AUC). For other models best savings does not coincide with
the best F1-score, thus, they have a comparatively lower precision and recall
value at the point of the best savings. These results show that in the flexibility
market, a model with a better forecast performance (AUC) does not guarantee
higher savings. Further, a comparable savings from the baseline model (PM)
supports our argument that, at the device-level, a simple model can compete
with a complex one. In addition, the figures demonstrate an extended positive
region for all the forecast models, which indicates that a market can gener-
ate savings for almost all values of the precision-recall curve. Moreover, best
savings are obtained from the (precision, recall) values of (0.65, 0.41), (0.6,
0.46), and (0.69, 0.47) for LR, LR-W, and PM, respectively. Further, a market
(BRP) has a better confidence in the forecasted demand flexibility at a group
resolution and is guaranteed to obtain savings from it.

The savings from the demand flexibility utilizing the demand forecast at
the daily resolution is shown in Figures 6.18b, 6.19b, and 6.20b. For the daily
resolution, the savings is drastically reduced due to a decrease in the number
of available flexible demands to be scheduled, e.g., the maximum savings for
LR is only 13% and 10% of hourly and group resolution, respectively. Though,
the savings is comparatively less, a market will never have a loss due to FP or
FN flexible demands.

The above results show that the highest saving in regulation cost is achieved
with a demand forecast model at the group resolution, nevertheless a market
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Figure 6.19: Savings from demand flexibility of a device- relative to precision-recall
(LR-W).
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Figure 6.20: Savings from demand flexibility of a device- relative to precision-recall (PM).

can also generate substantial savings at the hourly resolution. However, even
though the accuracy of a model improves with data aggregation, a model has
the least savings at the daily resolution due to a corresponding decrease in
the number of available flexible demands. These results show that device-
level flexibility-based DR can be a promising tool to confront the challenges of
integrating RES into the grid system. Moreover, an energy market can extract
the benefit of device-level demand flexibility even in the presence of a large
number of false predictions, i.e., FPs. However, the maximum proportion of
FPs and FNs, i.e., the lower bound of precision and recall, that a market can
sustain are specific to the market.

6.4 Summary and Discussion
In this chapter, we presented an answer to the research question "How can we
predict the future device-level energy demand and associated flexibility?". In
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this regards, we assessed and compared the performance of the three different
forecast models, namely two variants of L1-regularized logistic regression and
one pattern sequence matching to evaluate their effectiveness and usability for
device-level demand prediction. We presented various device-level features that
could reliably capture usage patterns and address the requirement of device
level forecast. We compared the performance of the forecast model at various
data granularity and forecast horizon and identified the granularity and the
horizon best suited for device-level flexibility analysis. The prediction models
were evaluated based on the Area Under the precision and recall Curve and
F1-score. Further, we quantified the effect of forecast error on the flexibility
based demand response. Though the experiments, we showed that benefit
of demand flexibilities could be maximized utilizing a forecast model at the
group resolution. Further, we demonstrated that for the device-level demand
forecast, financial gain for a market is much better than implied by the error
metrics. Hence, even with a low accuracy at the hourly resolution, a market can
still yield positive financial benefits. Finally, we can conclude that "traditional
forecast model does not provide higher accuracy at device-level, but the accuracy
can be improved by tuning the data granularity and even with a lower prediction
accuracy a market can achieve an acceptable utility". In the next chapter,
we focus on the generation and evaluation of flex-offers from various flexible
devices.
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Chapter 7

Generation and Evaluation
of Flex-offers

How can we effectively extract and generate flex-offers from household
devices?

In previous chapters, we have shown that there exists significant time and
amount flexibilities in user’s daily routine and these flexibilities can be pre-
dicted at a level that is economically viable to the users and market players.
However, the main question of how flexibilities from various device types can
be extracted and modeled as flex-offers, for efficient aggregation, trading, and
scheduling, is still unanswered. In this regards, this chapter presents a gen-
eralized Flex-offer Generation and Evaluation Process (FOGEP) that extract
and model flexibilities from wet-devices (e.g. dishwashers), electric vehicles,
and heat pumps. We first present a generalized FOGEP that analyzes past
consumption behavior of a device (using real-world dataset) to capture flexibil-
ity in the device usage behavior and automatically predicts the future energy
demands and associated flexibilities for the device. Henceforth, we present a
method for modeling the predicted flexibilities from all device types into a uni-
fied format represented as flex-offers that facilitate, e.g., aggregation and trad-
ing. We utilize device-level forecasting techniques and algorithms (discussed in
Section 6.1) to capture various attributes and temporal patterns required for
flexibility extraction. Further, we perform an evaluation of the performance
of FOGEP regarding the accuracy of the extracted flexibility and an economic
assessment to identify the device-specific best market to trade flexibility. The
economic evaluation of FOGEP is performed on the spot and regulation mar-
kets, discussed in Section 3.3.

83
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7.1 Flex-offer Generation and Evaluation
Process (FOGEP)
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Figure 7.1: The General FO Generation and Evaluation Process.

Figure 7.1 shows the general steps involved in the generation and evaluation
of FOs. The FO generation process starts with the gathering of the energy
demand time series and available context information such as the description of
house occupants, house insulation parameters, etc. The next step includes the
preprocessing of the raw information into a format required for analyzing and
predicting timestamps and values for the actions captured by FOs. The Model
Parameter Estimation and Forecasting (MPEF) step includes the application
of forecast models required for the generation of FOs. Specifically, this step
comprises of two main tasks. The first task is the Time Flexibility Extraction
which involves the prediction of timestamps of various actions such as Switch-
on, Activate, Consume action, etc. The second task is the Amount Flexibility
Extraction which includes the prediction of the number of slices in FOs, i.e., the
number of Consume actions required for the completion of the defined task and
the minimum and maximum energy bounds for the individual slices. Finally,
this step combines the outputs of the two sub-steps to generate FOs for the
forecasted device operations.

The last two steps evaluate the accuracy and the econometric benefit of the
generated FOs. The accuracy provides the correctness of the predicted time
and amount flexibility of the proposed FO generation process, and economet-
ric benefit provides the financial viability of the generated FOs, e.g., in the
regulation and spot market. The general process, shown in Fig. 7.1, is suit-
able for generating and evaluating FOs of different types of devices, including
the aforementioned wet-devices, EVs, and HPs. The next Sections 7.2 and 7.3
present the key inputs and implementation of all the steps in the FOGEP in
the case of wet-devices, EVs, HPs.

7.2 Flexibility Extraction
This section details our implementation of the MPEF step focusing on the Time
Flexibility Extraction and Amount Flexibility Extraction sub-steps. The sub-
steps rely on a number of forecast models required to predict the timestamp
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and values captured by FOs. Hence, this section first discusses the feature set
extracted from the preprocessed input data and presents our forecast models.
Henceforth, it discusses the specific use of the forecast models and algorithms
in the case of wet-devices, EVs, and HPs.

7.2.1 Input Data
In all cases, FOGEP requires energy demand time series and relevant context
information (if available) as an input to perform various tasks such as model
parameters estimation, training of forecast models, etc. The time series consist
of a device energy consumption profile for k − 1 days which will be used to
detect the flexibility of the device on day k. The context information includes
other information such as house area, family size, age, etc. The FOGEP also
requires weather information for FOs generation for the temperature dependent
devices such as HPs. FOGEP utilizes the first 80% of the time series to build
various models required for FO generation process and the remaining 20% as
the test set to evaluate the performance of the process. Though the proposed
FOGEP works for time series of any resolution, this thesis focuses on an hourly
resolution. Thus, let us define a time series X = {e1, e2, . . . , eT } of device
energy consumption profile for k − 1 days, where T ∈ N>0 = (k − 1 ) ∗ 24 .

7.2.2 Forecast Models and Feature
This subsection presents the implementations of the general forecast models
required in the Time Flexibility Extraction and Amount Flexibility Extraction
sub-steps. As the base models, we use Logistic regression model along with
the respective features sets ( discussed in Section 6.1) and Pattern Sequence
Matching model discussed below. The use of the models in the case of different
device types is discussed in the next subsection.

Pattern Sequence Matching (PSM): Pattern Sequence Matching (PSM)
is used to predict values for various attributes of FOs, e.g., the number of slices,
energy profile, etc. required during the MPEF step. The device activation
causes a noticeable increase in power consumption. First, all the changes in
consumption values in the historical time series X are detected and are trans-
formed into energy consumption patterns. The PSM algorithm (Algo. 3) works
under the premise that these patterns are correlated to the time of activation,
e.g., a dishwasher activated at 20:00 always operate for two-time units and
has an average energy profile of 〈1.2, 1〉 kWh. Therefore, to estimate the en-
ergy profile for a predicted device activation at hour h of day k, the PSM first
searches device activations triggered at hour h in the time series X. Then, for
each activation the algorithm extracts the energy demand et for the duration
of the device operation. This search outputs a set of indices of the device ac-
tivation timestamps and profiles P = 〈p1, . . . , pn〉, where each pi is an energy
profile of the device activation at the timestamp i and n is the number of device
activations at the hour h. This algorithm returns an array of energy profiles
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for matching device activations, and the specific use of the output profiles are
discussed in the next subsections.

Algorithm 3 Pattern Sequence Matching (PSM)
Input: = X - {e1, . . . , eT } a time series.

h - a predicted device activation hour.
Output: = P - a list of demand patterns starting at h.

I - a list of index for the patterns.
1: function demandPattern(X,h)
2: P ← ∅;p← ∅;I ← ∅; active← false
3: for t← 1 : T do
4: if et ≥ thres then
5: if t%24 = h then
6: p← p ∪ {et}; active← true; I ← I ∪ {t}
7: else if active = true then
8: p← p ∪ {et}
9: else
10: if active = true then
11: P ← P ∪ {p}
12: p← ∅ ; active← false

13: Return P, I

The next subsection details the Time Flexibility Extraction and Amount
Flexibility Extraction sub-steps in the case of different device types that utilizes
the forecast models.

7.2.3 Device Type Specific Case of MPEF Step
This subsection presents the algorithms and the use of the forecast models to
realize the Time Flexibility Extraction and Amount Flexibility Extraction sub-
steps in the case of wet-devices, EVs, and HPs. Let us consider the forecasted
device activation hour to be h and f to represent the final generated FO.
Wet-device: In the case of wet-devices, the LR algorithm is used to predict
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Figure 7.2: FO Generation sub-steps in the wet-device case.
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Switch-on and Activate actions on the next day k (see Fig 7.2), utilizing wet-
devices specific feature set.

Users exhibit some temporal behavior in their device activation patterns
[56,90], i.e., they have specific device usage patterns during weekdays, weekend,
or in some other temporal resolutions. Therefore, on day k, the user is assumed
to follow a pattern similar to the patterns in the historical data X. Thus, after
the prediction of Switch-on (using the LR algorithm), the output of the PSM
(Algo. 3) is used to estimate the time gap between the subsequent Switch-on
action, i.e., the next Switch-on action after the forecasted one. The time gap
is calculated by averaging the gaps between the historical device Switch-on
actions at the hour h and its subsequent Switch-on actions, as shown in Algo.
4. This time gap gives the EST (tes) and LET (tle). For example, if a device is
predicted to be activated at 16:00 PM and all the historical device activations
at hour 16:00 is followed by a subsequent activation at hour 23:00. Then, the
average time gap is calculated as 7 hours and (tes) and (tle) is set to 16:00 and
23:00, respectively.

Algorithm 4 Estimation of Time Flexibility
Input: = I - indices for matching patterns from Algo. 3.

X - a time series.
h - a predicted device activation hour.

Output: = [tes, tle] - the earliest start and latest end time.
1: function estimateTimeFlexibility(I,X, h)
2: tf(f)← 0;n← length of I
3: for i← 1 : n do
4: idx← I[i] + 1
5: for t← idx : T do
6: if X[t] > 0 then
7: tf(f)← tf(f) + (t− idx)
8: break
9: tes ← h; tle ← h+ tf(f)

n
10: Return [tes, tle]

To estimate the energy profile for the forecasted activation, we search the
historical time series X to extract profiles for all previous activations of the
device at hour h, using PSM. Next, the operation duration d, i.e., number
of slices for the forecasted device activation is estimated as the ceiling of the
average number of slices in the historical profiles P , d =

⌈1
n
∑n

i=1 length of pi
⌉
,

where pi ∈ P . Then, the [emin, emax ] energy bound for each slice in the profile
p is estimated as described in Algo. 5.

Electric Vehicles: Similar to wet-devices, LR algorithm is used to predict
Switch-on and Activate actions for an EV on the next day k (see Fig 7.3)
utilizing the EV-related feature set. The predicted Switch-on action represents
the plug-in event of an EV.
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Algorithm 5 Estimation of Energy Profile for a wet-device
Input: = P - the extracted demand patterns from Algo. 3.

d - an operation duration.
Output: = p - an energy profile for forecasted activation.
1: function estimateProfile-wet(P, d)
2: p← ∅;n← length of p
3: for j ← 1 : d do
4: e(min,j) ← 1

n

∑n
i=1 pi.e(min,j)

5: e(max,j) ← 1
n

∑n
i=1 pi.e(max,j)

6: sj ← [e(min,j), e(max,j)]
7: p← p ∪ {sj}
8: Return p
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Figure 7.3: FO Generation sub-steps in the EV case.

The charging event of an EV is enclosed between the plug-in (tes) and plug-
out (tle) events, i.e., between connection and disconnection to the charging
port. The plug-in and plug-out events usually occur with some time gap from
the actual charging event. For example, a user plug-in the EV at 5 PM after
returning from work, the actual charging starts at 8.00 PM and ends at 12.00
AM, and the user plugs-out the car at 7.00 AM in the morning to drive to work.
The time distance between these two events provides the time bound for an
EC to trigger the Activate action and start charging, i.e., time flexibility tf(f)
for the generated FO. However, if the EV is charged using a quick charging
station, these events may coincide with first and the last Consume action, i.e.,
tf(f) = 0. These events are predicted using the LR algorithm discussed in
Section 6.1 with the dependent binary variable Y representing the plug-in and
plug-out events, respectively.

The next step includes the estimation of the total (base and flexible) energy
demand for the predicted EV charging event. It is essential to estimate the
initial battery level of the EV before proceeding with the calculation of total
energy demand. The initial battery level depends on the total distance (km)
traveled, i.e., driven by a user on the day k − 1. In the absence of actual
driving information, the initial battery level cinit is estimated by averaging the
initial level for all historical charging events starting at hour h in the data
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Algorithm 6 Estimation of Energy Profile for an EV
Input: = eb, ef - a total base and flexible demand.

φ - an energy distribution ratio.
Output: = p - an energy profile for forecasted activation.
1: function estimateProfile-EV(eb, ef , φ)
2: p← ∅
3: for j ← 1 : d do
4: emin ← φj · eb
5: emax ← emin + φj · ef
6: sj ← [emin, emax]
7: p← p ∪ {sj}
8: Return p

X. Further, depending on the driving requirement, the user may fully or
partially charge the EV. Let cmin be the minimum charge level required by
the user. Then, the base energy demand for the EV charging is calculated as
eb = (cmin − cinit) ∗ r , where r is the charging rate, i.e., the energy consumed
per unit increase in charge level. Similarly, the energy demand flexibility af(f)
is calculated as ef = (100 − cmin) ∗ r . To distribute the base and flexible energy
demand into emin and emax bounds for the individual slices of FOs, first, the
charging duration d is estimated using a similar procedure as for wet-devices.
Then, the energy distribution ratio φ = (φ1, . . . , φd), i.e., the portion of total
energy consumed at each unit time of charging, is calculated by averaging the
energy distribution in the profiles from Algo. 3, where φ =

∑d
i=1 φi = 1. The

Algo. 6 calculates the profile p for the predicted EV charging.
Heat Pump: For a heat pump, the energy consumed at hour 1 effects the

energy allowed to be consumed at hour ≥ 2, i.e., the size of slice st depends on
energy consumed for slices s1, . . . , st−1. The actual amount of energy assigned
at a particular timestamp is unavailable until the final schedule that creates
an infinite combination of feasible energy (flexibility) allocations over the day
(24 hours). This dependency problem has been explained and addressed in [91]
using a Dependency-based Flex-offer (DFO) where an FO is represented as a
series of two-dimensional polyhedrons, instead of just minimum and maximum
energy bounds. However, the DFO is more complex and more challenging to
deal with (compared to FOs considered in this thesis), which is often unde-
sirable and thus not considered in this thesis. Thus, this thesis presents two
different flexibility allocation approaches, discussed in detail later.

The first sub-step specific to the MPEF for a HP is the estimation of the
model parameters of a house (see Fig 7.4). This thesis considers the flexibility
of (air source) HPs for domestic heating use. Thus, we discuss a simple linear
time-invariant (LTI) state space model of the house to estimate the internal
temperature of the house given the input energy from the HP. The internal
temperature of the house is dependent on the ambient temperature and the
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thermal energy supplied by the HP. Further, the amount of thermal energy re-
quired to maintain the internal temperature is determined by the heat retaining
capacity of the house. The first order LTI model of house is given by

θin0 = θ0

For t = 1 : T

θint = (1− 1
R · C

) · θint−1 + ( 1
C

) · ut + ( θ
amb
t

R · C
)

et = ut
η

where C and R are the thermal capacitance and thermal resistance of a house,
respectively. Further, η is the Coefficient of Performance (COP) of the HP,
θin0 is the initial room temperature, θin1 , θin2 , . . . , θinT are the room temperatures
at time intervals 1, . . . , T, θamb1 , θamb2 , . . . , θambT are the ambient temperature at
t = 1 . . . T , u1, u2, . . . , uT are the thermal delivery of the HP at t = 1 . . . T , and
e1, e2, . . . , eT are the consumed energy amounts at t = 1 . . . T .
The optimized parameterization of the LTI model is obtained using the curve
fitting technique, where the best numerical value for the parameters is esti-
mated fitting a polynomial line to the consumption time series X. Table 3.2 in
Section 3.2 depicts the parameter values for HPs and contextual information
for some of the houses used in the experiments.
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Figure 7.4: FO Generation sub-steps in the HP case.

To estimate the ambient temperature for the next 24 hours of the day k,
the freely available weather forecast from [92] is used. Let us consider the
Switch-on action for the HP operation is triggered at the first hour of the
day, i.e., h=1 and f be the final generated FO. The air source HP has to
operate continuously to maintain the indoor temperature, providing zero time
flexibility (See Fig. 7.4). Thus, the Switch-on action and the Activate action
always occur simultaneously, i.e., tes = tls = 12 : 00AM and an FO has an
energy profile of 24 slices, i.e., p = 〈s1 , . . . , s24 〉. As discussed earlier, an HP
has to maintain the indoor temperature within the comfort constraint defined
by the minimum θmin and maximum θmax temperature bound. This comfort
constraint provides substantial flexibility in energy required for each hour of
the day k, i.e., emin and emax bound for the individual slices of the profile
p. The constraint is estimated by averaging the temperature range across all
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houses in the dataset. The temperature variation within a household support
our concept of flexibility; where a user is already comfortable and accept certain
degree changes in the indoor temperature. Recall, emin and emax for a slice
depend on previous slices. Thus, we present two different flexibility allocation
approaches:

1) Constraining Amount Flexibility (CAF): This approach imple-
ments the simple strategy that if you consume more for slice si then you have
to consume less for slice si+1 , and vice versa. To avoid a situation where select-
ing a value from the given flexibility range violates the user comfort boundaries,
the amount flexibility of slice si+1 is reduced so that any allocation of energy at
t = 1 in the range [e(min,1), e(max,1)] both fulfills the comfort constraints and
allows energy allocation at t = 2 be in the range [e(min,2), e(max,2)]. Although
this approach favors the flexibility at the beginning and penalizes later periods,
it guarantees that the user comfort limit is always satisfied.

2) Weight-based Flexibility Distribution (WFD): There might be
cases where users can accept a few violations of the comfort constraints. Hence,
instead of penalizing the flexibility to satisfy the user constraints, this approach
supports assigning weights for each hour representing the amount of flexibility
desired at a particular hour. There are different ways to calculate weights,
and one way is using the spot prices, i.e., the hour with the lowest price gets
the lowest weight and vice versa. Compared to CAF, this approach gives
more control to the user or Balance Responsible Party (BRP) in deciding the
distribution of flexibility.

Moreover, the house can have zero occupancy for some hours in a day, the
so-called relax period (usually dictated by the user). During the relax period,
the HP can ease the comfort constraint, i.e., maintain the temperature above
or below the constraint boundary. For example, if the user has a comfort limit
of 20-23 ◦C, then the range could be extended to 18-25 ◦C. However, the new
limit depends on the capacity of the HP and the heat loss rate of the house.
The temperature should rebound to the normal limit at the end of the relax
period. The slices for the relax period has extended emin and emax bounds that
increases the amount flexibility af(f). The profile p for the HP is calculated
using Algo. 7, where wj is the weight assigned to timestamp j and e(sch,j) is
energy scheduled for the timestamp.

Flex-offer Generation Finally, the last step of the MPEF combines the
output from the various device-specific algorithms to generate the FOs. The
generalized MPEF step of the FOGEP is summarized in Algo. 8.

7.3 Mathematical Formulation for FOGEP
Evaluation

In this section, we present details of the implementation of the statistical and
financial evaluation steps of the FOGEP, the final steps of the process shown in
Fig. 4. The statistical evaluation measures the accuracy of the predicted time
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Algorithm 7 Estimation of Energy Profile for HP
Input: = R,C, η, . . . - LTI model parameters; w - weights
θmin, θmax - a comfort constraint.
θin0 , θ

amb - an initial indoor and ambient temperatures.
Output: = p - energy profile for forecasted activation.
1: function estimateProfile-HP(R,C, η, . . . )
2: α← 1− 1

R·C , β ←
1
C , γ ←

1
R·C

3: p← ∅
4: for j ← 1 : 24 do
5: emin ←

θmin−(α·θin
j−1)−(γ·θamb

j )
β·η

6: emax ←
θmax−(α·θin

j−1)−(γ·θamb
j )

β·η
7: if CAF then
8: θinj ← α · θinj−1 + βėmin · η + γ · θambj

9: else
10: e(sch,j) ← (emin + (1− wj) · (emax − emin)
11: θinj ← α · θinj−1 + β · e(sch,i) · η + γ · θambj

12: sj ← [emin, emax]
13: p← p ∪ {sj}
14: Return p

and amount flexibilities, and the financial evaluation quantifies the viability of
the generated FOs in the regulation and spot markets.

7.3.1 Statistical Evaluation
The generated FOs are compared with the actual available time and amount
flexibility on the test dataset. The actual time flexibility tf(f) is calculated as
the distance between the consecutive device operations on the day k (or k and
k+ 1). Though the consecutive activations might not necessarily represent the
actual time flexibility, e.g., a dishwasher can be opened before next activation;
it provides the best estimation of flexibility. Further, the test dataset does not
contain information about the amount flexibility. Thus, the accuracy of the
FOGEP is estimated as deviations between the sum of forecasted emax values
and the corresponding energy demands in the test set (X) for the flexibility
range, i.e., from tes to tle. We evaluate the time flexibility accuracy of the
proposed FOGEP using Mean Absolute Error (MAE) where:

• MAE for time flexibility is the average over-estimation of flexible hours:

MAE = 1
n

n∑
i=1

(tf(fi)− tf(fi)) · 1tf(fi)≥tf(fi) (7.1)

• MAE for amount flexibility is the average difference between actual and
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Algorithm 8 Flex-offer Generation
Input: = type - device type.

X - a time series.
Output: = f - flex-offer.
1: function Generate Flex-offer(X, type)
2: if type = ’wet-device’ or ’EV’ then
3: h← predicted device Activation hour (using LR)
4: P, I ← demandPattern(X,h)
5: d←

⌈ 1
n

∑n
i=1 length of pi

⌉
, pi ∈ P

6: if type = ’wet-device’ then
7: [tes, tle]← estimateTimeFlexibility(I,X, h)
8: p← estimateProfile-wet(P, d)
9: else
10: tes ← predicted Plug-in time (using LR)
11: tle ← predicted Plug-out action (using LR)
12: cinit ← pre-charged level, r ← charging rate
13: cmin ← desired minimum charge level
14: [eb, ef ]← [(cmin − cinit) ∗ r, (100− cmin) ∗ r]
15: p← estimateProfile-EV(eb, ef , φ)
16: else if type = ’HP’ then
17: R,C, η ← estimate HP parameters (curve fitting)
18: [tes, tle]← [1, 24]; d← 24
19: p← estimateProfile-HP(R,C, η, . . . )
20: tls ← tle − d; f ← ([tes, tls], p)
21: Return f

forecasted total energy demand:

MAE = 1
n

n∑
i=1

(
tle∑
t=tes

e(max,t) −
tle∑
t=tes

et) (7.2)

where et ∈ X is the actual consumption per time unit. Further, we would like
to emphasize that the proposed FOGEP is not conservative and does not under
estimates the time flexibility to achieve higher accuracy.

7.3.2 Financial Evaluation
A BRP could utilize the flex-offers to compensate their deviation in the spot
market and a financial gain by avoiding the regulation market. Similarly, an op-
timal scheduling of the flex-offers’ Consume actions can achieve a cost-efficient
consumption profile for the household. Thus, FOGEP evaluates financial ben-
efits that can be achieved by i) a BRP with a cost-effective scheduling of the
FOs in the spot market and ii) a BRP with optimal scheduling of FOs to avoid
the regulation market.
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Spot Market Optimization: The financial benefit in the spot market
is the reduction in total energy cost that can be achieved by shifting the con-
sumptions into hours of low energy prices. The key idea is to schedule the
slices of the predicted flex-offer(-s) (for a device) for the following day based
on spot prices such that the total cost of operating the device is minimized.
The possible shift and variation in the value of a consume action are defined
by the time and amount flexibility of the flex-offer. The bidding on the Danish
spot market closes at 12:00 AM on the day-ahead and the final spot prices for
the next day are broadcasted already at 12:45 PM. Hence, the FOs generation
and scheduling is done starting 01:00 PM until 11:59 PM on the next day. Let
S = [s(tes), . . . , s(tle)] represents the hourly spot prices between EST and LET
of an FO slices. The overall objective of FO scheduling is to minimize the total
cost of purchasing the energy required for the device operation which is given
by C(f) =

∑d
i=1 e(sch,i) · s(t + i − 1 ) where e(sch,i) is the energy scheduled for

slice si, s(t+i−1) is the spot price, and t ∈ [tes, tls] is the scheduled timestamp
of the Activate action. The optimization problem is formulated as:

minimize C(f) =
d∑

i=1
e(sch,i) ∗ s(t + i − 1 )

subject to e(sch,i) ≥ e(min,i), e(sch,i) ≤ e(max,i)

t ≥ tes, t ≤ tls

The financial benefit of an FO in the spot market is given by: ∆s = C−C(f)
where C =

∑t+d
t=h et · s(t) is the cost of energy for the default operation schedule,

i.e., without any flexibility.
Regulating Market Optimization The regulating market is a part of

the intra-day market, which is activated if a market is anticipated to have
any imbalance in supply and demand, i.e., a BRP deviates from its previous
commitment to the spot market. The deviation of the portfolio is handled
by trading an equivalent amount of energy in the regulating market, and the
BRP is responsible for the financial implication caused due to the differences
in the spot and regulating energy prices. The financial benefit that a BRP can
generate by utilizing FOs is the reduction in the regulating cost by minimizing
the energy volume to be traded in the regulating market. The key idea is
to schedule the slices of the predicted flex-offers (for a device) based on the
anticipated deviation in the portfolio such that the total energy traded in the
regulating market is minimized. The regulating power prices are not available
at the time of the flex-offer generation. Therefore, a historical dataset is used
to estimate the regulating power prices using the hypothetical model proposed
in [93].

Let, V = {vu/d(tes), . . . , vu/d(tle)} and P = {pu/d(tes), . . . , pu/d(tle)} repre-
sent regulation volumes and prices between EST and LET of FO slices, where
vu/d(t) denotes the nonzero element of regulating volume, i.e., up- or down-
regulation and pu/d(t) is the predicted up-regulating power price pu(t) in case
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Figure 7.5: Average time and amount
flexibility: over various device type.
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Figure 7.6: Time and amount flexibility
error: over various device types.

of up-regulation and the predicted down-regulating power price pd(t) in case
of down-regulation. Now, FOs scheduling task is to assign the FOs slices to
V such that the BRP maximizes the total reduction in the regulation volume.
Then, the optimization problem becomes:

maximize
tle∑
t=tls

|vu/d(t)| − |vu/d(t)|

subject to |vu(t)| > e(sch,t), |vd(t)| > e(sch,t)

where the overbar in |vu/d(t)| denotes the change in regulation volume due to
time shifting of e(sch,t). Hence, the total financial benefit from an FO is given
by:

E =
tle∑
t=tes

|vu/d(t)− vu/d(t)| · |pu/d(t)− s(t)| (7.3)

7.4 Experimental Analysis
We perform a number of experiments to analyze the effectiveness and efficiency
of the proposed FOGEP, and evaluate the viability of the generated FOs in
the spot and regulating markets based on real-world demand measurements.
Hereby, we get a benchmark for the FO generation process and an experimental
evaluation of markets for trading flexibility. The experiments uses the Zense-
Home, INTrEPID, EVnetNL, and Heat Pumps dataset discussed in Section
3.2.1.

7.4.1 Evaluation of FOGEP Performance
The box plot from Figure 7.5 illustrates the distribution of time and amount
flexibilities extracted using the proposed FOGEP on various device types. On
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Figure 7.7: Flexible demand: over various
comfort ranges during winter.
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Figure 7.8: Flexible demand: over various
comfort ranges during summer.

average, wet-devices provide 15.31 hours of time flexibility, 2 times the 7 hours
average from EVs. On the other hand, HPs provide 33kWh of amount flexibility
(daily average for 5th of January, for winter), 5.7 times greater than the 5.7 kWh
from EVs. Accounting the continuous operation of the HPs throughout the day
(24 slices), the average hourly flexibility drops to 0.92 kWh/h compared to 1.9
kWh/h for the EVs. The ranges of flexibility as shown by the box plot affirm
that a significant flexibility can be extracted from individual device operations.

Figure 7.6 captures the accuracy of the proposed FOGEP on the extracted
time and amount flexibility. The highly repetitive pattern in EV operations
helps the proposed process to achieve 98% accuracy in the extracted time flex-
ibilities. On the other hand, the FOGEP has a time flexibility error of 21%
and amount flexibility error of 36% for wet-devices and HPs, respectively. The
higher forecast error for wet-devices is mainly due to uncertainty in the usage
patterns resulting in a significant number of falsely predicted Switch-on and Ac-
tivate actions. Similarly, the error in the forecasted weather conditions and HP
parameters estimation reduces the performance of the FOGEP for HPs. Thus,
the accuracy could be significantly improved by incorporation of additional con-
textual information and using actual HP parameters. Nevertheless, the level of
accuracy achieved by the proposed FOGEP is sufficient to increase the market
confidence in utilizing FOs for balancing the deviations in the portfolio; this
argument is further supported by the financial benefit of the FOGEP discussed
in the next section. Further, the high degree of multidimensional (both time
and amount) flexibility provided by EVs prove they are a major component of
the flexibility-based DR.

The measurement data for HP includes the internal room temperature of
housesholds, which are set manually. Hence, here we assume a range of HP
models, where a comfort range is set by a user and the HP automatically
maintain the temperatures within the range. Figures 7.7 and 7.8 compares the
average amount flexibility from 50 HPs across different flexibility distribution
schemes and seasons at various comfort ranges. Specifically, we analyze the
flexibility during the summer and winter seasons where the minimum comfort
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Figure 7.9: Effect of relaxed hours: for
CAF.
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Figure 7.10: Effect of relaxed hours: for
WFD.

boundary for the winter is set to 18 ◦C and maximum to 23 ◦C, increasing
one ◦C at a time (estimated from the dataset). The temperature during the
summer is usually high. Thus, we increase the minimum comfort boundary
to 20 ◦C and maximum up to 25 ◦C. During the winter, on average 4.71% of
total energy demand from HPs are flexible at 1◦C comfort band and gradually
increases to 18.5% at 5◦C comfort band. On the other hand during the summer,
even at 1◦C comfort band 31.7% of total demand is flexible, which increases to
74% at 5◦C.

A better flexibility during the summer is mainly attributed to the higher
ambient temperature where an HP has to supply zero or very little energy to
maintain the lower temperature bound. However, the absolute average amount
flexibility during the summer is 20 kWh less than in winter. Comparing the
flexibility distribution schemes, CAF gives 16% and 65% higher flexibility com-
pared to WFD for winter and summer, respectively. The WFD distributes the
energy demand based on the spot price, i.e., assign higher base demands to the
points with a lower spot price, whereas CAF sets base demand to the mini-
mum energy required to satisfy the lower temperature constraint. Thus, the
assignment of higher base demand than required (to maintain the minimum
comfort bound) reduces the amount flexibility for WFD. Further, the figure
clearly shows that for both assignment schemes flexibility increases with the
comfort range.

Figure 7.9 and 7.10 illustrate the effect of the relaxed hours on energy
demands during the winter, for the respective optimization. The relaxed hours
are set between 10:00 AM - 4:00 PM when users are usually away and the
comfort range for the period is increased by 6 ◦C (3 ◦C on both directions). The
experiments show that for each relaxed hour the amount flexibility increases by
6.9% and 4.3% for the CAF and WFD, respectively. The relaxed hours have
better effect with CAF because the optimizer always tries to maintain the base
demand to a minimum level, whereas WFD follows a weight based flexibility
distribution.
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Figure 7.11: Savings from flexibility: over
various markets.
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Figure 7.12: Energy price variation: for
different regulation type.

7.4.2 Evaluation of FOGEP Utility
Here, we analyze the financial benefit that can be achieved by utilizing the
extracted time and amount flexibilities and further compare the best market
to trade the flexibility, i.e., spot market or regulating market.

A market player is always interested in knowing the market that gives best
return for the available flexibility. Figure 7.11, compares the savings from
flexibility at two different markets, i.e., spot and regulating market. Flexibility
for all three device types generates better savings on the spot market compared
to the regulating market. Specifically, for wet-devices and HPs the savings
in the spot market are 5 and 8.4 times higher than the regulating market,
respectively, whereas the savings is only 2.1 times higher for the EVs. The
figure emphasizes that the flexibility has a greater impact on the spot market
providing higher savings compared to the regulating market. As shown in
Figure 7.12, a lower price variation/MWh in the regulating market decreases
the potential benefit of flexibility in the market compared to the spot market.
Further, the constraint (in Section 7.3.2) of shifting flexible demands only from
up-regulated market to down-regulated market drastically reduces the number
of flexible demands that are re-scheduled.

The savings in the regulating market also depend on the reduction in
the price gap between the markets caused due to the shifting of flexible de-
mand [40,93]. The decrease in price gap from a small amount flexibility is not
substantial enough to generate considerable savings, whereas larger amount
flexibilities cause higher reductions making substantial savings. This behav-
ior is demonstrated by EVs (Fig.7.5) where amount flexibilities are significant
enough to generate comparable savings on both markets. However, even with
a larger amount flexibilities, the unavailability of time flexibility makes FOs
from HPs unsuitable for the regulating market.

Evaluating the savings in the Spot market, wet-devices give the highest
relative savings of 51% compared to 18.9% and 19% for EVs and HPs, and
the average daily absolute savings are 0.8 DKK, 4.5 DKK, and 3.85 DKK,
respectively. Figure 7.13 demonstrates the distribution of savings into the
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Figure 7.14: Distribution of savings over
individual device operation.
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Figure 7.15: Savings from HP in winter:
for different optimization.
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Figure 7.16: Savings from HP in summer:
for different optimization.

base and flexible demand. The figure shows that all savings for wet-devices
come from base demands. Similarly, for HPs entire savings come from flexible
demands, whereas, the savings for EVs come from both demands. Figure 7.14
demonstrates the relationship between time flexibility, amount flexibility, and
total savings. The x-axis represents the time flexibility; the y-axis represents
the available amount flexibility, and size of the circle represents the total relative
savings/kWh. Although the absolute savings/day from HPs is higher than the
EVs and wet-devices, the saving/kWh of flexible demands are much lower for
HPs compared to others. The higher saving for wet-devices and EVs is due
to the availability of larger time flexibility, allowing a market to schedule the
base demands to timestamps with lower spot prices. On the other hand, HPs
provides no time flexibility generating no savings from the base demand (ref
Fig. 7.5).

Figures 7.15 and 7.16 compare the savings during summer and winter for
two different flexibility distribution schemes (CAF and WFD) and markets.
The WFD is penalized for assigning higher base demand and maintaining a
higher temperature to the point with lower energy prices resulting in lower
savings compared to WFD at both markets. This behavior can be further
inferred from the figures where the difference in savings increases with the
comfort range, reaching 20% at 5 ◦C comfort band. Further, the temperatures
during the summer are high, resulting in a larger percentage of total demand
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Figure 7.17: Energy flexibility and spot price:
over various season.
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Figure 7.18: Effect of relaxed hours
on savings: over various seasons.

being flexible (4 times more than in winter, see Figure 7.8). For HPs, relative
percentage savings are higher during the summer, 75% in the spot market
and 5% in the regulating market. However, average daily absolute savings is
0. 4DKK higher in winter then summer, 3.85 and 4.25 DKK in summer and
winter respectively. Figure 7.18 illustrates the effect of relaxed hours during
two different seasons using WFD. The energy demands during the winter are
high even during the midday (office hours) and the relaxed hours increase the
amount flexibility by 6.9% generating 1.5% increases in savings per relaxed
hours. However, in summer the temperatures are usually high. Thus, the
relaxed hours during the midday (office hours) have minimum effect on the
savings, i.e., < 0.1% increase.

7.4.3 Analysis
The operating uncertainty for wet-devices gives relatively higher error for the
FOGEP, whereas repetitive patterns for EVs result in a very high accuracy. The
size and type of flexibilities are usually determined by device properties, opera-
tional objectives, settings, and other external factors. The results demonstrate
that the preferred market for flexibility depends on its source and size. The
device types with only one-dimensional flexibility (either time or amount) gen-
erates higher benefits in the spot market, whereas types with two-dimensional
flexibilities (both time and amount) can generate significant savings in both
spot and regulating markets. Specifically, the flexibility performs better in
the regulating market when it has a right blend of time and amount flexibil-
ity (EVs). The device types with relatively lower energy demand, but with a
substantial time flexibility (wet-devices), can have savings greater than devices
with a larger amount flexibility (HPs). Therefore, the time flexibility shows
a potential of generating higher savings, which is a valuable input to aggre-
gators on deciding which dimension should be retained during aggregation of
flex-offers.

The seasonal factor plays a significant role in determining the amount of the
flexibility from HPs. HPs have a higher relative flexibility during the summer,
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whereas the absolute flexibility is far better in winter. Further, HPs are not
used for most of the time during the summer (as seen in the test dataset) and
winters are usually longer in Nordic countries (the dataset). This behavior
makes HPs one of the main components to consider for flexibility markets and
energy optimization. Nevertheless, due to the temporal behavior of the spot
price the average daily savings for both the seasons are almost equal. A higher
flexibility with consistent savings makes CAF the best approach to handle the
dependency between the flex-offer slices (from HPs).

7.5 Summary and Discussion
In this chapter, we presented an answer to the research question "How can
we effectively extract and generate flex-offers from household devices?". In
this regards, we proposed a state-of-the-art flex-offer generation and evaluation
process (FOGEP) for flexibility of household devices, namely wet-devices, EVs,
and HPs. We have detailed various sub-steps involved in FOGEP and utilized
two different forecast models and various algorithms required to predict the
timestamps and values captured by FOs. We utilized real-world device-level
time series to quantify the actual flexibility potential of devices and evaluated
the performance of FOGEP. Further, we quantified the financial value of the
flex-offers in the spot and regulation markets and identified the best market to
trade flex-offers relative to flexibility type and size. The experimental results
show that the proposed FOGEP is general enough to generate flex-offers from
a variety of household electrical devices with a higher accuracy. The results
showed that the proposed FOGEP could extract device-level flexibilities with
up to 98% accuracy. Finally, we can conclude that "we can extract and model
flexibilities from various device types into a unified flex-offer format with good
utility". In the next chapter, we focus on the user-comfort oriented scheduling
of flex-offers.
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Chapter 8

Scheduling of Flex-offers

How can we economically schedule flex-offers with minimal loss of user
comfort?

In this chapter, we focus on the scheduling of the device-level flex-offers. Most
of the previous solutions to flexible load scheduling (Discussed in Chapter 2)
focus on the financial aspect of the load shifting potential of devices. We argue
that the scheduling strategy should also consider the social aspect of a user of
accepting the proposed schedule and should minimize the loss of user perceived
quality induced by load shifting. In this regard, we propose a user-comfort
oriented prescription technique to prescribe flex-offer schedule that maintains
a balance between the economic and social aspect (user-perceived quality) of
demand shifting. We present a novel Flexibility-aware Error (FAE) measure to
evaluate the performance of prediction models in relation to demand scheduling.
The proposed measure is evaluated with two demand prediction models and
extensively compared with standard error measures. Finally, we quantify the
financial potential of the demand shifting optimized on the spot and regulation
markets, utilizing the proposed user-oriented scheduling technique.

8.1 Prescription of Flex-offer Schedules
In the previous chapters, we have described how flexibility can generate balance
in the energy market. However, flexible demands need to be scheduled in a way
that is accepted by the end-users. In the presented scenarios, customers’ device
usage preference information is often unavailable without surveys or direct
knowledge. Nevertheless, the use of flex-offers as a modeling tool can provide
insight on the user behavior. DR strategies for flexible demand scheduling of
flexible devices involve multiple phases. Our proposal comprehends three main
components: device-level load forecasting, flex-offer modeling, and flex-offer
scheduling. The flex-offermodeling of the flexibility has already been discussed
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Figure 8.1: Prescriptive workflow of Flex-offer scheduling

in Section 3.1. Hence, in this chapter, we only discuss the demand forecast
models with the focus on flex-offerscheduling and our scheduling strategy.

8.1.1 Prescriptive Strategy for Flex-offer Scheduling
Our proposed flex-offer scheduling can be described by the workflow shown
in Fig. 8.1. The objective is to prescribe to the end-users a time schedule
for the usage of their devices. Hence, our method first identifies the future
energy needs from user’s devices, model them as flex-offers, and then finds an
optimal demand shifting schedule as a trade-off between the user’s device usage
preference and the savings in the energy cost and regulation volumes.

A preliminary step is to transform the data collected from the devices, a
load consumption time series data describing the individual device usage, into
an event time series. Events are the activations of a device, associated with the
respective timestamps. To identify the device events we start by finding the
device operations, regions of time in the time series, longer than a minimum
threshold, with high deviation in load consumption. Operations are associated
with a set of hours for the length of the operation, each corresponding to the
respective energy load consumption. Finally, the starting timestamps of these
operations are the activation event, from which we build the event time series.

Then, utilizing the event time series, we use forecasting models to predict
the probability of device’s activation events in the future (step 1 of Fig. 8.1).
The result is a set of predicted activation timestamps for the device.

Third, we generate flex-offers utilizing the predicted events (step 2 of Fig.
8.1). In Fig. 8.2 we show an example of a flex-offer where two consecutive
predicted activation events become the Earliest-Start-Time (EST) and Latest-
Start-Time (LST) of the predicted flex-offerrespectively, and the interval be-
tween these two the time flexibility range. The flex-offer is also associated to
a device signature, representing the device operation in terms of both dura-
tion and energy consumption for each hour of operation. A device signature is
defined as:

σ = [e1, e2, . . . , ek] (8.1)
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Figure 8.2: Flex-offer model for an activation/deactivation event of a device

where ei is the energy demand per time unit of the average operation length
k. We simplify the device signature by averaging the operation duration and
load consumption (at hour resolution in the thesis) over all the historical device
operations, respective to the day of prediction.

The final phase consists of the prescription of flex-offers schedules (step 3 of
Fig. 8.1). Considering, for example, a predicted flex-offer fi, with EST = 10 :
00 and LST = 24 : 00, we have a 14 hours flexibility range for rescheduling the
device activation event. The decision on the time to prescribe the activation
to depends on both financial (reduction of energy price in spot and regulation
markets) and user specific factors. In order to describe the prescriptive process,
we start by defining the flex-offer schedule as follows:

Definition 2 (Flex-offer Activation Schedule). The scheduling of a flex-
offer is

S : FO → REST,LST
a function that maps a flex-offer to a new timestamp for the device activation.
The new timestamps is included between the time flexibility interval [EST,LST ]
of the flex-offer.

Our current definition of flex-offer scheduling depends only on the flex-
offer prediction. However, any proposed schedule has to be accepted by the
device’s owner. Direct information from the user on the device usage is often
unavailable. Nevertheless, insight into the user behaviour is a main factor in
the success of the flex-offer scheduling, e.g. users would not want a dishwasher
to be scheduled before the dishes are ready to be cleaned, or after the dishes are
needed again. Therefore, to enforce the dependency of the flex-offer scheduling
on the end-users’ preferences for the device usage, we introduce an assumption
on which we base our scheduling approach:

User Assumption 1 (User Comfort). Users tolerate their devices to be resched-
uled in return for a financial benefit, as long as the scheduling does not restrict
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their preferred behaviour. Their tolerance threshold to the device scheduling is
proportional to the financial benefits received, and inversely proportional to the
amount of shift of the scheduling.

A user would, all else being equal, prefer to maintain the control over the
usage of the devices, i.e. to not reschedule the activation times. However,
according to our user comfort assumption, we can describe the scheduling pro-
cess as a trade-off between the financial benefits, i.e. the ability to schedule
device activations over a wide time flexibility interval, and the user comfort
loss, i.e. the distance between the user’s preferred activation time and the new
scheduled time. In the next sections we present more details on the phases and
evaluation of the scheduling workflow.

8.2 Evaluation Metrics for Flex-offers
Forecasting Models

In this section, we discuss the first phase of our proposed flex-offer scheduling
process in Fig. 8.1, the forecasting of device events. We describe two simple
forecast models and as well as our novel performance measure to evaluate the
models, specifically tuned for flex-offer scheduling.

8.2.1 Most Frequent Timestamp (MF)
The Most Frequent Timestamp (MF) model predicts n activation events in a
given time window at the n most frequent activation hours. n is the average
(rounded down) operating frequency of the device, i.e. the average number of
activations per time window (e.g. 24 hours) we observe in the historical usage
of the device.

For example, if Figure 8.3 represents the distribution of device activations
and the device has an average operating frequency of 2 per 24h, then the MF
model predicts 2 activations each day, the first at hour 9 and another at hour
21. In the cases, where two hours have same operating frequency, we select the
hour which is the farthest from the first selected activation. Similarly, if the
distances between the most frequent hours are less than the average operation
duration of the device, one activation is selected from those hours, and another
is selected from the next frequent operating hours.

8.2.2 ARIMA
We utilize a standard ARIMA [94] model on the event time series, for which the
parameters have been fitted by cross validation. The model, given a training
set, predicts the next activation event p to be the EST of a flex-offer . The
prediction p is then used as additional training point for predicting the LET of
the same flex-offer. Finally, p is replaced in the training set by the respective
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Figure 8.3: Distribution of device activations over hours

observation, i.e. the next event in the test set, and the model is used to predict
a new flex-offer.

8.2.3 Flexibility-Aware Evaluation Metrics
The applicability of the predicted flex-offer models for demand scheduling is
dependent on the probability that such flex-offers correctly capture the de-
vice usage. An intuitive approach for evaluating the predicted flex-offers is
to measure the (time) deviation between predicted and observed device events.
Traditional forecasting measures, such as RMSE, MAPE, precision, recall, etc.,
perform a point-wise comparison between the predicted and observed values.
However, flex-offers present a more complex structure, that simple point-wise
comparisons do not capture. Moreover, we would like to emphasize that al-
though the correctness of the flex-offermodeling influences the quality of the
demand scheduling process, device event prediction is only a middle step in the
process, where the ultimate goal is to schedule the demands in a way that is
both financially viable and acceptable by the user.

For example, an error of +2 hours in a predicted dishwasher activation event
is largely acceptable, as long as the operation is scheduled before the flex-offer
latest-start-time, i.e. next dishwasher usage. As long as this constraint is
fulfilled, the schedule preserves the user behaviour. To capture this correlation
between prediction error and user specific error, we present a Flexibility-Aware
Error (FAE) measure of the performance of the forecast model with a focus on
flex-offer scheduling. FAE is defined as follows

FAE(f, f) = 1− min(fl − fe, fl − fe)
max(fl, fl)−min(fe, fe)

, (8.2)

where f and f are the observed and predicted flex-offers, and fe, fl the EST
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Figure 8.4: FAE for two different cases of actual and predicted flex-offers.

and LST, respectively. Intuitively, FAE describes the overlap between the time
intervals 〈EST,LET 〉 of the predicted and observed flex-offers. The larger the
overlapping region between the two flex-offers intervals, the smaller is asso-
ciated FAE. Further, the smaller FAE represents a better forecast regarding
flex-offers scheduling. Alternatively, the farther away the two intervals are
from each others, the higher the FAE. The nominator represents the smallest
interval between the observed and predicted flex-offer flexibility intervals, while
the denominator is the entire time region encompassing both intervals. If the
predicted interval is on a different length scale than the observed one and/or
with no overlapping region, the denominator becomes larger, with a resulting
higher FAE.

For example, as shown in Figure 8.4, the comparison between an observed
time interval 〈5, 10.〉 and a one predicted 11, 14 leads to the FAE of 0.67. The
same observed interval compared to an overlapping predicted interval 〈7, 11〉
gives the lower FAE of 0.34. In Sec. 8.4 we will show how FAE compares to
other traditional error measures for flex-offer scheduling. In the next section,
we present the evaluation techniques for flex-offers scheduling.

8.3 Prescriptive Model For Flex-offer
Scheduling

In this section, we describe the mathematical models to quantify the benefits
that our flex-offer scheduling brings to BRPs and end-users, the last phase
shown in Figure 8.1. The schedule for the predicted flex-offers is prescribed
based on the analysis of three factors. The first and the second are the financial
gain that can be achieved in the spot and the regulation markets respectively
by scheduling the flex-offers. The third is the loss of user comfort due to the
delayed activation imposed by the schedule. In these measures we reflect the
trade-off between financial gain and user comfort and thus select a new device
activation scheduling that optimizes the combination of these factors. The next
sections describe these factors in detail.
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8.3.1 Spot Market Savings
Spot market savings (SpMS) describes the total financial savings of energy
demands and the corresponding flex-offers at the spot market for the predicted
device activation. To maximize this factor, a flex-offer is scheduled such that
the cost of purchasing the energy required for the device operation is minimum.
Let P = [ps(est), . . . , ps(let)] represent the hourly spot prices between EST and
LET. The energy cost for each timestamp of the device operation is calculated
as the product of energy demand and the respective spot price given by

S =
k−1∑
i=0

ei · ps(ta + i), (8.3)

where k is the duration of the device operation a starting at timestamp ta and
ei is the energy demand for each operating time unit.

To calculate the spot market cost after the scheduling, we simply modify
Eq. 8.3 with the new activation timestamp tnew

S̄ =
k−1∑
i=0

ei · ps(tnew + i). (8.4)

Therefore, the SpMS in spot market cost given by the activation schedule
is given by

∆S = S − S. (8.5)

8.3.2 Regulation Market Savings
The mathematical model for regulation market savings has been discussed in
Section 6.2.4, where the saving is given by

∆R = R−R

where R is the actual regulation cost and R is the expected regulation cost
after scheduling of flex-offer.

8.3.3 User Comfort
In Sec. 8.1.1 we have introduced our assumption of user comfort. Here, we
describe how to utilize the device usage history to extract user information,
and how do we use to define the user comfort.

User comfort can be described as the difference in time of activation between
the original user preference for the device activation, and the new scheduled
activation time. To cope with the absence of exact user behavior information,
we start by looking at the idle time periods between device events. These idle
intervals give us an, albeit partial, description of the device usage, letting us
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capture the user preference. Intuitively, a device activation scheduled extending
over the average idle interval would result in an interference with the user
activities, as it is more probable that the result of the device’s operation (e.g.
clean dishes in case of the dishwasher) is needed before that time.

Therefore, we define the user comfort of scheduling a device activation a
from the original timestamp t to a new timestamp tnew as

U(tnew, t) =
{

1− cdf(tnew − t), if tnew ≥ t
0, otherwise,

(8.6)

where cdf is the cumulative density function of the device’s idle intervals.
The user comfort is then inversely proportional to the distance tnew − t. We
define the case in which tnew < t, i.e. the device operation has been scheduled
before the observed activation time, as a scheduling fail, hence a user comfort
value of 0. Fig. 8.5 shows an example of a histogram of idle intervals, and the
associated cumulative density function. The user comfort is symmetric to the
cumulative density function curve.

The performance of a flex-offer scheduling can now be evaluated as a com-
bination of ∆S + ∆R and preservation of user comfort. Fig. 8.6 shows an
example of these three components. Currently, the device’s operation starting
at 4 : 00 lies within a high spot/regulation market price time slot. To cope
with this problem, we can utilize the flex-offer information to shift the device’s
activation to a lower energy price time, between EST and LET. However, the
farther we shift the activation time, the lower the probability the user will
accept such a scheduling, as the user comfort diminishes.

The scheduling process can therefore be seen as an optimization problem of
opposite objectives: increasing flexibility to lower energy prices and to avoid the
regulation market (this might lower user comfort), while maintaining a desirable
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comfort level for the user (this might lower flexibility). This combination can
be defined as the scheduling Gain of a flex-offer f :

G(f) = U(tnew, t) · (∆S + ∆R). (8.7)

After having found a schedule that optimizes these objectives, it can be
submitted to the end-user. If assumed to be accepted, the actual improve-
ment that results from the prescription of the flex-offer schedule can be simply
quantified as the increase SpMS and ReMS due to the scheduling of the device
demand, compared to the original price for such demand. A positive decrease
will affect both BRPs and end-users, that share the benefits of lower energy
prices.

In the next section we present the results of our experimental evaluations,
where we analyze the applicability of our proposed techniques.

8.4 Experimental Analysis
We performed a number of experiments to analyse the effectiveness and fi-
nancial impact on both spot and regulation markets of the proposed flex-offer
prescription scheduling. First, we present a benchmark of the forecasting mod-
els we have described in Sec. 8.2. Then, we show the evaluation of the flex-offer
scheduling process.

8.4.1 Dataset
We utilize device-level energy consumption and market datasets from INTREPID
and Energinet.dk, respectively (discussed in Section 3.2.1).
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Average Shift UC loss SpMS ReMS
ARIMA 12 hours 39% 18% 44%
MF 7.1 hours 25% 14% 43%

Table 8.1: Summary of the average demand shift (in hours), User Comfort (UC) loss,
SpMS, and ReMS.

8.4.2 Prescription Scheduling Results
Table 8.1 shows a summary of the flex-offer scheduling results. In the table we
show the average results for all the device datasets on which we have performed
the evaluation. The learning phase is performed by applying prequential evalu-
ation (or interleaved test-then-train evaluation), where each observed event in
the time series is used first for the test set, and then for the training set. With
both forecasting models it is possible to achieves positive decrease in the energy
price, calculated as a percentage of the initial price. Specifically, the MF model
leads to a percentage of SpMS and ReMS of 14% and 43% respectively, while
keeping the loss of user comfort under 25%, resulting in an average demand
shift of approximately 7 hours from the original user preferences.

To achieve these results we have utilized the scheduling gain defined in Eq.
8.7. The applicability and quality of a scheduling prescription can be evalu-
ated at the forecasting time. In this evaluation we take an agnostic approach
to the problem, utilizing distance aware measures (FAE and RMSE), as well
as classification error measures (F1 score and accuracy), in order to evaluate
which one can better describe the flex-offer scenario. We expect a negative
correlation between FAE and RMSE, as these two measures capture prediction
error, and positive for accuracy and F1 score. The measures are calculated for
each flex-offer , comparing the predicted event timestamps (EST, LET) with
the respective observed event timestamps. The results are then averaged over
all the devices. In Table 8.2 we show a summary of the correlation between
these measures and the scheduling gain. The scheduling gain is calculated as
a percentage of the gain we achieve with the predicted flex-offers, compared
to the gain we would achieve with fully observed flex-offers (obtainable if we
had knowledge of the future device events, e.g. from the end-user). As we
can see in the table, for both models our proposed FAE measure provides the
highest (negative) correlation between the flex-offer forecasting and the flex-
offer scheduling gain. With the ARIMA model, the predicted flex-offers have
a correlation between the FAE measure and the scheduling gain of 78%. In
both models, the classic accuracy measure does not provide any insight on the
scheduling Gain, with a correlation of < 0.01. RMSE and F1 score perform
poorly in both models, although being standard distance-aware measures in
other scenarios.

In Fig. 8.7 we also show the correlation, for the individual devices, between
the scheduling gain and the same 4 error measures of Table 8.2. These results
are obtained only from the MF model. We sorted the devices by of the 4
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Model FAE RMSE Accuracy F1 Score
ARIMA -0.78 -0.03 -0.007 0.05
MF -0.69 -0.13 -0.006 0.33

Table 8.2: Comparison of correlation between scheduling gain and forecasting
performance measures, using the Pearson correlation coefficient

Figure 8.7: Correlation between forecasting measures and user gain percentage.

different measures, separately. In the case of the FAE and RMSE, the device
have been sorted in descending order, ascending otherwise. From these plots
it can be noticed how the FAE measure gives the highest correlation between
forecasting measure and flex-offer gain, described by a steadier increase in the
Gain curve as the FAE score decreases. Moreover, we can observe that despite
the complexity of device-level load forecasting, approximately 50% of the device
obtain a scheduling gain that is at least 45% of the optimal gain.

8.5 Summary and Discussion
In this chapter, we presented an answer to the research question "How can
we economically schedule flex-offers with minimal loss of user comfort?". In
this regards, we presented a user-comfort orient scheduling of flex-offers that
accounts both the social and financial aspects for demand shifting. We de-
fined the energy demand prediction task in the context of flex-offer scheduling
and presented the Flexibility-Aware Error (FAE) measure that quantifies the
actual performance of forecast models designed for the flexibility market. We
evaluated the proposed measure with two demand prediction models and ex-
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tensively compared with standard error measures. We have demonstrated that
the standard point-wise forecasting measures, e.g. RMSE, F1 score and accu-
racy, do not provide us with a correct overview of the actual performance of the
prediction models. Instead, the proposed FAE measure gave a better guideline
on the quality of the prediction models. Through the experimental results, we
showed that with the proposed scheduling technique, it is possible to achieve
significant financial gain on both spot and regulation market with a minimal
loss of user-comfort quality. Hence, we can conclude that "flex-offers can be
economically scheduled minimizing loss of user comfort". In the next chapter,
we focus on the designing a device-level forecast evaluation and benchmark
platform.
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Device-level Demand
Forecast Platform

The selection of an effective device-level load forecast model for a variety of
devices, data granularity, and forecast horizon is a challenging and resource-
intensive task, mainly due to the (1) the diversity of the models, (2) the lack
of proper tools, similar to [95], and (3) the unavailability of proper datasets
that can be used to validate all these models. Further, the forecast model
selection and validation process includes a number of steps which are often
time-consuming (see Figure 9.1). In this process, researchers have to spend an
enormous amount of time, especially, in data preprocessing, i.e., data extrac-
tion, cleaning, transformation, and handling outliers and observation gaps, and
feature generation, where a set of features is generated repeatedly until a suf-
ficient model accuracy is obtained. Here a feature is a variable, derived based
on input dataset values or additional external information, that is assumed to
be helpful for improving forecasting accuracy, e.g., temperature, wind speed,
the day of the week, potentially, influencing demand and supply.

We can find a number of works dedicated to forecasting and analyzing
device-level demand [70, 71, 90, 96]. However, work on device-level forecast-
ing is still limited, because experiments are typically fine-tuned for a particular
dataset and usage patterns, and are hardly reproducible with the reported level
of accuracy. Furthermore, efficient and precise extraction of all relevant device-
level data is a challenging and still ongoing research [97–99]. Consequently,
there is a lack of proper datasets containing high-resolution measurements of a
large number of devices that include all the relevant external influences. The
experiments are typically performed with private datasets containing measure-
ments that are collected within the scope of a project and are not freely avail-
able. Even the freely available datasets only include measurements for limited
(short) time durations and are often too noisy to perform any detailed analy-
sis [47]. Lastly, there are no effective tools designed specifically for tuning and
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Figure 9.2: Inputs and outputs of the DeMand system

validating various device-level demand and supply forecasting models based on
real measurements.

In this chapter, we present the DeMand system that allows the user to
analyse and validate various forecasting models using a number of provided
datasets and built-in or user-defined functions. The system is designed to au-
tomate most of the preprocessing steps. At the same time, it provides flexibility
for the user (a researcher or energy market player) to use either existing system
modules or plug-in custom user-defined modules. Figure 9.2 shows the inputs
and outputs of the DeMand system. The system offers the following features
and functionality: i) a repository of available device-level datasets for evaluat-
ing and comparing forecast models, ii) access to existing (standard) forecasting
algorithms, iii) dynamic generation of features for various forecast horizons
and data resolutions, iv) support for various experimental configurations and
generation of multiple forecast models, v) functionality to compare experiment
results, and vi) easy integration of external features and learning algorithms.
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Figure 9.3: System Components

9.1 DeMand System Overview
In this section, we present the architecture and the functionality of the De-
Mand system. The system is designed as a tool to automate experiments on
device-level forecasting and to facilitate the comparison and re-(evaluation)
of the existing experiments. Further, the system provides flexibility in using
the available resources or uploading user-defined resources such as datasets,
forecast models, evaluation metrics, etc. The user can define all necessary pa-
rameters and system configuration using the user interfaces. Once the user
selects the timeseries and configures the experimental setup, the system pro-
vides all the available suggestion for the experiments such as a list of features,
evaluation metrics, etc. Furthermore, the DeMand system is also envisioned
to provide an open repository of device-level datasets that will be accessible
to the research community for further experiments. Therefore, in addition to
the graphical display in the interface, the experimental results and datasets are
stored in the system database.

The DeMand system with the most essential components (rectangles) and
their dependencies is shown in Figure 9.3. Here, the use of independent com-
ponents for feature extraction, evaluator, and data management, etc. allows
adding and removing system features in the plug-and-play fashion, making the
system highly flexible and customizable for specific use-cases. We now present
each of these components individually.
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9.1.1 Interface Component
This components is designed to simplify and speed-up the process of setting up
an experiment. Specifically, it offers a graphical user interface (GUI) and allows
selecting a data source, a predictor, the values of configuration parameters,
features, and error measures to use. It also provides visualization of time-series
data. The user can set multiple values for the parameters to submit multiple
tasks in a single execution. It also offers the visual representation of outcomes
of the experiment, which plays a significant role in the forecast model analysis.
Thus, in the end, the interface plots graphs for the experimental outcomes,
according to the selected settings. For the multiple sets of parameters, the
interface shows detailed plots for each configuration. If the user utilizes all
the existing modules and functionality, the interface can reduce model analysis
time drastically.

9.1.2 Core Logic Component
Core Logic is the central component in the system, and it orchestrates data
manipulations and data exchange between other components according to user
settings. The Core Logic component includes four different sub-components,
shown in Figure 9.3, that automate the data preprocessing and parameter
selection steps, shown in Figure 9.1.

Iterator The Iterator sub-component is responsible for parsing all the input
parameters and determining the number of tasks to be executed. Here, a task
is an independent execution of a forecast model with a particular predictor,
dataset, parameters, etc. For example, if the user has selected two values of the
probability threshold, e.g., in a classification task, then the iterator executes
the same forecast model for each threshold value with the other parameters
unchanged.

Model Creator The Model Creator sub-component creates an object that
contains all the required parameters for the tasks. Then, all other (sub-
)components fetch the parameters from this object. For multiple tasks, the
sub-component updates object elements (parameters) that take more than a
single value. The Model Creator sub-component is also responsible for persis-
tent storage of model parameters until the completion of the current task.

Time Series Manager The Time Series Manager sub-component is re-
sponsible for the automation of all data preparation and manipulation tasks,
such as data aggregation, noise filtration, filling observation gaps, etc. Further,
it also acts as a communication bridge between the Data Manager and the
Feature Generator components.

Model Executer The Model Executer sub-component executes the task
with the provided feature set and configuration. If the experimental configu-
ration already exists in the database, i.e., the experiment is not unique, the
Model Executer terminates the current task and extracts the prediction results
from the database. Further, the Model Executer handles errors in user-defined
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predictors/classifiers by replacing them with the default predictor; else it ter-
minates the current task and requests the Iterator sub-component to delete
all remaining tasks in the queue. At the end of the execution, it passes the
predicted values to the (model) Evaluator component.

9.1.3 Data Manager Component
The Data Manager component is responsible for extracting timeseries data
from a user-defined source, i.e., a database or files in a user-specified location,
and feeding extracted data to the System Core component. The Data Man-
ager includes a data parser that transforms the raw data into the required
format. After the data is successfully parsed, it is then persistently stored
in the database for further analysis. This gives the user the comprehensive
repository of datasets (e.g., for different device types) for future experiments,
where the validation of forecast models in homogeneous environments becomes
possible. Although the database is confined to the energy domain, there are
no methods to validate the domain of the dataset except the required format.
Thus, it is possible to upload timeseries from any domain without getting an
error. However, a user can manually validate the timeseries before submitting
the task by using the graphical interface (plot) provided by the system.

9.1.4 Feature Generator Component

Script 9.1: Python code for user defined feature

#INPUT: time series with date column at first
#OUTPUT: binary feature representing weekdays
# or weekend for each data point
from datetime import datetime as dt
def is_weekend(timeseries = None):

if timeseries == None:
raise TypeError(’Data can not be null’)

elif type(timeseries[0]) is not dt.date:
raise TypeError(’First column must be a

datetime.date, not a %s’
% type(timeseries[0]))

else:
feature_series = []
for item in timeseries:

day_of_the_week = item[0].isoweekday()
if day_of_the_week <=5: # not weekend

feature_series.append(0)
else: # is weekend

feature_series.append(1)
return feature_series #binary features
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The Feature Generator component is responsible for the generation of all
features chosen by the user. As discussed earlier, features are variables (e.g.,
temperature or the day of the week), derived based on the input dataset values
(time series) or external information, specified to, potentially, improve forecast-
ing accuracy. The features are generated by using pre-defined functions from
the feature repository. Additionally, the user can define new functions for the
specification of custom features.

For example, Script 9.1 shows a simple user-defined function given in Python,
which, for each data point in the original time series, identifies if a specific data
point has been recorded during the weekend (value 1) or during a weekday
(value 0). The component calls this user-defined function with the time series
dataset as the input parameter. The function computes the features for each
row in the time series and returns an output. The feature generator calculates
the size of the output, i.e., the number of attributes, and increases the size of
the feature vector by the respective number. In some cases, the device-level
measurement dataset contains some sensitive context information, such as lo-
cation, family size, age, group, occupation, etc. Therefore, this information is
only accessible through the feature generator and is never revealed to the user.
This approach facilitates the user when using sensitive information as features
without requiring to disclose such information.

9.1.5 Evaluator Component
The Evaluator component receives as input the output of the predictor/classi-
fier and evaluates its performance according to the chosen error measure and
parameters. Further, it writes the experiment attributes and results to the
database in the Result Schema for future reference and queries. The evaluator
also invokes the functions to plot the graphical representation of the experimen-
tal results. The user can select existing error measures (out of many available
ones), or define custom measures using a Python function, similarly to feature
specification.

9.1.6 Result Analyser Component
The Result Analyzer is a component that processes the user queries and fetches
the requested dataset from the system database. The user can write simple
SQL queries to extract all the relevant data and results of an experiment sat-
isfying certain conditions, such as type of predictor, dataset, forecast horizon,
etc. Further, the user can write queries to compare experiments using a par-
ticular error measure. For example, let us consider a binary classification task
where the objective is to predict a device state, i.e., idle (0) or active (1), at
a particular hour in the future. Using the SQL query shown in Script 9.2, a
user can query the results of the entire classification tasks based on the logistic
regression model, ordered in the decreasing order of the Area Under the Curve
(AUC) value. Further, from the list of available results, the user can select
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up to two experiments and compare their performance graphically. Finally, if
needed, the earlier experiments can be re-executed on a new dataset using the
same or new configuration of parameters.

Script 9.2: SQL Script to extract data of earlier experiments

Select a.*, AUC from Experiment a
left join
(select experimentID, AUC from Result) b
on a.experimentID = b.experimentID
where predictor = ’Logistic_Regression’
order by AUC desc

9.2 DeMand Use-case Example
In this section, we briefly walk-through the DeMand functionality using the
real-world use-case of the device-level forecast model analysis. Here, we con-
tinue with the binary classification problem of predicting a device state for the
next hour.

9.2.1 Execution of Forecasting
First, we start by making a choice of the dataset to use for the experiment.
In our case, we select the consumption time series of a washer dryer from the
existing database. Alternatively, we can also select a new dataset using the
window shown in Figure 9.5. The system then automatically plots the selected
dataset in the main window and also provides some general statistics on the
dataset, such as minimum, average, and maximum demand (see Figure 9.4).
This information is helpful in deciding the threshold value (in watts) for the
segmentation of data based on a device state (active or ideal). In our example,
we have selected two values 10 watts and 100 watts as the threshold (see Figure
9.4). As result, the system creates two experiments to generate a classification
model for each of the threshold values.

Next, we select the percentage of time series to use as a test set (20% in
our example) using the main DeMand system window, shown in Figure 9.4.
The timeseries is sequentially split into training and test sets based on the
selected split ratio. Then, we also choose a predictor to be used for classifica-
tion, which, in our example, is the Logistic Regression with L1 regularization
(LR-L1). Further, we configure an hour-ahead forecast model by selecting the
forecast horizon and data granularity of 1 hour. Afterwards, we select the
set of features which we think will help to improve the performance of the
classifier. As shown in Figure 9.6, the system automatically provides a list of
available features that can be used with the selected dataset. In our example,
as seen in Figure9.6, we select all the available features. Further, we choose
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Figure 9.4: The main window of the DeMand system

Figure 9.5: Defining external source in DeMand
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Figure 9.6: Feature selection in DeMand

the precision-recall curve as the error measure for evaluating the classifier (see
Figure 9.4).

Finally, we execute the experiments from the completely configured exper-
iment. The system might still request some additional parameters specific to
the predictor. In the case of user-defined predictors, all additional parameters
have to be handled by the user. To set the parameter value, a user has to in-
clude a call to the add_parameter function with a parameter name and a value
as input. In our example, the LR-L1 model requires the values of the penalty
parameter λ and the probability threshold. After we provide the values of all
required parameters, the system executes the experiment and stores results in
the database along with all forecasted values.

9.2.2 Result Presentation
After the completion of all experiments, the results are presented in the main
window, as shown in the Figure 9.4. The system plots the values of the clas-
sifiers according to the chosen parameters. In our example, the system plots
performance values in terms of error, precision, and recall of two classifiers with
different threshold watt parameter values. The system also provides a detailed
description of the results in the main window as a textual description. Further,
if we click on the individual plots, the system automatically shows precision-
recall curves for each classifier, as seen in Figures 9.7a and 9.7b. For a detailed
comparison of the results, we can also use the result analyzer, as illustrated in
Figure 9.8. In this example, we query all experiments that has been performed
with the same deviceID and dataGranularity parameter values, sorted based
on AUC values. The output of the query can be seen in the lower section of
the Figure 9.8. Here, the experiment at the top of the table has the best per-
formance in terms of the selected error measure. Additionally, we can choose
any two experiments for a visual side-by-side comparison, as shown in Figure
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(a) 10 watt (b) 100 watts

Figure 9.7: Precision-Recall curve: for various demand thresholds

Figure 9.8: Result Analyzer Windows of the DeMand system

9.9.
As seen from the use-case example presented above, the DeMand system

provides an analytical (decision-support) platform for comparing, validating,
and choosing different forecast models and their parameter values. With the
comprehensive model comparison information offered by the DeMand system,
the user can decide on the best prediction model (algorithm) and select its
parameters for a specific dataset or the given collection of datasets. As it can
be seen from this use-case, the DeMand system with all its features and built-
in functionality allows significantly reducing time needed to select and validate
forecast models, compared to using general tools or hard-coded solutions requir-
ing, typically, much more data pre-processing, system configuration, and result
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Figure 9.9: Comparison between experiments

processing time. The system can be accessed at https://54.186.113.212.
However, due to the security reasons, a user should first whitelist his IP ad-
dress in order to access the system. The request can be sent to the author at
bj21.neupane@gmail.com.

9.3 Summary and Discussion
In this paper, we presented the DeMand system for fine tuning, analyzing, and
validating the device-level forecast models. The system offers a number of fea-
tures such as built-in device-level measurement datasets, forecast models, and
error measures. The presented system allows users to evaluate and compare
different forecast models based on various parameters, making device-level fore-
casting more accessible and efficient. Further, the chapter also provided the
use-case example on how a forecast model for predicting a device state can
be analyzed using the DeMand system. Thus, we showed that DeMand is an
easy-to-use system automating most of the steps of the forecast model selection
and validation process.

https://54.186.113.212
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Chapter 10

Conclusion and Future
Research Directions

10.1 Conclusion
The Ph.D. thesis presented a number of analytical techniques for analysis, ex-
traction, and evaluation of flexibilities in energy demand from heat pumps,
electric vehicle, and wet-devices, with a focus on filling the gaps for efficient
integration of RES into a grid system. The Ph.D. thesis was supported by
the TotalFlex project. The aim of the project is to develop a cost-effective,
market-based system that utilizes total flexibility in energy demand, and pro-
vide financial and environmental benefits to all involved parties. In addition
to analytics such as user behavior analysis, the thesis focused on designing
models for forecasting device-level energy demands and extracting flexibilities
from the forecasted demands. Further, as forecasting device-level demand is a
very challenging task, the thesis performed a comprehensive evaluation of data
granularity and forecast horizon that best suits the device-level forecasting. In
addition, as the integration of a new concept to an established market always
depends on the utility it brings to the market players, the thesis also modeled
and evaluated the utility of the flexibility concept and financial viability of all
proposed techniques. Similarly, as scheduling of flexibility is a complex task,
the thesis took efficiency and user-acceptability into consideration in devising
solutions for demand scheduling. The developed solutions and techniques were
broad enough to be applied to various analytical systems and forecasting ap-
plications. In the following, the methodologies and outcomes for each chapter
are summarized. Further, an overview of the contributions of the Ph.D. thesis
is presented.

Chapter 3 detailed the flexibility and flex-offer concepts. The concepts
were discussed analogous to the operation sequence of a smart device. The
presented approach has opened an avenue of modeling flexibility from all de-
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vice types into the flex-offer format proposed by the MIRABEL and TotalFlex
projects, and the thesis demonstrated it for electric vehicles, heat pumps, and
wet devices. Further, the presented strategy of modeling flexibilities from a va-
riety of household devices into a unified flex-offer format facilitates the efficient
aggregation and trading. The chapter presented a cost-benefit based method
for categorization of household devices, where devices were categorized based
on the trade-off between available flexibility and ease of extracting it. The
chapter also discussed the spot and regulation markets and detailed the use of
the demand flexibility by these markets to confront the challenges imposed by
increasing RES integration. The chapter also presented the deployment archi-
tecture for device level data collection and provided a detailed description of
datasets used in the experiments.

Chapter 4 evaluated the utility of demand flexibility in the energy market.
The chapter presented a detailed analysis of the effects of incorporating de-
mand flexibility in the existing energy market. The effects were analyzed in
terms of changes the demand flexibility brings to the market balances and the
corresponding changes in the market prices. The impact on market balances
were modeled by analyzing all the possible changes in market states that can be
caused by demand shifting. Similarly, a mathematical model to capture the re-
lationship between various market prices was proposed to analyze the effect on
the market prices. The mathematical model was derived by evaluating all pos-
sible linear and multiplicative interactions between the spot price, regulation
prices, and regulation volumes. Thereafter, the chapter discussed the utility of
the demand flexibility to the market players and proposed a model to quantify
the utility. The presented quantification model captures the total increase or
decreases in regulation cost as a consequence of demand shifting. Further, the
chapter presented two optimization strategies, minimizing regulation cost and
minimizing total imbalances, for evaluating the utility. The analyses were per-
formed with demand flexibility of various sizes and types to identify the market
specific threshold size of the amount flexibility that can be traded profitably.
The experimental results showed that irrespective of the type of flexibility and
market objectives, a market could always obtain a positive utility by adopting
demand flexibility. Indeed, the market can achieve 5.2% reduction in regulation
volume and 24.9% reduction in regulation cost with just 4 hours of time flexi-
bility and 100 MWh of amount flexibility. The proposed mathematical models
could be beneficial to the energy market players for assessing the applicability
and utility of adopting demand flexibility in their market area.

Chapter 5 presented a descriptive analytics on the device-level energy con-
sumption behavior. The primary goal was to find various patterns that support
the existence of extractable flexibilities in device operations. The chapter in-
troduced various properties representing flexibility in device operations, and
statistical analyses were performed to validate these properties. It was found
that analyses focused on the presented properties can effectively capture users’
device usage behavior and provide significant information on the type and size
of flexibilities available in device operations. The chapter also presented the
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preprocessing steps and techniques to handle raw device-level data and convert
it into a format required for higher level analysis. It was found that the pro-
posed preprocessing steps helped to remove outliers and reduce stochasticity
in the dataset. The experimental results supported the existence of significant
amounts of extractable multidimensional (both time and amount) flexibilities
in users’ daily routine. The presented analytics revealed interesting patterns
representing flexibility in device operation behavior. Thus, the proposed tech-
niques can help energy market by quantifying the flexibility potential of any
household devices.

Chapter 6 presented a detailed methodology for forecasting device-level en-
ergy demand. The primary goal was to evaluate the effectiveness and usability
of widely used forecasting models for device-level demand forecast. Several fore-
casting techniques such as Logistic Regression (LR), Pattern Sequence Match-
ing (PSM) were used to forecast device future activations and signature based
pattern extraction was used to estimate the associated energy demand for the
predicted activations. The chapter presented various device-level features to
enhance the performance of forecast models (especially LR), and the exper-
imental results showed that the proposed device-level features together with
L1-regularization significantly improved the performance of the forecast mod-
els. The chapter also addressed the challenges of the class imbalance problem
present in the real world device-level consumption data. Based on the Area
Under the precision-recall curve and F1-score, we found that the L1-regularized
Logistic Regression was the best device-level forecast model among the mod-
els used in the experiments. Further, it was found that over-sampling of the
minority class did not improve the forecast model, whereas the weighted class
importance helped to increase the forecast accuracy. The performance of the
forecast models were evaluated for hourly, group, and daily data resolution. It
was found that the forecast models achieve the best accuracy for daily resolu-
tion at the cost of significant loss of demand flexibility. Hence, group resolution
was found to provide a good trade-off between forecast accuracy and available
demand flexibility. The chapter quantified the financial benefits and losses
of demand flexibility in relation to achievable forecast accuracy. The overall
benefits and losses were decomposed and analyzed based on types of forecast
categories represented by contingency table. The results showed that the fi-
nancial gain from the presented models was much better than implied by the
error metrics. Indeed, with a precision and recall of just 0.29 and 0.28, the
market achieved regulation cost savings of 42% of the theoretically optimal.
Further, the chapter presented a rule of thumb of selecting an optimal thresh-
old for device-level forecast models. The proposed device-level demand forecast
system can help the energy market for generating effective demand and supply
schedules to reduce market imbalances and related financial losses. The system
and analysis can also be applied to forecast demand for various other household
appliances.

Chapter 7 presented a state-of-the-art flex-offer generation and evaluation
process (FOGEP). The proposed process analyzes the past consumption pat-
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tern of a device to extract available flexibility and encapsulates the flexibility
for the device future operation into a flex-offer format. The FOGEP was di-
vided into data preprocessing, Model Parameter Estimation and Forecasting
(MPEF), and evaluation sub-processes, each with a distinct role. The MPEF
sub-process predicts the attributes representing time and amount flexibilities
for device future operations utilizing forecast models and device-specific algo-
rithms. The predicted timestamp and values for the flexibilities were used
to generate flex-offers for the device. The chapter proposed two different
flexibility allocation approaches, Constraining Amount flexibility (CAF) and
Weight-based Flexibility Distribution (WFD), to tackle the dependency prob-
lem present in amount flexibility distribution for heat pumps. Further, to
capture the flexibilities during the zero occupancies a concept of the relaxed
period was introduced. The chapter also presented models to estimate the sav-
ings in the spot and regulation markets that could be achieved by the efficient
scheduling of the flex-offers generated using the proposed FOGEP. The chapter
reported a comprehensive experimental study utilizing various real device-level
consumption datasets and market data. The results showed that the proposed
FOGEP could capture flexibilities in device usage behavior with an acceptable
accuracy. The experimental results showed that household devices have up to
32% of reduction and 15 hours of shifting flexibility in their energy demand, and
the proposed FOGEP can extract these flexibilities with up to 98% accuracy.
Further, the experiments with three different device types showed the proposed
FOGEP is flexible and general enough to be used for generating flex-offers from
various other household devices.

Chapter 8 presented a novel user-comfort oriented prescription technique
for scheduling of flex-offers. The proposed technique performs a trade-off be-
tween user comfort and financial gain as a consequence of shifting of flexible
demand and prescribes a schedule that optimizes the combination of these two
factors. Further, the chapter defined the energy demand forecasting task in the
context of flex-offer scheduling and presented a novel Flexibility-Aware Error
(FAE) measure that quantifies the actual performance of forecast models de-
signed for a flexibility market. The proposed measure was evaluated with two
demand prediction models, ARIMA and Most Frequent Timestamp, and was
extensively compared with standard error measures. Through the extensive
experiments with the real-world dataset, it was demonstrated that the pro-
posed FAE measure gives better guidelines on the real, utility-based, quality
of the prediction models compared to the standard point-wise forecast evalua-
tion measures, such as RMSE, F1-score, and accuracy. Further, the proposed
prescription technique was able to achieve a positive utility on both spot and
regulation markets with a minimal loss of user-comfort quality. The proposed
technique provided an efficient scheduling solution. Thus, the technique can
help the energy market players to effectively utilize the device-level flexibility
to solve the problems imposed by higher integration of RES.

Chapter 9 presented the DeMand system as a benchmark platform for
device-level demand forecasting and flexibility analysis. The platform allows
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users to evaluate and compare different forecast models based on different pa-
rameters, making device-level forecasting more accessible and efficient. The
presented implementation offers a number of built-in device-level consumption
datasets, forecast models, features, and error measures and also supports a user
defined external features and learning algorithm. The chapter also provided the
use-case example on how a forecast model for forecasting a device state can be
analyzed using the DeMand system. An open repository of device-level datasets
provided by the platform can help research community to perform extensive
experiments on device-level demand forecasting.

In summary, predictive analytics of device-level energy demand is an in-
tegral part of the flexibility-based dynamic DR. The atomic level analysis of
energy demands can be very useful in devising effective strategies to confront
challenges imposed by integrating higher percentage of RES into the grid sys-
tem. However, the raw device-level energy consumption data are often noisy
and inconsistent, thus, making difficulties in further analysis. This thesis pre-
sented a number of analytical techniques for effective and efficient analysis of
device-level data. Modeling of flexibility for various device types into a uni-
fied flex-offer format was a challenging task. The thesis presented the flexibility
modeling approach that took this into consideration and solved it for important
and typical devices. The adaptation of flexibility-based DR highly depends on
the utility it brings to the market players. The thesis presented a financial
quantification model that can help the energy market players in estimating the
utility of adopting demand flexibility in their market areas. Further, to solve
the response fatigue problem, the thesis presented solutions for automatically
predicting flexible demands with minimal user intervention. The thesis pre-
sented a general flex-offer generation and evaluation process to automatically
extract flexibilities and generate flex-offers for a variety of household devices. In
brief, the thesis has presented various aspects of predictive analytics of device-
level data with a special focus on extracting and modeling demand flexibility.
The thesis resolved various challenges with the device-level data analytics. A
number of novel techniques in the field of flex-offer modeling, generation, and
scheduling were proposed that can significantly contribute to energy market to
speed up the adaptation of flexibility-based DR.

10.2 Future Research Directions
Several directions for future work exist in the area of device-level data analytics
and for the methods and techniques presented in this thesis. Here, we review
future research directions for each of the presented chapters and overall new
directions.

There are several directions for future work on modeling utility of demand
flexibility presented in Chapter 4. Consideration of grid capacity constraint
and other market constraints during the shifting of flexible demand is an inter-
esting future research direction. In addition to the regulation volumes, it will
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be interesting to include various other external features to capture the rela-
tionship between market prices. The presented demand shifting model adopts
a greedy procedure; more efficient optimization techniques should be designed.
Further, to better access viability of the flexibility-based DR, the utility should
be evaluated for various other market objectives and market areas.

There are a number of future directions in device-level consumption behav-
ior analysis presented in Chapter 5. In order to capture seasonal and long-term
device usage pattern, an analysis should be performed with a longer consump-
tion timeseries. New operation state segmentation techniques are required to
supplement the manual inspection method. Demand flexibility analysis for
smaller resolutions, e.g. 15 min or even 1 min, is an important direction for fu-
ture work. It will also be interesting to analyze flexibilities potential in energy
supply. Further, collecting user behavior and preference data through a survey
to improve the confidence over a purely data-driven flexibility analysis will be
an interesting approach.

There are several directions for future work on the assessment of forecast
models presented in Chapter 6. There exists some correlation between devices
and are operated in a specific sequence; the inclusion of correlated device states
as features during forecasting will be a major research direction. The device-
level consumption data is highly stochastic; it will be interesting to evaluate
forecast models for a pool of similar devices clustered based on various market
conditions. There should be a more comprehensive exploration and evaluation
of forecast models suited for device-level forecasting.

For the case of flex-offer generation and evaluation process presented in
Chapter 7, designing and utilization of more robust device-level forecast mod-
els during flex-offers generations sub–steps will be an important future research
direction. Various hardware and grid constraints should be incorporated in FO-
GEP. It will be interesting to consider the storage capacity of electric vehicles
for a flex-offer generation. The flexibility-based market setup should also be
established to validate the applicability of the proposed FOGEP.

In the case of Chapter 8, establishing statistical models based on capacity
constraints to evaluate multi-device flex-offers scheduling will be interesting
future research direction. In addition, designing of forecasting techniques that
align the prediction to the scheduling task will be another future work.

For the DeMand system presented in Chapter 9, designing of an API-centric
architecture is an important future research direction. It is also interesting to
incorporate additional features such as model and parameter recommender
system, more comprehensive data processor module, and support for ensemble
learning, etc.

The thesis addressed various issues in device-level data analytics, especially
in the demand flexibility extraction and modeling scenario. However, there are
still various future research topics that we are interested in exploring further,
especially related to device-level data analytics. First, the proposed preprocess-
ing steps only consider the data at hourly resolution. Hence, we will explore
the device-level data preprocessing and design a general solution that applies to
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data of different resolutions. Second, for the class imbalance problem, we will
further explore the problem and perform extensive statistical tests to validate
the approach proposed in this thesis. Third, a flex-offer can represent flexibility
for both energy demand and supply. Hence, we will extend the current FO-
GEP to capture and model flexibilities from various sources of energy supply.
Fourth, this thesis mostly evaluated regression and pattern matching models
for predicting device-level demand. In the future, we will further explore the
forecasting field to design and assess more sophisticated prediction models such
as BayesNet, DeepLearing, HMM, etc., for device-level demand forecasting.
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[57] D. Kaulakienė, L. Šikšnys, and Y. Pitarch, “Towards the automated ex-
traction of flexibilities from electricity time series,” in EDBT/ICDT Work-
shops, 2013.

[58] D. Fischer, T. Wolf, J. Wapler, R. Hollinger, and H. Madani, “Model-
based flexibility assessment of a residential heat pump pool,” Energy, vol.
118, pp. 853 – 864, 2017.



140 References

[59] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current
methods and advances in forecasting of wind power generation,” Renewable
Energy, pp. 1 – 8, 2012.

[60] X. Wang, P. Guo, and X. Huang, “A review of wind power forecasting
models,” Energy Procedia, pp. 770 – 778, 2011.

[61] A. Fabbri, T. Román, J. Abbad, and V. Quezada, “Assessment of the cost
associated with wind generation prediction errors in a liberalized electricity
market,” Power Systems, IEEE Transactions on, pp. 1440–1446, 2005.

[62] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecasting and Con-
trol, 1990.

[63] P. Brockwell and R. Davis, Introduction to Time Series and
Forecasting, ser. Lecture Notes in Statistics, 2002. [Online]. Available:
http://books.google.dk/books?id=VHB4OSAmwcUC

[64] J. Nyblom, “Testing for the constancy of parameters over time,” Journal
of the American Statistical Association, vol. 84, no. 405, pp. 223–230, 1989.

[65] D. Bunn, “Forecasting loads and prices in competitive power markets,”
vol. 88, no. 2, pp. 163–169, 2000.

[66] R. Cottet and M. Smith, “Bayesian modeling and forecasting of intraday
electricity load,” Journal of the American Statistical Association, vol. 98,
no. 464, pp. 839–849, 2003.

[67] Z. Aung, M. Toukhy, J. Williams, A. Sanchez, and S. Herrero, “Towards
accurate electricity load forecasting in smart grids,” in Proceedings of
DBKDA’12, Feb. 2012, pp. 51–57.

[68] L. Zhang and P. Luh, “Neural network-based market clearing price predic-
tion and confidence interval estimation with an improved extended kalman
filter method,” IEEE TPS, 2005.

[69] A. Reinhardt, S. S. Kanhere, and D. Christin, “Predicting the power con-
sumption of electric appliances through time series pattern matching,” in
BuildSys (posters), 2013.

[70] A. Reinhardt, D. Christin, and S. S. Kanhere, “Can smart plugs predict
electric power consumption?: A case study,” in Proceedings of the 11th
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, ser. MOBIQUITOUS ’14, 2014, pp. 257–266.

[71] A. Barbato, A. Capone, M. Rodolfi, and D. Tagliaferri, “Forecasting the
usage of household appliances through power meter sensors for demand
management in the smart grid,” 2011.

http://books.google.dk/books?id=VHB4OSAmwcUC


References 141

[72] N. Prüggler, “Economic potential of demand response at household level-
are central-european market conditions sufficient?” Energy Policy, pp. 487
– 498, 2013.

[73] M. Vasirani and S. Ossowski, “Smart consumer load balancing:: state of
the art and an empirical evaluation in the spanish electricity market,”
Artificial Intelligence Review, pp. 81–95, 2013.

[74] O. Erdinc, “Economic impacts of small-scale own generating and storage
units, and electric vehicles under different demand response strategies for
smart households,” Applied Energy, pp. 142–150, 2014.

[75] D. Setlhaolo, X. Xia, and J. Zhang, “Optimal scheduling of household
appliances for demand response,” Electric Power Systems Research, pp.
24 – 28, 2014.

[76] L. Šikšnys, E. Valsomatzis, K. Hose, and T. B. Pedersen, “Aggregating
and disaggregating flexibility objects,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, pp. 2893–2906, 2015.

[77] E. Valsomatzis, T. B. Pedersen, A. Abelló, K. Hose, and L. Šikšnys, “To-
wards constraint-based aggregation of energy flexibilities,” in Proceedings
of the Seventh International Conference on Future Energy Systems Poster
Sessions, ser. e-Energy ’16, 2016.

[78] E. Valsomatzis, T. B. Pedersen, A. Abelló, and K. Hose, “Aggregating en-
ergy flexibilities under constraints,” in 2016 IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm), 2016, pp. 484–
490.

[79] E. Valsomatzis, K. Hose, and T. B. Pedersen, Balancing Energy Flexibili-
ties Through Aggregation, pp. 17–37.

[80] N. Sadeghianpourhamami, M. Strobbe, and C. Develder, “Real-world user
flexibility of energy consumption: Two-stage generative model construc-
tion,” in Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, ser. SAC 16, 2016, pp. 2148–2153.

[81] L. Šikšnys, M. Khalefa, and T. Pedersen, “Aggregating and disaggregating
flexibility objects,” in SSDBM 2012, 2012, pp. 379–396.

[82] Zensehome. [Online]. Available: http://www.zensehome.dk/da/privat.
aspx

[83] Source of dataset: Evnetnl ev charging dataset, 2016. [Online]. Available:
https://www.elaad.nl/

[84] N. E. R. (NordREG), “Nordic market report 2014.” [Online]. Avail-
able: http://www.nordicenergyregulators.org/wp-content/uploads/2014/
06/Nordic-Market-Report-2014.pdf

http://www.zensehome.dk/da/privat.aspx
http://www.zensehome.dk/da/privat.aspx
https://www.elaad.nl/
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf


142 References

[85] I. Ilieva and T. F. Bolkesjø, “An econometric analysis of the regulation
power market at the nordic power exchange,” Energy Procedia, pp. 58 –
64, 2014.

[86] D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John
Wiley & Sons, 2004.

[87] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, “A reliable effective
terascale linear learning system,” CoRR, 2011.

[88] J. Davis and M. Goadrich, “The relationship between precision-recall and
roc curves,” ser. ICML ’06, 2006, pp. 233–240.

[89] Anonymous, “Details omitted for double-blind reviewing,” 2015.

[90] B. Neupane, T. Pedersen, and B. Thiesson, “Towards flexibility detection
in device-level energy consumption,” in Proceedings of the Second ECM-
L/PKDD Workshop, DARE’14, 2014, pp. 1–16.

[91] L. Šikšnys and T. B. Pedersen, “Dependency-based flexoffers: Scalable
management of flexible loads with dependencies,” in Proceedings of the
Seventh International Conference on Future Energy Systems, ser. e-Energy
’16, 2016, pp. 1–13.

[92] Dark sky api, 2016. [Online]. Available: https://darksky.net/poweredby/

[93] Anonymous, “Details omitted for double-blind reviewing,” 2015.

[94] W. W.-S. Wei, Time series analysis. Addison-Wesley publ Reading, 1994.

[95] R. Ulbricht, U. Fischer, L. Kegel, D. Habich, H. Donker, and W. Lehner,
“Ecast: A benchmark framework for renewable energy forecasting sys-
tems.” in EDBT/ICDT Workshops, 2014, pp. 148–155.

[96] A. Alhamoud, P. Xu, F. Englert, A. Reinhardt, P. Scholl, and R. Stein-
metz, “Extracting human behavior patterns from appliance-level power
consumption data,” in Wireless Sensor Networks, ser. Lecture Notes in
Computer Science, 2015.

[97] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “An unsupervised train-
ing method for non-intrusive appliance load monitoring,” Artificial Intel-
ligence, pp. 1 – 19, 2014.

[98] D. Egarter, V. Bhuvana, and W. Elmenreich, “Paldi: Online load disag-
gregation via particle filtering,” Instrumentation and Measurement, IEEE
Transactions on, vol. 64, no. 2, pp. 467–477, 2015.

[99] S. Gupta, M. S. Reynolds, and S. N. Patel, “Electrisense: Single-point
sensing using emi for electrical event detection and classification in the
home,” in Proceedings of the 12th ACM International Conference on Ubiq-
uitous Computing, ser. UbiComp ’10, 2010, pp. 139–148.

https://darksky.net/poweredby/


Statement of Authorship

I hereby declare that I have written this thesis individually and without the
use of documents other than those referenced in this thesis and inputs others
than those which I acknowledge in this thesis and explicitly mention in the
presented co-author statements (available with the thesis). Up to now, the
work is submitted only at TU Dresden and the IT4BI-DC partner university
AAU. The work has not been presented in this or a similar form to another
examination agency neither in Germany nor in any other country, and it has
not yet been published either.

Bijay Neupane
August 10, 2017

143



PR
ED

IC
TIVE D

ATA A
N

A
LYTIC

S FO
R

 EN
ER

G
Y D

EM
A

N
D

 FLEXIB
ILITY

B
IJAY N

EU
PA

N
EISSN (online): 2446-1628 

ISBN (online): 978-87-7210-035-7


	Front page
	Abstract
	Dansk Resumé (Summary in Danish)
	Thesis Details
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.2 Energy Data Analytics
	1.3 Demand Flexibility
	1.4 Device-level Behavior Analysis
	1.5 Device-level Demand Prediction
	1.6 Thesis Overview

	2 Related Work
	2.1 Literature Review
	2.2 Thesis Contribution

	3 Flexibility Concept and Terminology
	3.1 Smart Devices
	3.1.1 General Operation of Smart Devices
	3.1.2 Flexibility and Flex-offers

	3.2 Device-level Data
	3.2.1 Data
	3.2.2 Device Categorization
	3.2.3 Operation of Different Device Types

	3.3 Nordic Power Market
	3.3.1 Spot Market
	3.3.2 Regulation Market

	3.4 Summary and Discussion

	4 Utility of Flexibility Concept
	4.1 Relation between Energy Market and  Flexibility
	4.1.1 Modeling The Effect of Flexibility on Energy  Markets
	4.1.2 Modeling Financial Aspect of Flexibility

	4.2 Market Objectives of Utilizing Flexibility
	4.3 Experimental Analaysis
	4.3.1 Minimizing Regulation Cost (First Experiment)
	4.3.2 Minimizing Regulation Volume (Second Experiment)
	4.3.3 Analysis

	4.4 Summary and Discussion

	5 User Behavior Analysis
	5.1 Device Operation Properties
	5.2 Device-level Data Preprocessing
	5.2.1 Spike Removal
	5.2.2 Operation State Segmentation
	5.2.3 Aberrant Operation Durations Removal
	5.2.4 Filling Observation Gaps
	5.2.5 Aggregation Granularity

	5.3 Data Analysis
	5.3.1 Device Energy Profiles
	5.3.2 Use Patterns
	5.3.3 Device Correlations

	5.4 Summary and Discussion

	6 Device-level Energy Demand Forecasting
	6.1 Device-level Forecasting
	6.1.1 Data Resolution
	6.1.2 Feature Extraction
	6.1.3 Learning Models
	6.1.4 Demand Forecast
	6.1.5 Model Evaluation

	6.2 Experimental Setup and Mathematical  Formulations
	6.2.1 Analysis on Forecast Performance
	6.2.2 Scheduling of Flexible Demand
	6.2.3 Change in Regulation Price due to Scheduling
	6.2.4 Savings in Regulation Cost due to Scheduling

	6.3 Experimental Analysis
	6.3.1 Evaluation of Device-level Forecast Models
	6.3.2 Evaluation of Utility of Forecast Models

	6.4 Summary and Discussion

	7 Generation and Evaluation of Flex-offers
	7.1 Flex-offer Generation and Evaluation  Process (FOGEP)
	7.2 Flexibility Extraction
	7.2.1 Input Data
	7.2.2 Forecast Models and Feature
	7.2.3 Device Type Specific Case of MPEF Step

	7.3 Mathematical Formulation for FOGEP  Evaluation
	7.3.1 Statistical Evaluation
	7.3.2 Financial Evaluation

	7.4 Experimental Analysis
	7.4.1 Evaluation of FOGEP Performance
	7.4.2 Evaluation of FOGEP Utility
	7.4.3 Analysis

	7.5 Summary and Discussion

	8 Scheduling of Flex-offers
	8.1 Prescription of Flex-offer Schedules
	8.1.1 Prescriptive Strategy for Flex-offer Scheduling

	8.2 Evaluation Metrics for Flex-offers  Forecasting Models
	8.2.1 Most Frequent Timestamp (MF)
	8.2.2 ARIMA
	8.2.3 Flexibility-Aware Evaluation Metrics

	8.3 Prescriptive Model For Flex-offer  Scheduling
	8.3.1 Spot Market Savings
	8.3.2 Regulation Market Savings
	8.3.3 User Comfort

	8.4 Experimental Analysis
	8.4.1 Dataset
	8.4.2 Prescription Scheduling Results

	8.5 Summary and Discussion

	9 Device-level Demand Forecast Platform
	9.1   System Overview
	9.1.1 Interface Component
	9.1.2 Core Logic Component
	9.1.3 Data Manager Component
	9.1.4 Feature Generator Component
	9.1.5 Evaluator Component
	9.1.6 Result Analyser Component

	9.2   Use-case Example
	9.2.1 Execution of Forecasting
	9.2.2 Result Presentation

	9.3 Summary and Discussion

	10 Conclusion and Future Research Directions
	10.1 Conclusion
	10.2 Future Research Directions

	Bibliography
	Statement of Authorship
	Blank Page
	Blank Page
	Blank Page



