688 research outputs found

    Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights

    Full text link
    We present a tree-based construction of LDPC codes that have minimum pseudocodeword weight equal to or almost equal to the minimum distance, and perform well with iterative decoding. The construction involves enumerating a dd-regular tree for a fixed number of layers and employing a connection algorithm based on permutations or mutually orthogonal Latin squares to close the tree. Methods are presented for degrees d=psd=p^s and d=ps+1d = p^s+1, for pp a prime. One class corresponds to the well-known finite-geometry and finite generalized quadrangle LDPC codes; the other codes presented are new. We also present some bounds on pseudocodeword weight for pp-ary LDPC codes. Treating these codes as pp-ary LDPC codes rather than binary LDPC codes improves their rates, minimum distances, and pseudocodeword weights, thereby giving a new importance to the finite geometry LDPC codes where p>2p > 2.Comment: Submitted to Transactions on Information Theory. Submitted: Oct. 1, 2005; Revised: May 1, 2006, Nov. 25, 200

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 101510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Density Evolution and Functional Threshold for the Noisy Min-Sum Decoder

    Full text link
    This paper investigates the behavior of the Min-Sum decoder running on noisy devices. The aim is to evaluate the robustness of the decoder in the presence of computation noise, e.g. due to faulty logic in the processing units, which represents a new source of errors that may occur during the decoding process. To this end, we first introduce probabilistic models for the arithmetic and logic units of the the finite-precision Min-Sum decoder, and then carry out the density evolution analysis of the noisy Min-Sum decoder. We show that in some particular cases, the noise introduced by the device can help the Min-Sum decoder to escape from fixed points attractors, and may actually result in an increased correction capacity with respect to the noiseless decoder. We also reveal the existence of a specific threshold phenomenon, referred to as functional threshold. The behavior of the noisy decoder is demonstrated in the asymptotic limit of the code-length -- by using "noisy" density evolution equations -- and it is also verified in the finite-length case by Monte-Carlo simulation.Comment: 46 pages (draft version); extended version of the paper with same title, submitted to IEEE Transactions on Communication
    corecore