796 research outputs found

    An Approximate Algorithm Combining P Systems and Ant Colony Optimization for Traveling Salesman Problems

    Get PDF
    This paper proposes an approximate optimization algorithm combining P systems with ant colony optimization, called ACOPS, to solve traveling salesman prob- lems, which are well-known and extensively studied NP-complete combinatorial optimization problems. ACOPS uses the pheromone model and pheromone update rules defined by ant colony optimization algorithms, and the hierarchical membrane structure and transformation/communication rules of P systems. First, the parameter setting of the ACOPS is discussed. Second, extensive experiments and statistical analysis are investigated. It is shown that the ACOPS is superior to Nishida's algorithms and its counterpart ant colony optimization algorithms, in terms of the quality of solutions and the number of function evaluations

    A Membrane-Inspired Evolutionary Algorithm with a Population P System and its Application to Distribution System Recon guration

    Get PDF
    This paper develops a membrane-inspired evolutionary algorithm, PSMA, which is designed by using a population P system and a quantum-inspired evolutionary algorithm (QIEA). We use a population P system with three cells to organize three types of QIEAs, where communications between cells are performed at the level of genes, instead of the level of individuals reported in the existing membrane algorithms in the literature. Knapsack problems are applied to discuss the parameter setting and to test the effectiveness of PSMA. Experimental results show that PSMA is superior to four representative QIEAs and our previous work with respect to the quality of solutions and the elapsed time. We also use PSMA to solve the optimal distribution system reconfiguration problem in power systems for minimizing the power loss.Junta de Andalucía P08-TIC-04200Ministerio de Ciencia e Innovación TIN-2009-1319

    A deep learning approach for direction of arrival estimation using automotive-grade ultrasonic sensors

    Get PDF
    Abstract In this paper, a deep learning approach is presented for direction of arrival estimation using automotive-grade ultrasonic sensors which are used for driving assistance systems such as automatic parking. A study and implementation of the state of the art deterministic direction of arrival estimation algorithms is used as a benchmark for the performance of the proposed approach. Analysis of the performance of the proposed algorithms against the existing algorithms is carried out over simulation data as well as data from a measurement campaign done using automotive-grade ultrasonic sensors. Both sets of results clearly show the superiority of the proposed approach under realistic conditions such as noise from the environment as well as eventual errors in measurements. It is demonstrated as well how the proposed approach can overcome some of the known limitations of the existing algorithms such as precision dilution of triangulation and aliasing

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 41)

    Get PDF
    Abstracts are provided for 131 patents and patent applications entered into the NASA scientific and technical information system during the period Jan. 1992 through Jun. 1992. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    A Kernel-Based Membrane Clustering Algorithm

    Get PDF
    The existing membrane clustering algorithms may fail to handle the data sets with non-spherical cluster boundaries. To overcome the shortcoming, this paper introduces kernel methods into membrane clustering algorithms and proposes a kernel-based membrane clustering algorithm, KMCA. By using non-linear kernel function, samples in original data space are mapped to data points in a high-dimension feature space, and the data points are clustered by membrane clustering algorithms. Therefore, a data clustering problem is formalized as a kernel clustering problem. In KMCA algorithm, a tissue-like P system is designed to determine the optimal cluster centers for the kernel clustering problem. Due to the use of non-linear kernel function, the proposed KMCA algorithm can well deal with the data sets with non-spherical cluster boundaries. The proposed KMCA algorithm is evaluated on nine benchmark data sets and is compared with four existing clustering algorithms

    NASA Tech Briefs, May 2012

    Get PDF
    Topics covered include: An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently; On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz; Software to Control and Monitor Gas Streams; Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column; Anomaly Detection in Test Equipment via Sliding Mode Observers; Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems; Goldstone Solar System Radar Waveform Generator; Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System; Iridium Interfacial Stack - IrIS; Downsampling Photodetector Array with Windowing; Optical Phase Recovery and Locking in a PPM Laser Communication Link; High-Speed Edge-Detecting Line Scan Smart Camera; Optical Communications Channel Combiner; Development of Thermal Infrared Sensor to Supplement Operational Land Imager; Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse; Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH; LEGION: Lightweight Expandable Group of Independently Operating Nodes; Real-Time Projection to Verify Plan Success During Execution; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Web-Based Customizable Viewer for Mars Network Overflight Opportunities; Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations; Fabrication of an Absorber-Coupled MKID Detector; Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays; Method of Bonding Optical Elements with Near-Zero Displacement; Free-Mass and Interface Configurations of Hammering Mechanisms; Wavefront Compensation Segmented Mirror Sensing and Control; Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration; Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications; Electrochemical Ultracapacitors Using Graphitic Nanostacks; Improved Whole-Blood-Staining Device; Monitoring Location and Angular Orientation of a Pill; Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity; Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars; High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle; PRTs and Their Bonding for Long-Duration, Extreme-Temperature Environments; Mid- and Long-IR Broadband Quantum Well Photodetector; 3D Display Using Conjugated Multiband Bandpass Filters; Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow; Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators; Dual-Compartment Inflatable Suitlock; Large-Strain Transparent Magnetoactive Polymer Nanocomposites; Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine; Time Distribution Using SpaceWire in the SCaN Testbed on ISS; and Techniques for Solution- Assisted Optical Contacting

    A systematic review of perception system and simulators for autonomous vehicles research

    Get PDF
    This paper presents a systematic review of the perception systems and simulators for autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception systems are categorized as environment perception systems and positioning estimation systems. The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the quantification of their features using spider charts will allow proper selection of different sensors depending on 11 features. In the second part, the main elements to be taken into account in the simulation of a perception system of an AV are presented. For this purpose, the paper describes simulators for model-based development, the main game engines that can be used for simulation, simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current state of regulations that are being applied in different countries around the world on issues concerning the implementation of autonomous vehicles is presented.This work was partially supported by DGT (ref. SPIP2017-02286) and GenoVision (ref. BFU2017-88300-C2-2-R) Spanish Government projects, and the “Research Programme for Groups of Scientific Excellence in the Region of Murcia" of the Seneca Foundation (Agency for Science and Technology in the Region of Murcia – 19895/GERM/15)

    NASA Tech Briefs, December 2012

    Get PDF
    The topics include: Pattern Generator for Bench Test of Digital Boards; 670-GHz Down- and Up-Converting HEMT-Based Mixers; Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder; Feedback Augmented Sub-Ranging (FASR) Quantizer; Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring; Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol; Description and User Instructions for the Quaternion to Orbit v3 Software; AdapChem; Mars Relay Lander and Orbiter Overflight Profile Estimation; Extended Testability Analysis Tool; Interactive 3D Mars Visualization; Rapid Diagnostics of Onboard Sequences; MER Telemetry Processor; pyam: Python Implementation of YaM; Process for Patterning Indium for Bump Bonding; Archway for Radiation and Micrometeorite Occurrence Resistance; 4D Light Field Imaging System Using Programmable Aperture; Device and Container for Reheating and Sterilization; Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources; Membrane Shell Reflector Segment Antenna; High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves; Compact Autonomous Hemispheric Vision System; A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring; Wideband Single-Crystal Transducer for Bone Characterization; Numerical Simulation of Rocket Exhaust Interaction With Lunar Soil; Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics; Particle Filtering for Model-Based Anomaly Detection in Sensor Networks; Ka-band Digitally Beamformed Airborne Radar Using SweepSAR Technique; Composite With In Situ Plenums; Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers; JWST Lifting System; Next-Generation Tumbleweed Rover; Pneumatic System for Concentration of Micrometer-Size Lunar Soil

    NASA Tech Briefs, October 2007

    Get PDF
    Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images

    NASA Tech Briefs, December 2011

    Get PDF
    Topics covered include: 1) SNE Industrial Fieldbus Interface; 2) Composite Thermal Switch; 3) XMOS XC-2 Development Board for Mechanical Control and Data Collection; 4) Receiver Gain Modulation Circuit; 5) NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions; 6) Digital Interface Board to Control Phase and Amplitude of Four Channels; 7) CoNNeCT Baseband Processor Module; 8) Cryogenic 160-GHz MMIC Heterodyne Receiver Module; 9) Ka-Band, Multi-Gigabit-Per-Second Transceiver; 10) All-Solid-State 2.45-to-2.78-THz Source; 11) Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn); 12) Space Environments Testbed; 13) High-Performance 3D Articulated Robot Display; 14) Athena; 15) In Situ Surface Characterization; 16) Ndarts; 17) Cryo-Etched Black Silicon for Use as Optical Black; 18) Advanced CO2 Removal and Reduction System; 19) Correcting Thermal Deformations in an Active Composite Reflector; 20) Umbilical Deployment Device; 21) Space Mirror Alignment System; 22) Thermionic Power Cell To Harness Heat Energies for Geothermal Applications; 23) Graph Theory Roots of Spatial Operators for Kinematics and Dynamics; 24) Spacesuit Soft Upper Torso Sizing Systems; 25) Radiation Protection Using Single-Wall Carbon Nanotube Derivatives; 26) PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure; 27) Lidar Luminance Quantizer; 28) Distributed Capacitive Sensor for Sample Mass Measurement; 29) Base Flow Model Validation; 30) Minimum Landing Error Powered-Descent Guidance for Planetary Missions; 31) Framework for Integrating Science Data Processing Algorithms Into Process Control Systems; 32) Time Synchronization and Distribution Mechanisms for Space Networks; 33) Local Estimators for Spacecraft Formation Flying; 34) Software-Defined Radio for Space-to-Space Communications; 35) Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding; and 36) Molecular Adsorber Coatin
    corecore