864 research outputs found

    Analyzing probabilistic pushdown automata

    Get PDF
    The paper gives a summary of the existing results about algorithmic analysis of probabilistic pushdown automata and their subclasses.V článku je podán přehled známých výsledků o pravděpodobnostních zásobníkových automatech a některých jejich podtřídách

    Decisive Markov Chains

    Get PDF
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM.Comment: 32 pages, 0 figure

    Computation with narrow CTCs

    Full text link
    We examine some variants of computation with closed timelike curves (CTCs), where various restrictions are imposed on the memory of the computer, and the information carrying capacity and range of the CTC. We give full characterizations of the classes of languages recognized by polynomial time probabilistic and quantum computers that can send a single classical bit to their own past. Such narrow CTCs are demonstrated to add the power of limited nondeterminism to deterministic computers, and lead to exponential speedup in constant-space probabilistic and quantum computation. We show that, given a time machine with constant negative delay, one can implement CTC-based computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte

    Approximating the Termination Value of One-Counter MDPs and Stochastic Games

    Get PDF
    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letter stack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value = 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value ? p", or "approximate the termination value within epsilon") are far more challenging. This is so in part because optimal strategies may not exist, and because even when they do exist they can have a highly non-trivial structure. It thus remained open even whether any of these quantitative termination problems are computable. In this paper we show that all quantitative approximation problems for the termination value for OC-MDPs and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon > 0, we can compute a value v that approximates the value of the OC-SSG termination game within additive error epsilon, and furthermore we can compute epsilon-optimal strategies for both players in the game. A key ingredient in our proofs is a subtle martingale, derived from solving certain LPs that we can associate with a maximizing OC-MDP. An application of Azuma's inequality on these martingales yields a computable bound for the "wealth" at which a "rich person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011, invited for submission to Information and Computatio

    07441 Abstracts Collection -- Algorithmic-Logical Theory of Infinite Structures

    Get PDF
    From 28.10. to 02.11.2007, the Dagstuhl Seminar 07441 ``Algorithmic-Logical Theory of Infinite Structures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    One-Counter Stochastic Games

    Get PDF
    We study the computational complexity of basic decision problems for one-counter simple stochastic games (OC-SSGs), under various objectives. OC-SSGs are 2-player turn-based stochastic games played on the transition graph of classic one-counter automata. We study primarily the termination objective, where the goal of one player is to maximize the probability of reaching counter value 0, while the other player wishes to avoid this. Partly motivated by the goal of understanding termination objectives, we also study certain "limit" and "long run average" reward objectives that are closely related to some well-studied objectives for stochastic games with rewards. Examples of problems we address include: does player 1 have a strategy to ensure that the counter eventually hits 0, i.e., terminates, almost surely, regardless of what player 2 does? Or that the liminf (or limsup) counter value equals infinity with a desired probability? Or that the long run average reward is >0 with desired probability? We show that the qualitative termination problem for OC-SSGs is in NP intersection coNP, and is in P-time for 1-player OC-SSGs, or equivalently for one-counter Markov Decision Processes (OC-MDPs). Moreover, we show that quantitative limit problems for OC-SSGs are in NP intersection coNP, and are in P-time for 1-player OC-MDPs. Both qualitative limit problems and qualitative termination problems for OC-SSGs are already at least as hard as Condon's quantitative decision problem for finite-state SSGs.Comment: 20 pages, 1 figure. This is a full version of a paper accepted for publication in proceedings of FSTTCS 201

    Certificates for Probabilistic Pushdown Automata via Optimistic Value Iteration

    Full text link
    Probabilistic pushdown automata (pPDA) are a standard model for discrete probabilistic programs with procedures and recursion. In pPDA, many quantitative properties are characterized as least fixpoints of polynomial equation systems. In this paper, we study the problem of certifying that these quantities lie within certain bounds. To this end, we first characterize the polynomial systems that admit easy-to-check certificates for validating bounds on their least fixpoint. Second, we present a sound and complete Optimistic Value Iteration algorithm for computing such certificates. Third, we show how certificates for polynomial systems can be transferred to certificates for various quantitative pPDA properties. Experiments demonstrate that our algorithm computes succinct certificates for several intricate example programs as well as stochastic context-free grammars with >104> 10^4 production rules.Comment: Full version of a paper to appear at TACAS 2023, 30 page

    Potential of quantum finite automata with exact acceptance

    Full text link
    The potential of the exact quantum information processing is an interesting, important and intriguing issue. For examples, it has been believed that quantum tools can provide significant, that is larger than polynomial, advantages in the case of exact quantum computation only, or mainly, for problems with very special structures. We will show that this is not the case. In this paper the potential of quantum finite automata producing outcomes not only with a (high) probability, but with certainty (so called exactly) is explored in the context of their uses for solving promise problems and with respect to the size of automata. It is shown that for solving particular classes {An}n=1\{A^n\}_{n=1}^{\infty} of promise problems, even those without some very special structure, that succinctness of the exact quantum finite automata under consideration, with respect to the number of (basis) states, can be very small (and constant) though it grows proportional to nn in the case deterministic finite automata (DFAs) of the same power are used. This is here demonstrated also for the case that the component languages of the promise problems solvable by DFAs are non-regular. The method used can be applied in finding more exact quantum finite automata or quantum algorithms for other promise problems.Comment: We have improved the presentation of the paper. Accepted to International Journal of Foundation of Computer Scienc
    corecore