6 research outputs found

    Towards a framework for comparing functionalities of multimorbidity clinical decision support: A literature-based feature set and benchmark cases.

    Get PDF
    Multimorbidity, the coexistence of two or more health conditions, has become more prevalent as mortality rates in many countries have declined and their populations have aged. Multimorbidity presents significant difficulties for Clinical Decision Support Systems (CDSS), particularly in cases where recommendations from relevant clinical guidelines offer conflicting advice. A number of research groups are developing computer-interpretable guideline (CIG) modeling formalisms that integrate recommendations from multiple Clinical Practice Guidelines (CPGs) for knowledge-based multimorbidity decision support. In this paper we describe work towards the development of a framework for comparing the different approaches to multimorbidity CIG-based clinical decision support (MGCDS). We present (1) a set of features for MGCDS, which were derived using a literature review and evaluated by physicians using a survey, and (2) a set of benchmarking case studies, which illustrate the clinical application of these features. This work represents the first necessary step in a broader research program aimed at the development of a benchmark framework that allows for standardized and comparable MGCDS evaluations, which will facilitate the assessment of functionalities of MGCDS, as well as highlight important gaps in the state-of-the-art. We also outline our future work on developing the framework, specifically, (3) a standard for reporting MGCDS solutions for the benchmark case studies, and (4) criteria for evaluating these MGCDS solutions. We plan to conduct a large-scale comparison study of existing MGCDS based on the comparative framework

    Resolving conflicts in clinical guidelines using argumentation

    Get PDF
    Automatically reasoning with conflicting generic clinical guidelines is a burning issue in patient-centric medical reasoning where patient-specific conditions and goals need to be taken into account. It is even more challenging in the presence of preferences such as patient's wishes and clinician's priorities over goals. We advance a structured argumentation formalism for reasoning with conflicting clinical guidelines, patient-specific information and preferences. Our formalism integrates assumption-based reasoning and goal-driven selection among reasoning outcomes. Specifically, we assume applicability of guideline recommendations concerning the generic goal of patient well-being, resolve conflicts among recommendations using patient's conditions and preferences, and then consider prioritised patient-centered goals to yield non-conflicting, goal-maximising and preference-respecting recommendations. We rely on the state-of-the-art Transition-based Medical Recommendation model for representing guideline recommendations and augment it with context given by the patient's conditions, goals, as well as preferences over recommendations and goals. We establish desirable properties of our approach in terms of sensitivity to recommendation conflicts and patient context

    A framework for automated conflict detection and resolution in medical guidelines

    Get PDF
    This research is supported by the MRC-funded UK Research and Innovation grant MR/S003819/1 and by EPSRC grant EP/M014290/1.Common chronic conditions are routinely treated following standardised procedures known as clinical guidelines. For patients suffering from two or more chronic conditions, known as multimorbidity, several guidelines have to be applied simultaneously, which may lead to severe adverse effects when the combined recommendations and prescribed medications are inconsistent or incomplete. This paper presents an automated formal framework to detect, highlight and resolve conflicts in the treatments used for patients with multimorbidities focusing on medications. The presented extended framework has a front-end which takes guidelines captured in a standard modelling language and returns the visualisation of the detected conflicts as well as suggested alternative treatments. Internally, the guidelines are transformed into formal models capturing the possible unfoldings of the guidelines. The back-end takes the formal models associated with multiple guidelines and checks their correctness with a theorem prover, and inherent inconsistencies with a constraint solver. Key to our approach is the use of an optimising constraint solver which enables us to search for the best solution that resolves/minimises conflicts according to medication efficacy and the degree of severity in case of harmful combinations, also taking into account their temporal overlapping. The approach is illustrated throughout with a real medical example.Publisher PDFPeer reviewe

    Automated conflict resolution for patients with multiple morbidity being treated using more than one set of single condition clinical guidance: A case study

    Get PDF
    Background The number of people in the UK with two or more conditions continues to grow and their clinical management is complicated by the reliance on guidance focused on a single condition. This leaves individual clinicians responsible for collating disparate information from patient management systems and care recommendations to manually manage the contradictions that exist in the simultaneous treatment of various conditions. Methods/design We have devised a modelling language based on BPMN that allows us to create computer interpretable representations of single condition guidance and incorporate patient data to detect the points of conflict between multiple conditions based on their transformation to logical constraints. This has been used to develop a prototype clinical decision support tool that we can use to highlight the causes of conflict between them in three main areas: medication, lifestyle and well-being, and appointment bookings. Results The prototype tool was used to discern contradictions in the care recommendations of chronic obstructive pulmonary disease and osteoarthritis. These were presented to a panel of clinicians who confirmed that the tool produced clinically relevant alerts that can advise clinicians of the presence of conflicts between guidelines relating to both clashes in medication or lifestyle advice. Conclusions The need for supporting general practitioners in their treatment of patients remains and this proof of concept has demonstrated that by converting this guidance into computer-interpretable pathways we can use constraint solvers to readily identify clinically relevant points of conflict between critical elements of the pathway

    Analyzing interactions on combining multiple clinical guidelines

    No full text
    Accounting for patients with multiple health conditions is a complex task that requires analysing potential interactions among recommendations meant to address each condition. Although some approaches have been proposed to address this issue, important features still require more investigation, such as (re)usability and scalability. To this end, this paper presents an approach that relies on reusable rules for detecting interactions among recommendations coming from various guidelines. It extends a previously proposed knowledge representation model (TMR) to enhance the detection of interactions and it provides a systematic analysis of relevant interactions in the context of multimorbidity. The approach is evaluated in a case study on rehabilitation of breast cancer patients, developed in collaboration with experts. The results are considered promising to support the experts in this task
    corecore