1,279 research outputs found

    Analyzing Behavioural Scenarios over Tabular Specifications Using Model Checking

    Get PDF
    Tabular notations, in particular SCR specifications, have proved to be a useful means for formally describing complex requirements. The SCR method offers a powerful family of analysis tools, known as the SCR Toolset, but its availability is restricted by the Naval Research Laboratory of the USA. This toolset applies different kinds of analysis considering the whole set of behaviours associated with a requirements specification. In this paper we present a tool for describing and analyzing SCR requirements descriptions, that complements the SCR Toolset in two aspects. First, its use is not limited by any institution, and resorts to a standard model checking tool for analysis; and second, it allows to concentrate the analysis to particular sets of behaviours (subsets of the whole specifications), that correspond to particular scenarios explicitly mentioned in the specification. We take an operational notation that allows the engineer to describe behavioural "scenarios" by means of programs, and provide a translation into Promela to perform the analysis via Spin, an efficient off-the-shelf model checker freely available. In addition, we apply the SCR method to a Pacemaker system and we use its tabular specification as a running example of this article.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    On Verifying Resource Contracts using Code Contracts

    Full text link
    In this paper we present an approach to check resource consumption contracts using an off-the-shelf static analyzer. We propose a set of annotations to support resource usage specifications, in particular, dynamic memory consumption constraints. Since dynamic memory may be recycled by a memory manager, the consumption of this resource is not monotone. The specification language can express both memory consumption and lifetime properties in a modular fashion. We develop a proof-of-concept implementation by extending Code Contracts' specification language. To verify the correctness of these annotations we rely on the Code Contracts static verifier and a points-to analysis. We also briefly discuss possible extensions of our approach to deal with non-linear expressions.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Satisfiability Checking for Mission-Time LTL

    Get PDF
    Mission-time LTL (MLTL) is a bounded variant of MTL over naturals designed to generically specify requirements for mission-based system operation common to aircraft, spacecraft, vehicles, and robots. Despite the utility of MLTL as a specification logic, major gaps remain in analyzing MLTL, e.g., for specification debugging or model checking, centering on the absence of any complete MLTL satisfiability checker. We prove that the MLTL satisfiability checking problem is NEXPTIME-complete and that satisfiability checking MLTL0 , the variant of MLTL where all intervals start at 0, is PSPACE-complete. We introduce translations for MLTL-to-LTL, MLTL-to-LTLf , MLTL-to-SMV, and MLTL-to-SMT, creating four options for MLTL satisfiability checking. Our extensive experimental evaluation shows that the MLTL-to-SMT transition with the Z3 SMT solver offers the most scalable performance

    A Test Generation Framework for Distributed Fault-Tolerant Algorithms

    Get PDF
    Heavyweight formal methods such as theorem proving have been successfully applied to the analysis of safety critical fault-tolerant systems. Typically, the models and proofs performed during such analysis do not inform the testing process of actual implementations. We propose a framework for generating test vectors from specifications written in the Prototype Verification System (PVS). The methodology uses a translator to produce a Java prototype from a PVS specification. Symbolic (Java) PathFinder is then employed to generate a collection of test cases. A small example is employed to illustrate how the framework can be used in practice

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Model Checking-based Software-FMEA: Assessment of Fault Tolerance and Error Detection Mechanisms

    Get PDF
    Failure Mode and Effects Analysis (FMEA) is a systematic technique to explore the possible failure modes of individual components or subsystems and determine their potential effects at the system level. Applications of FMEA are common in case of hardware and communication failures, but analyzing software failures (SW-FMEA) poses a number of challenges. Failures may originate in permanent software faults commonly called bugs, and their effects can be very subtle and hard to predict, due to the complex nature of programs. Therefore, a behavior-based automatic method to analyze the potential effects of different types of bugs is desirable. Such a method could be used to automatically build an FMEA report about the fault effects, or to evaluate different failure mitigation and detection techniques. This paper follows the latter direction, demonstrating the use of a model checking-based automated SW-FMEA approach to evaluate error detection and fault tolerance mechanisms, demonstrated on a case study inspired by safety-critical embedded operating systems

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore