3,523 research outputs found

    A Parsing Scheme for Finding the Design Pattern and Reducing the Development Cost of Reusable Object Oriented Software

    Full text link
    Because of the importance of object oriented methodologies, the research in developing new measure for object oriented system development is getting increased focus. The most of the metrics need to find the interactions between the objects and modules for developing necessary metric and an influential software measure that is attracting the software developers, designers and researchers. In this paper a new interactions are defined for object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the software. Within the design model, it is necessary for design classes to collaborate with one another. However, collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling. If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of enhancing software, we need to introduce or remove module and in that case coupling is the most important factor to be considered because unnecessary coupling may make the system unstable and may cause reduction in the system's performance. So coupling is thought to be a desirable goal in software construction, leading to better values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented system keeping the coupling as low as possible.Comment: 15 page

    Annotated bibliography of software engineering laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author

    Annotated bibliography of Software Engineering Laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author

    Software quality attribute measurement and analysis based on class diagram metrics

    Get PDF
    Software quality measurement lies at the heart of the quality engineering process. Quality measurement for object-oriented artifacts has become the key for ensuring high quality software. Both researchers and practitioners are interested in measuring software product quality for improvement. It has recently become more important to consider the quality of products at the early phases, especially at the design level to ensure that the coding and testing would be conducted more quickly and accurately. The research work on measuring quality at the design level progressed in a number of steps. The first step was to discover the correct set of metrics to measure design elements at the design level. Chidamber and Kemerer (C&K) formulated the first suite of OO metrics. Other researchers extended on this suite and provided additional metrics. The next step was to collect these metrics by using software tools. A number of tools were developed to measure the different suites of metrics; some represent their measurements in the form of ordinary numbers, others represent them in 3D visual form. In recent years, researchers developed software quality models which went a bit further by computing quality attributes from collected design metrics. In this research we extended on the software quality modelers’ work by adding a quality attribute prioritization scheme and a design metric analysis layer. Our work is all focused on the class diagram, the most fundamental constituent in any object oriented design. Using earlier researchers’ work, we extract a class diagram’s metrics and compute its quality attributes. We then analyze the results and inform the user. We present our figures and observations in the form of an analysis report. Our target user could be a project manager or a software quality engineer or a developer who needs to improve the class diagram’s quality. We closely examine the design metrics that affect quality attributes. We pinpoint the weaknesses in the class diagram, based on these metrics, inform the user about the problems that emerged from these classes, and advice him/her as to how he/she can go about improving the overall design quality. We consider the six basic quality attributes: “Reusability”, “Functionality”, “Understandability”, “Flexibility”, “Extendibility”, and “Effectiveness” of the whole class diagram. We allow the user to set priorities on these quality attributes in a sequential manner based on his/her requirements. Using a geometric series, we calculate a weighted average value for the arranged list of quality attributes. This weighted average value indicates the overall quality of the product, the class diagram. Our experimental work gave us much insight into the meanings and dependencies between design metrics and quality attributes. This helped us refine our analysis technique and give more concrete observations to the user

    Empirical Validation of Variable Method Interaction Cohesion Metric (VMICM) for Enhancing Reusability of Object-Oriented (O-O) Software

    Get PDF
    Any object-oriented (O-O) module\u27s primary goal is to build classes with a high level of coherent interaction between variables and methods. To increase the quality of O-O (Object-Oriented) software, various metrics emphasizing cohesiveness have been established so far. These metrics operate on both the design and the code levels. However, these metrics still fall short of fully measuring the cohesion of object-oriented (O-O) software. Based on several concepts of cohesive interlinkages between variables and procedures, the study proposed an enhanced cohesion metric. The four forms of cohesive linkages (VMRv, VMMv, VMRTv, and VMOv) between variables and procedures were the focus of this study. The axiomatic frame of reference was employed for theoretical validation, and univariate logistic regression was applied in the MATLAB environment for empirical validation. The approach of univariate logistic regression has been adopted because it provides incredibly accurate data and can even be applied to datasets that can be linearly separated. The proposed metric exhibits high cohesion, which is the ultimate perspective of a highly reusable Object- Oriented (O-O) module, as evidenced by the testing phase and even training the real dataset with reusability prediction in terms of high values of precision, recall, R2, and low value of RSME of VMICM metric. The study results demonstrated that the proposed metric can act as a measure for predicting the reusability of the Object-Oriented (O-O) system
    corecore