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ABSTRACT 
 

University Name: The American University in Cairo 

Thesis Title: Software Quality Attribute Measurement and Analysis Based on Class 

Diagram Metrics 

By: Dalia Kamal Abd Alla Rizk 

Supervisor: Prof. Dr. Hoda M. Hosny 

 

Software quality measurement lies at the heart of the quality engineering process. Quality 

measurement for object-oriented artifacts has become the key for ensuring high quality 

software. Both researchers and practitioners are interested in measuring software product 

quality for improvement. It has recently become more important to consider the quality of 

products at the early phases, especially at the design level to ensure that the coding and 

testing would be conducted more quickly and accurately. The research work on 

measuring quality at the design level progressed in a number of steps. The first step was 

to discover the correct set of metrics to measure design elements at the design level. 

Chidamber and Kemerer (C&K) formulated the first suite of OO metrics. Other 

researchers extended on this suite and provided additional metrics. The next step was to 

collect these metrics by using software tools. A number of tools were developed to 

measure the different suites of metrics; some represent their measurements in the form of 

ordinary numbers, others represent them in 3D visual form. In recent years, researchers 

developed software quality models which went a bit further by computing quality 

attributes from collected design metrics. 

In this research we extended on the software quality modelers’ work by adding a quality 

attribute prioritization scheme and a design metric analysis layer. Our work is all focused 

on the class diagram, the most fundamental constituent in any object oriented design. 

Using earlier researchers’ work, we extract a class diagram’s metrics and compute its 

quality attributes. We then analyze the results and inform the user. We present our figures 

and observations in the form of an analysis report. Our target user could be a project 

manager or a software quality engineer or a developer who needs to improve the class 

 v



 vi

diagram’s quality. We closely examine the design metrics that affect quality attributes. 

We pinpoint the weaknesses in the class diagram, based on these metrics, inform the user 

about the problems that emerged from these classes, and advice him/her as to how he/she 

can go about improving the overall design quality. 

We consider the six basic quality attributes: “Reusability”, “Functionality”, 

“Understandability”, “Flexibility”, “Extendibility”, and “Effectiveness” of the whole 

class diagram. We allow the user to set priorities on these quality attributes in a sequential 

manner based on his/her requirements. Using a geometric series, we calculate a weighted 

average value for the arranged list of quality attributes. This weighted average value 

indicates the overall quality of the product, the class diagram. 

Our experimental work gave us much insight into the meanings and dependencies 

between design metrics and quality attributes. This helped us refine our analysis 

technique and give more concrete observations to the user. 
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Chapter 1: Introduction 
 

Measurement lies at the heart of many systems that govern our lives [6]. Economic 

measurements determine price and pay increases. Measurements in radar systems enable 

us to detect an aircraft when direct vision is obscured. Medical system measurements 

enable doctors to diagnose specific illnesses. Measurements in atmospheric systems are 

the basis for weather prediction. Without measurement, technology cannot function [6]. 

But measurement is not the sole interest of professional technologists. Each of us uses it 

in our everyday life. Price acts as a measure of value of an item in a shop, and we 

calculate the total bill to make sure the shopkeeper gives us correct change. We use height 

and size measurements to ensure that our clothing will fit properly. When making a 

journey, we calculate the distance, choose our route, measure our speed, and predict when 

we will arrive at our destination (and perhaps when we need to refuel) [6].  

The above examples present a picture of the variety of ways in which we use 

measurement. But there is a common thread running through each of the described 

activities: in every case, some aspect of a criterion is assigned a descriptor that allows us 

to compare it with others. In a shop, we can compare the price of one item with another. 

In the clothing store, we contrast sizes. And on our journey, we compare distance traveled 

to distance remaining. The rules for assignment and comparison are not explicit in the 

examples, but it is clear that we make our comparisons and calculations according to a 

well-defined set of rules. So measurement helps us to understand our world, interact with 

our surroundings and improve our lives [6]. 

Measuring quality is the key to developing high-class software [21]. In other words, 

assessing a software product helps with the improvement of software quality [34]. We 

need to measure quality in order to develop high-quality software where the safety and 

financial aspects are the main important aspects in our daily life [18]. In actual projects, 

quality metrics have been widely applied to manage software quality. This was mainly 

conducted by measuring the number of test items, the test coverage, and the number of 

faults in the test phase. This approach of relying much on testing is not satisfactory from a 

quality management viewpoint [19]. Therefore, it was thought to perform quality 

measurement on the coding level [21]. Then it was believed that assessing the quality of 

software at the design level would provide ease of use and higher accuracy for users [18]. 
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Considering that software is getting larger and more complex, quality must be maintained 

from the early phases such as requirements analysis and design through coding [19]. 

Hence, the current trend in the software engineering field is to focus on the entire 

software development cycle rather than on the implementation part only [21]. 

 

1.1 Motivation 

The degradation of software quality can incur significant costs on both the suppliers – 

who face dissatisfied customers, loss of market share, and rework of rejected systems – 

and the buyers, who receive faulty systems that fail to meet their mission goals [21].  

Anselmo et al [1] borrowed from Tom DeMarco’s book “Controlling Software Projects”, 

the statement that “You can’t control what you can’t measure”. They believe that before 

they can expect to improve productivity, they must measure it. Frakes et al [7] support 

this belief by stating that quality measurement is becoming an important factor in almost 

every company or organization. It is gaining more interest because it can assist both 

companies and researchers. In order for companies to improve productivity and quality, 

they must be able to measure their progress and identify the most effective quality 

measurement strategies [7]. While for the research community, traditional theory and 

methods about software quality have provided a foundation, yet further extensions are 

needed in order to cope with the new and more complex characteristics of software 

systems [18]. Anselmo et al [1] offered a framework that they believe is essential for 

making improvements in software productivity. They started by addressing issues 

concerning productivity of software development environments. There are no acceptable 

productivity benchmarks for a software environment [1]. Comparisons are generally 

based upon literature advocating a given method. Invariably they lack scientific data to 

support the claims. Software complexity grows rapidly when dealing with interactive user 

inputs, complex databases, dynamic graphics, networks, and so on. When functionality 

grows and software becomes more complex, development and support tools are put under 

the stress of a production environment. The more facilities contained in that environment 

to ease the development of these functions, the higher the productivity. The other 2 issues 

concerning productivity are scalability and reusability where the increasing complexity of 

software products stresses the scalability of the development environment in different 
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directions [1]. Therefore, many of the best software developers measure characteristics of 

the software to get some sense of whether the requirements are consistent and complete, 

whether the design is of high quality, and whether the code is ready to be tested [6]. 

Reuse is critical as a major justification for object-oriented programming (OOP) [1]. 

Unfortunately, there is no accepted definition of reuse nor a measure of its achievement. 

The main concern is that of measuring the effort required to reuse a software module in a 

new function. It is preferable to minimize the energy spent in development and support 

[1]. 

Anselmo et al [1] believe that before addressing measures for comparing software 

development environments, measures of the end product under development should be 

considered. Software systems are serving an ever-widening range of functionality. Poorly 

specified requirements are often cited as the cause for late and buggy software. Informed 

customers measure aspects of the final product to determine if it meets the requirements 

and whether it is of sufficient quality [6]. A more important factor appears to be the 

amount of functionality one must deal with [1]. It is required to quantify the size and 

complexity of the function space specified for a software product in order to determine 

the difficulty one faces in the development and support for that product. Effective project 

managers measure attributes of process and product to be able to tell when the software 

will be ready for delivery and whether the budget will be exceeded [6]. Another, product 

dimension that is required to be considered is the level of complexity of each function 

when measuring the difficulty in developing a piece of software [1]. As functionality and 

complexity grow, the number of opportunities for bugs multiplies and maintainers must 

be able to assess the current product to see what should be upgraded and improved [6]. 

Therefore, the quality of a software can be measured in terms of the availability of its 

specified functions; the time and cost to support that software and to maintain an 

acceptable level of availability, which must be determined by the users of that software 

[1]. 

Anselmo et al [1] present the properties of a software development environment that have 

been known to affect the man-hours and time to develop and support a software product. 

The first factor affecting productivity is independence whereby when attempting to reuse 

a module, one must be concerned with the independence of that module relative to its use 
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by different higher-level modules. The more a module shares data with other modules in a 

system, the higher is its connectivity to other parts of a system. The number of 

connections is measurable. The higher the connectivity, the lower the independence. 

Understanding the code is a major factor in software productivity, especially in the 

support phase of the life cycle of a product. Moreover, understandability of the 

architecture also contributes to the design of independent modules. Another factor 

affecting productivity is the flexibility whereby one can design a little, build a little, and 

test a little, thus growing a system incrementally to ensure components are meeting 

specifications and showing near-term results [1]. The third factor affecting productivity is 

visibility where the starting point is a visualization of the architecture on a modular basis 

and providing a one-to-one mapping into the detailed code. This can ensure design 

independence of modules while allowing visibility of the desired details. The last factor 

affecting productivity is abstraction where software should be broken into pieces such 

that the methods that produce them, including integration, can be examined 

experimentally [1]. 

Focusing on the entire software development life cycle gives software engineers the 

comprehensive knowledge they need in order to enhance software quality [21]. Such a 

broader focus supports early detection and resolution of quality problems, and the 

integration of product and process measurements lets engineers assess the interactions 

between them throughout the life cycle. It was found that quality metrics can be used to 

detect and remove problems with process and products in each phase [21]. Furthermore, it 

was found that, by using metrics throughout the life cycle, then in the test phase the 

progress of corrective action could be more quickly and accurately grasped [19]. Hence, 

engineers who are equipped with the knowledge to measure quality can better apply it to 

improve software quality throughout the development life cycle [21]. Since the field of 

software metrics is constantly changing and there is no standard set of metrics, and new 

measures are always being proposed; therefore, metrics extraction tools have to be 

updated frequently to handle these changes [28].  

We were strongly motivated to contribute to the on-going research work on assessing 

software design elements based on quantitative measures. 
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1.2 Research Background 

Bansiya et al [2] ascertained that the identification of a set of quality attributes that 

completely represent quality assessment is not a trivial task and depends upon many 

factors including management objectives, business goals, competition, economics, and 

time allocated for the development of the product. They proposed a new model 

(QMOOD) based on a class diagram, that has the lower-level design metrics well defined 

in terms of design characteristics, and quality is assessed as an aggregation of the model’s 

individual high-level quality attributes [2]. According to Bansiya et al [2] the set of 

design quality attributes in QMOOD includes: “functionality”, “effectiveness”, 

“understandability”, “extendibility”, “reusability”, and “flexibility”. They selected 

specific existing metrics that could be calculated from class design information only, and 

they introduced five new metrics. We based our work in this research on their proposed 

metrics and design quality attributes. 

More recent researches devised other models and approaches for measuring quality using 

different techniques. For example, Sharma et al [22] proposed a model for component 

based systems that can be used to estimate the quality of any component before using it in 

the final system. Wanger et al [33] presented a two-dimensional quality model approach 

that allows the structured elicitation and refinement of quality requirements using the 

activities of the stakeholders and their relationships with entities in the system that are 

documented in a quality model. Lamouchi et al [16] described a practical method that can 

be used to evaluate the expected quality of information systems. Stefan and Deissenboeck 

[32] suggested an integrated approach to quality modeling. Bhatti [4] stressed that 

measuring the quality of a system under construction is gaining higher interest especially 

when based on metrics collected from UML diagrams. Khan and Mustafa [12] proposed a 

model that addresses the low-level design metrics. Also, they use a set of empirically 

identified and weighted object-oriented design properties to assess testability. 

Lakshminarayana et al [15] presented a new approach to aid understanding of object-

oriented software through 3D visualization of software metrics that can be extracted from 

the design phase of software development. The focus of their work is on a metric 

extraction method and a new collection of glyphs for multi-dimensional metric 

visualization. Lakshminarayana et al [15] focus was on visually representing design 
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metrics to enhance their utility.  They establish that visual representation can assist the 

software developers in quickly comprehending the values of the metrics and thereby aid 

in the detection of anomalies in the design. As a result, the design can be improved and, 

ideally, made more robust. The visual representation of the metrics created by 

Lakshminarayana et al’s [15] tool for the classes of a UML class diagram was another 

important source of inspiration in this research work. They claim that values of the 

metrics for a class can be quickly obtained from their visual representation and 

conclusions about the class complexity can be drawn with ease [15]. 

 

1.3 Research Objective 

The main objective of this research is to help project managers and software quality 

personnel assess the quality of a class diagram based on known design metrics and their 

own set of quality preferences.  

Our approach in reaching the above objective involved a number of steps. We first 

identified the class diagram design metrics and their relationships with the most 

significant quality attributes from previous researches.  Then we set thresholds on the 

metrics in order to build the assessment system. In order to give the user the capability of 

setting quality preferences we devised a priority scheme for the six quality attributes that 

we selected. Finally, we presented the class diagram assessment result to the user. Our 

result is not only comprised of a single score but of an analysis report in which we give 

the user feedback on the weaknesses in the diagram and wherever possible, on how they 

could be resolved.  

The main ground for the research was the set of design metrics and quality attributes and 

the relationships between them. The Chidamber and Kemerer (C&K) suite of metrics, one 

of the first attempts at defining software metrics for object-oriented systems, was the 

main ground upon which previous researchers based their work and even added more of 

their own metrics. We based our work on the C&K suite and the researches that extended 

on it. We were also eager to verify their proposed metric computations and their 

relationships with quality attributes.  

The idea of presenting a visual model was also very inspiring and we built an interactive 

tool to make our priority scheme and analysis reports visible to our target user. 

 11



1.4 Research Results 

In this research we extended on the work of earlier researchers who set the class diagram 

design metrics and their relationships with software quality attributes. We specifically 

developed a class diagram assessment system, added a prioritization scheme for product 

quality attributes and an analysis reporting layer, and devised an interactive visual tool for 

the prioritization and analysis reporting. 

We relied on some ready-made tools in drawing the class diagram and the collection of 

some of its metrics but we developed our own theoretical computations for the remaining 

metrics and for the quality attributes. The directions of the collected class diagram design 

metric values were very consistent with those prescribed by the researchers who 

developed the metric suites.  

Within the class diagram’s assessment system we suggested thresholds for most design 

metrics. According to the threshold comparison we present an analysis report that 

pinpoints the deficiencies in the class diagram and how these deficiencies may be 

resolved. We calculate quality attributes, based on the collected metrics, and we offer the 

user the option to set priorities for the quality attributes that they seek to satisfy for the 

software product under development. A weighted average value for their priority settings 

is given as an indicator of the quality of the diagram.  

It was only through experimental testing that we could discover and analyze, the 

sometimes very complex relationships, between the various metrics and between the 

metrics and quality attributes and refine our analysis reporting system, accordingly.   

We built an interactive tool that allows the user to set his/her quality attribute priorities 

and that visually represents the design metrics and the quality attribute values extracted 

from the class diagram. The tool calculates a weighted average for the quality attributes 

(based on the user’s set of priorities), analyzes the metrics and presents a list of 

observations (based on thresholds) for each design metric. The observations guide the 

user in improving the class diagram and the improved diagram may be put through the 

tool again and the metrics recalculated. The new results would reflect the effect of the 

changes on the quality measurements and on the overall weighted average.  
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1.5 Document Outline 

The remaining chapters in this document are organized as follows:  

- Chapter two summarizes our literature survey on metric suites, automated tools, 

and the evaluation of metrics for Object-Oriented designs. 

- Chapter three describes our solution approach and gives a brief explanation about 

our tool (SDAnalysis Tool). 

- Chapter four presents our experimental tests on class diagram examples and the 

results obtained before and after enhancement based on our analysis reports. 

- In Chapter five we discuss our experimental results and draw fine lines through 

our findings. 

- Chapter six is the summary and conclusion chapter. It gives a summary of the 

research work and our contribution and discusses directions for further research 

that could extend on this research effort. 
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Chapter 2: Literature Survey 
 

This chapter presents our literature survey findings about related topics. We first discuss 

some significant metric models and metric suites in section 2.1. Then we show how some 

researchers used automated tools to extract, record, manage, and visually represent the 

design metrics for a class diagram (section 2.2). In section 2.3 we illustrate how these 

researchers evaluated their models based on selected criteria and in section 2.4 we 

mention prioritization techniques applied in earlier work on software quality attributes. 

2.1. Metric Models and Metric Suites 

This section summarizes the relevant metrics and metric suites found in the literature. 

Metrics indicating the quality of Object-Oriented design are an example. Also, metrics 

implemented in the OOMet Tool [27] are being discussed. An overview of the MOOD 

metrics and the QMOOD is also presented. 

2.1.1. Metrics indicating the quality of Object-Oriented Design 

Liu et al [18] were concerned with the quality of an OO system design. They define a 

design to be a process that starts from a study of a domain problem and finally leads to 

some formal documentation. A software design is a model of the domain problem 

solution and it should capture and represent the user’s requirements. It serves as a 

communication medium between the designer and the user on the one hand, and acts as a 

basis for implementation on the other hand. A design is a conceptual solution to a 

business problem while the software based on the design is just an implementation of the 

solution [18]. It is believed that system analysis and design must have a dominant 

position in the whole process of software development. According to Liu et al [18], Card 

and Grass, and Fenton have given a widely accepted and useful way to understand and 

evaluate the software quality, which they call a “factor-criteria-metrics” (FCM) model. 

As a first set, it is necessary to recognize the major factors that influence software quality. 

Secondly, some criteria need to be created for each factor. Finally, a set of metrics needs 

to be defined for each criteria (figure 2.1).  
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Figure 2.1: Software quality FCM model [18]  

 

Hence, Liu et al [18] suggest that for each stage in the software lifecycle (requirements 

analysis, software design, implementation, testing, integration, and maintenance), a set of 

software quality factors should be identified in order to influence the quality of 

deliverables produced at each stage. Also, the corresponding criteria and metrics need to 

be created and defined for measuring and evaluating the quality of the products. The 

importance of software design is that it is concerned with accurately mapping the 

requirements from the analysis stage to the logical models for implementation. Liu et al 

[18] identify reliability, complexity, and reusability as the three major factors that 

influence the quality of object oriented software design. Reliability reflects the mapping 

between the requirements onto the design and the connection to its implementation. 

Complexity is the factor to be determined by the design method used and the personal 

experience of the designer. Reusability is the design quality, which leads to the reuse of 

software products that should be regarded of a better quality [18]. Furthermore, they 

identify a list of criteria for an OO design that indicate the quality of that design. A 

foremost important factor to judge the quality of a software design should be reliability, 

leading to the criteria of correctness and completeness [18]. Figure 2.2 illustrates the 

FCM model for software design quality. 

 

   Factors       Criteria 
 
Reliability        Accuracy 
      Completeness 
       Consistency 
Complexity      Module size 
      Data coupling 
        Cohesion 
Reusability     Modularity 
               Span of control 

 
 
 

Figure 2.2: Software design quality measures [18]  

Factors Measurement Criteria 

 
 
 
 
 
Metrics 
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 This means a design should correctly capture and represent the user’s requirements. A 

second important consideration of a quality design should be the readiness for 

implementation, which suggests the transformation from the design to an implementation 

and that should be rigid and straightforward. This will shorten the project lifecycle time 

and minimize the chance of incurring mistakes in implementation [18].  

2.1.2. Metrics implemented in OOMet Tool 

An implemented prototype of OOMetTool that provides an automatic support for metric 

data gathering was presented by Stiglic et al [27]. Although their final goal was to 

determine, identify and validate OO metrics that are suitable and significant for OO 

development, they started their investigation with two main objectives, namely: to 

compare styles of various C++ developers and to examine the extent of reuse. Their main 

interest was to use objective metrics, those that can easily be quantified, measured and 

automated [27]. Table 2.1 lists some of Chidamebr’s metrics and some new metrics that 

were defined by the authors and implemented in the prototype of OOMetTool. 

 

Class Level Metrics System Level Metrics 

Class level (DIT) 

No. of Functions (WMC) 

Number of Children (NOC) 

Response for a Class (RFC) 

No. of parents 

% of public data members 

% of protected data members 

% of private data members 

% of public function members 

% of protected function members 

% of private function members 

No. of friends 

No. of files with source code 

Lines of code (LOC) 

No. of classes (all, TOP, BOTTOM) 

Avg. response 

Avg. function in classes 

Avg. depth of classes 

Avg. no. of children 

% of abstract classes 

No. of multiple inheritance 

% of non-member functions 

% of TOP classes 

% of BOTTOM classes 

 

Table 2.1: Metrics implemented in OOMetTool [27] 
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According to Stiglic et al [27], during development of the prototype they obtained in-

depth knowledge and understanding of all aspects of C++. Thus, they have already been 

developing a more suitable supporting tool that should help to find objective, cost 

effective and informative metrics with simple and precise definition. 

The OOMetTool was intended for examination and analysis of OO projects developed in 

Borland C++. A MAP file is used since it contains a lot of information that are of interest 

to the project (e.g. list of classes, class members, idle functions) [27]. After extraction of 

useful information from the MAP file (function names, file names, classes, implemented 

classes, …) source code (H and CPP files containing declarations and definitions of 

classes/functions) are analyzed to obtain complete information on class structures and on 

hierarchical relationships between classes. 

Stiglic et al [27] found that they don’t have enough empirical data to make statistically 

valid assertions and therefore, they only presented qualitative interpretation of obtained 

results. Moreover, their results showed that multiple inheritance is rarely used. The 

average level of inheritance (1 to 2) of the newly developed classes indicates that OO 

developers involved in the research do not practice good design strategies which would 

lead to reusable components [27]. On the contrary, the rate of utilized reusable classes 

from libraries, mostly those related to user interfaces (e.g. OWL – Object Windows 

Library from Borland), is very high. This shows that developers have not yet adopted OO 

thinking. This is also confirmed by a great number of the so-called nonmember functions 

(functions not belonging to any class). Major violations of encapsulation have been 

identified for some developers. Violation of good design practice, where implementation 

is hidden from the user of an object, is strongly correlated to the developer’s attendance at 

OO courses and/or the number of OO design methods, that a developer is familiar with 

[27]. An addition to their findings was that in the scope of OO approach a large amount of 

development effort has shifted from implementation to design. Also, design decisions 

greatly influence the quality attributes like reusability, maintainability and extensibility 

[27]. 
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2.1.3. The Mood Metrics (MOOD) 

Harrison et al [8] believe that analyzing object-oriented software in order to evaluate its 

quality is becoming increasingly important as the paradigm continues to increase in 

popularity. However, widespread adoption of object-oriented metrics in numerous 

application domains should only take place if the metrics can be shown to be theoretically 

valid, in the sense that they accurately measure the attributes of software which they were 

designed to measure, and have also been validated empirically. Therefore, Harrison et al 

[8] present a set of metrics for object-oriented design, called the MOOD metrics. They are 

being discussed from a measurement theory viewpoint, taking into account the recognized 

object-oriented features which they were intended to measure: encapsulation, inheritance, 

coupling, and polymorphism. 

2.1.3.1. Theoretical Measurement Validation Issues 

Harrison et al [8] based their investigation on the consideration of a number of criteria for 

a valid metrics set proposed by Kitchenham et al. According to Kitchenham et al [13], the 

main four theoretical measurement validation issues are: 

1) For an attribute to be measurable, it must allow different entities to be 

distinguished from one another. 

2) A valid measure must obey the Representation Condition, i.e., it must 

preserve all intuitive notions about the attribute and the way in which it 

distinguishes different entities. 

3) Each unit of an attribute contributing to a valid measure is equivalent. 

4) Different entities can have the same attribute value (within the limits of 

measurement error). 

Harrison et al [8] further distinguish between direct measurement of an attribute which is 

measurement that does not depend on any other attribute, and indirect measurement 

which involves the measurement of one or more other attributes. They presented another 

distinction between internal attributes of a product or process (those attributes which can 

be measured purely in terms of the product itself), and external attributes of a product or 

process (those attributes which can only be measured with respect to how the product or 

process relates to entities in its environment). 
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Moving to Kitchenham et al [13], indirect measures calculated from a model must exhibit 

a number of properties: 

1) Be based on a model concerned with the relationship among attributes as 

defined on specific abstract entities. 

2) Be based on a dimensionally consistent model. 

3) Exhibit no unexpected discontinuities. 

4) Use units and scale types correctly. 

2.1.3.2. Encapsulation 

Harrison et al [8] discuss the merits of each of the six MOOD metrics from a theoretical 

validation viewpoint. They started by the encapsulation feature where they proposed the 

Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF) metrics jointly. MHF is 

defined formally as: 

        C    T   Md (Ci) 

i=1         m=1  (1 – V(Mmi)) 
 
                  C     T

i=1   Md (Ci)  
 

where Md (Ci) is the number of methods declared in a class, and 

                TC 

V(Mmi) =     j=1 is _visible (Mmi, Cj)   

      TC - 1       

where TC is the total number of classes, and 

         1  iff j  i  Cj may call Mmi 

is _visible (Mmi, Cj) = 0  otherwise 
 

Thus, for all classes, C1, C2, ..., Cn, a method counts as 0 if it can be used by another 

class, and 1 if it cannot. The total for the system is divided by the total number of 

methods defined in the system, to give the percentage of hidden methods in the system 

[8]. AHF is defined in an analogous fashion, but using attributes rather than methods. 
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According to Harrison et al [8] some terms need to be defined. Data encapsulation is 

often taken to mean the power of a language to hide implementation details through (for 

example) the separate compilation of modules, the separation of interface from 

implementation, the use of opaque types, etc. Information hiding, on the other hand, can 

be defined in terms of the visibility of methods and/or attributes to other code. 

Information can be hidden without being encapsulated, and vice-versa. 

For systems written in C++, the calculation of MHF is complicated by the existence of 

protected methods; this adjustment is problematic [8]. For a protected method in C++, the 

method is counted as a fraction between 0 and 1, calculated as1: 

 
  number of classes not inheriting the method 
                 total number of classes – 1 

2.1.3.3. Inheritance 

Moving to the second object-oriented feature which is inheritance, Harrison et al [8] 

proposed the Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) 

metrics as: 

            TC   

i=1 Mi (Ci)   
        C    T


   

i=1 Ma (Ci)  
 

where  

Ma (Ci) = Md (Ci) + Mi (Ci) 

and  

Md (Ci) = the number of methods declared in a class,        

Ma (Ci) = the number of methods that can be invoked in association with Ci, 

Mi (Ci) = the number of methods inherited (and not overridden) in Ci. 

                                                 
1 The denominator has the value 1 subtracted from the total number of classes because the base class under 

consideration should not be included. 
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For MIF for each class C1, C2, …., Cn, a method counts as 0 if it has not been inherited 

and 1 if it has been inherited [8]. The total for the system is divided by the total number of 

methods, including any which have been inherited (i.e., methods which are inherited are 

counted as belonging to their base class as well as to all inheriting subclasses). AIF is 

defined in an analogous fashion. Thus, MIF and AIF measure directly the number of 

inherited methods and attributes respectively as a proportion of the total number of 

methods/attributes. 

2.1.3.4. Coupling 

The Coupling Factor (CF) metric was proposed as a measure of coupling between classes, 

excluding coupling due to inheritance [8]. CF is defined formally as: 

    T       C          TC


  

i=1    j=1 is _client (Ci, Cj)  
 
           TC2 - TC 
where 

    1

is _client (C
  iff Cc  Cs  Cc  Cs 

c, Cs) = 0  otherwise 
 

and Cc => Cs represents the relationship between a client class, Cc, and a supplier class, 

Cs. 

CF is calculated by considering all possible pair-wise sets of classes, and asking whether 

the classes in the pair are related, either by message passing or by semantic association 

links (reference by one class to an attribute or method of another class) [8]. 

2.1.3.5. Polymorphism 

The Polymorphism Factor (PF) metric is the last object-oriented feature which Harrison et 

al [8] proposed as a measure of polymorphism potential. It is defined as: 

    T


C   

i=1 Mo(Ci) 
  
                 TC   

   i=1 [Mn (Ci)  DC (Ci)] 
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where  

 Md (Ci) = Mn (Ci) + Mo (Ci) 

and 

 Mn (Ci) = the number of new methods, 

 Mo (Ci) = the number of overriding methods, 

 DC (Ci) = the descendants count (the number of classes descending from Ci). 

PF is the number of methods that redefine inherited methods, divided by the maximum 

number of possible distinct polymorphic situations (the latter represents the case in which 

all new methods in a class are overridden in all its derived classes) [8]. Thus, PF is an 

indirect measure of the relative amount of dynamic binding in a system. 

2.1.4. Project and Design Metrics 

Kostecki [14] reviewed Lorenz et al’s book and presented it by addressing the importance 

of metrics in software development. He believes that metrics have been used in the past to 

measure reliability and quality of the final software products, but now the emphasis is 

moving toward management of the software process as well as evaluation of intermediate 

software work products. 

According to Kostecki, Lorenz et al presented at least nine projects written in Smalltalk, 

and two projects written in C++ [14]. The suite of metrics described in the book is 

divided into two main categories: Project Metrics and Design Metrics. Project metrics 

correspond with management issues, such as Application Size, Staffing Size, and 

Scheduling (of software deliverables). Design metrics are used to quantify the 

complexity, size and robustness of the object-oriented design being used. 

Kostecki introduced the following set of seven attributes for design metrics that were 

given by Lorenz et al: 

1) Name: A unique descriptive name for the metric. 

2) Meaning: A description of the information which the metric gives to the user. 

3) Project Results: Some graphical representations of the statistics collected were 

given. 

4) Affecting Factors: The interdependency of metrics with other factors in the 

project is discussed. In some cases, metrics values will be affected by whether the 
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5) Related Metrics: The metrics proposed in this book are listed in related groups. 

6) Thresholds: The authors use their experience with the metric to set some ranges 

for the values. The ranges not only delineate acceptable values, but also indicate 

undesirable ranges as well. This helps the users of the metrics by using this past 

experience to identify undesirable ranges as well. This helps the users of the 

metrics by using this past experience to identify anomalies in their own metrics. 

Kostecki [14] emphasizes that Lorenz et al point out that these anomalies may not 

be a problem, but their identification is a warning that some thought is necessary 

to assess the data. 

7) Suggested Actions: According to Kostecki [14], the authors use their experience 

with the metric to help the readers understand what actions might be taken if the 

metric is either outside of the recommended threshold or is at an undesirable level. 

2.1.4.1. Issues for Project Metrics 

Kostecki [14] stated two of the three issues for project metrics being discussed by Lorenz 

et. al. to be as follows: 

1) Application Size metrics are derived in order to provide management with an 

application specific comprehension of the amount of work needed. Lorenz et al 

have chosen measures which are focused on the design of the target application; 

for instance, Number of Key Classes, Number of Subsystems, and Number of 

Support Classes. 

2) Staffing Size is also tied to the size and complexity of the application. Lorenz et 

al use two measures for this purpose: Person-Days Per Class and Classes Per 

Developer. 

2.1.4.2. Measures for Design Metrics 

According to Kotecki [14] there are 27 individual metrics defined in Lorenz et al book, 

but for the sake of brevity, he focused on the following: 
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1) Method Size consists of two measures: Number of Message Sends, and Lines of 

Code (LOC). The Number of Message Sends can be used to understand the 

intensity of communications within the application. Three types of messages: 

a) unary: where no arguments are passed. 

b) binary: where the message consists of one argument and is separated by a 

special selector. 

c) keyword: messages which contain one or more arguments. 

LOC remains a fairly straightforward way of expressing program size. 

2) Methods Internals consists of two metrics: Method Complexity and String of 

Message Sends. Method Complexity attempts to replace such measures as 

McCabe’s Complexity because of the shortfalls of the older, function-oriented 

measures in dealing with object-based systems [14]. 

2.1.5. Hierarchical Quality Model for Object-Oriented Design 

(QMOOD) 

Bansiya et al [2] believe that due to the increase in demand for software quality, it has 

resulted in quality being more of a differentiator between products than it has ever been 

before. In a marketplace of highly competitive products, the importance of delivering 

quality is no longer an advantage, but a necessary factor for companies to be successful. 

Moreover, they think that the influence of an attribute may need to be changed by a 

weighting factor [2]. For large organizations with sophisticated networks and real-time 

processing, performance and reliability may be the most important attributes, whereas, for 

organizations that are in the multiplatform business, portability and extendibility are 

important attributes. As a result, Bansiya et al [2] highlight that the identification of a set 

of quality attributes that completely represents quality assessment is not a trivial task and 

depends upon many things including management objectives, business goals, 

competition, economics, and time allocated for the development of the product. 

Therefore, they presented a new model that has the lower-level design metrics well 

defined in terms of design characteristics, and quality is assessed as an aggregation of the 

model’s individual high-level quality attributes [2]. 
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2.1.5.1. Model Development 

According to Bansiya et al [2] the methodology that they presented in the development of 

the hierarchical Quality Model for Object-Oriented Design (QMOOD) assessment 

extends Dromey’s generic quality model that consists of three principal elements: product 

properties that influence quality, a set of high-level quality attributes, and a means of 

linking them. Bansiya et al [2] selected the ISO 9126 attributes – “functionality”, 

“reliability”, “efficiency”, “usability”, “maintainability”, and “portability” – as the initial 

set of quality attributes in the QMOOD model. However, due to the obvious slant toward 

implementation rather than design, “reliability” and “usability” were excluded from the 

set. The term “portability” is more appropriate in the context of software implementation 

quality and was replaced with “extendibility” which better reflects this characteristic in 

designs [2]. Similarly, the term “efficiency” was replaced with “effectiveness” which 

better describes this quality for designs. The term “maintainability” also implies the 

existence of a software product and was replaced by “understandability” which 

concentrates more upon design characteristics. According to Bansiya et al [2] the set of 

design quality attributes in QMOOD includes: “functionality”, “effectiveness”, 

“understandability”, “extendibility”, “reusability”, and “flexibility”. Bansiya et al’s [2] 

quality attributes’ definitions are shown in table 2.2. 

Quality Attribute Definition 
Reusability Reflects the presence of object-oriented design characteristics 

that allow a design to be reapplied to a new problem without 
significant effort. 

Flexibility Characteristics that allow the incorporation of changes in a 
design. The ability of a design to be adapted to provide 
functionally related capabilities. 

Understandability The properties of the design that enable it to be easily learned 
and comprehended. This directly relates to the complexity of the 
design structure. 

Functionality The responsibilities assigned to the classes of a design, which 
are made available by the classes through their public interfaces. 

Extendibility Refers to the presence and usage of properties in an existing 
design that allow for the incorporation of new requirements in 
the design. 

Effectiveness This refers to a design’s ability to achieve the desired 
functionality and behavior using object-oriented design concepts 
and techniques. 

Table 2.2: Quality Attribute Definitions (adapted from [2]) 
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2.1.5.2. Identifying Object-Oriented Design Properties 

Bansiya et al [2] believe that the design properties of abstraction, encapsulation, coupling, 

cohesion, complexity and design size are frequently used as being representative of 

design quality characteristics in both structural as well as object-oriented development. 

Messaging, composition, inheritance, polymorphism, and class hierarchies represent new 

design concepts which were introduced by the object-oriented paradigm. 

2.1.5.3. Identifying Object-Oriented Design Metrics 

Each of the design properties identified in the QMOOD model represent an attribute or 

characteristic of a design that is sufficiently well defined to be objectively assessed by 

using one or more well-defined design metrics during the design phase. Bansiya et al [2] 

surveyed existing design metrics and suggested that there are several metrics that can be 

modified and used in the assessment of some design properties, such as abstraction, 

messaging, and inheritance. However, there are several other design properties, such as 

encapsulation, and composition, for which no object-oriented design metrics exist. 

Therefore, Bansiya et al [2] chose some existing metrics that could be calculated from 

design information only, and they also introduced five new metrics. Table 2.3 lists the 

complete suite of metrics used in QMOOD.  
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Metric Name Description 
DSC Design Size in 

Classes 
This metric is a count of the total number of classes in the 
design. 

NOH Number of 
Hierarchies 

This metric is a count of the number of class hierarchies in 
the design. 

ANA Average 
Number of 
Ancestors 

This metric value signifies the average number of classes 
from which a class inherits information. It is computed by 
determining the number of classes along all paths from the 
“root” class(es) to all classes in an inheritance structure. 

DAM Data Access 
Metric 

This metric is the ratio of the number of private (protected) 
attributes to the total number of attributes declared in the 
class. A high value for DAM is desired. (Range 0 to 1) 

DCC Direct Class 
Coupling 

This metric is a count of the different number of classes that 
a class is directly related to. The metric includes classes that 
are directly related by attribute declarations and message 
passing (parameters) in methods. 

CAM Cohesion 
Among 
Methods of 
Class 

This metric computes the relatedness among methods of a 
class based upon the parameter list of the methods. The 
metric is computed using the summation of the intersection 
of parameters of a method with the maximum independent 
set of all parameter types in the class. A metric value close 
to 1.0 is preferred. (Range 0 to 1) 

MOA Measure of 
Aggregation 

This metric measures the extent of the part-whole 
relationship, realized by using attributes. The metric is a 
count of the number of data declarations whose types are 
user defined classes. 

MFA Measure of 
Functional 
Abstraction 

This metric is the ratio of the number of methods inherited 
by a class to the total number of methods accessible by 
member methods of the class. (Range 0 to 1) 

NOP Number of 
Polymorphic 
Methods 

This metric is a count of the methods that can exhibit 
polymorphic behavior. Such methods in C++ are marked as 
virtual. 

CIS Class Interface 
Size 

This metric is a count of the number of public methods in a 
class. 

NOM Number of 
Methods 

This metric is a count of all the methods defined in a class. 

 

Table 2.3: Design Metrics Descriptions (adapted from [2]) 

 

Furthermore, Basiya et al [2] identified the design components which are objects, classes, 

and the relationships between them. Another component that can be identified in object-

oriented designs is class hierarchies that organize families of related classes. Thus, a set 

of components which can help analyze, represent and implement an object-oriented 
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design should include attributes, methods, objects (classes), relationships, and class 

hierarchies. 

The diagram in Figure 2.3 illustrates the mapping of quality-carrying component 

properties to design properties. It also shows the assigning of design metrics to design 

properties. Finally, it presents the linking between design properties to quality attributes. 

Some of the design properties have positive influence on the quality attributes while on 

other quality attributes, they could have negative influence. 

 
     First             Second       Third          Fourth     
    Level                  Level                             Level                     Level 
       L1                            L2                      L3                     L4 

 

 

 

 

 

 

 
 

Object 
Oriented 

Component 

 
Object 

Oriented 
Design 
Metrics 

 
Object 

Oriented 
Design 

Properties 
 

 
 
Design 
Quality 

Attribute 

Functionality        Abstraction        ANA    Attributes  
(S, D, P, M, H)    Encapsulation        DAM    Methods 
Effectiveness         CoUpling              DCC     Objects 
(A, E, T, I, P)                                   (Classes) 
Understandability        CoheSion              CAM    Relationships 
(A, E, U, S, D, P, X)          CompleXity                   NOM    Class    
Extendibility              Hierarchies     
(A, U, I, P)         Design Size        DSC 
Reusability         Messaging        CIS 
(U, S, D, M)         ComposiTion        MOA 
Flexibility         Inheritance        MFA 
(E, U, T, P)       Polymorphism        NOP 
       Class Hierarchies                   NOH 

 

Figure 2.3: Levels and links in QMOOD (adapted from [2]) 

 

Bansiya et al [2] chose a scheme for weighing the influences on a quality attribute based 

on its simplicity and ease of application. The initial weighted values of design property 

influences on a quality attribute were then proportionally changed to ensure that the sum 

of the new weighted values of all design property influences on a quality attribute added 
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to ± 1, the selected range for the computed values of quality attribute. Table 2.4 shows the 

computation formulas for Quality Attributes as suggested by Bansiya et al [2]. 

 

Quality 
Attribute 

Index Computation Equation 

Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * 
Design Size 

Flexibility 0.25 * Encapsulation – 0.25 * Coupling + 0.5 * Composition + 0.5 
* Polymorphism 

Understandability -0.33 * Abstraction + 0.33 * Encapsulation – 0.33 * Coupling + 
0.33 * Cohesion – 0.33 * Polymorphism – 0.33* Complexity – 
0.33 * Design size 

Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 * Messaging + 
0.22 * Design Size + 0.22 * Hierarchies 

Extendibility 0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance + 0.5 * 
Polymorphism 

Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 
* Inheritance + 0.2 * Polymorphism 

 

Table 2.4: Computation Formulas for Quality Attributes (adapted from [2]) 

2.1.6. Techniques for Collecting the Required Metrics 

Wang’s [34] research puts emphasis on the idea of assessing the software from its earliest 

stages where he uses software metrics as a measurement to conduct the assessment. When 

collecting software metrics from various components of a software product, he considers 

two important issues. The first issue is that only those metrics which interest us in 

measuring quality will be selected and he uses the ISO9126 model which is a quality 

model for product assessment to satisfy this issue. Secondly, he believes that a limited 

number of techniques for collecting metrics have been shown to be practical and then 

relates them to a quality characteristic [34].  

2.1.6.1. ISO9126 Quality Model 

The standard ISO9126 divides quality into six characteristics: functionality, reliability, 

usability, efficiency, maintainability, and portability. Functionality is defined as ‘a set of 

attributes that bear on the existence of a set of functions and their specified properties. 

The functions are those that satisfy stated or implied needs.’ Reliability is defined as ‘a 

set of attributes that bear on the capability of software to maintain its level of 
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performance under stated conditions for a stated period of time.’ Usability is defined as ‘a 

set of attributes that bear on the effort needed for use and on the individual assessment of 

such use by a stated or implied set of users.’ Efficiency can be decomposed into time 

behaviour: ‘response time and processing time and on throughput rates’, and resource 

behaviour: ‘the amount of resources used and the duration of such use.’ Maintainability 

requires analyzing the software to find the fault, making a change, ensuring that the 

change does not have side - effects, and then testing the new version. Portability is 

defined as ‘a set of attributes that bear on the ability of the software to be transferred from 

one environment to another [34].  

2.1.6.2. Metrics Collection Techniques 

Wang [34] further classifies three basic metric collection techniques that could be used to 

assess any software product. Static analysis; where tools are used to measure the 

components without running them. This technique is often associated with the analysis of 

source code, but it can also be applied to specifications and designs in a formal or semi-

formal notation. The second type is the execution analysis; where running the executable 

components is required. Manual inspection is the third type where the components are 

analyzed by hand. Each of these techniques is further broken into more specific types. 

There are four types of static analysis commonly used: anomaly checking, textual 

measurement, structural analysis, and test cross-referencing. The execution analysis has 

three techniques identified as: black-box testing, failure data collection, and test coverage. 

The commonly used approach in the manual inspection activity is by using checklists 

[34]. 

2.1.6.3. Types of Static Analysis 

Anomaly checking, which is the first type in static analysis, applies only to formal 

language and specifically to source code. It is any undesirable feature of the code that 

may lead to a fault either during compilation, execution or porting to another environment 

[34]. It assesses the reliability feature as it identifies in the components those features that 

might be faults. It also can check for non-portable features of the source code leading to 

assessing the portability issue. There are two types of proposed metrics that might be 
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collected with information on anomalies that might be applicable to assess the reliability 

feature: first, simple counts of the anomalies (defined on the absolute scale), and secondly 

conformance to a language subset (on the nominal scale). Such a subset may be supported 

by a standard. For portability, any non-portable feature will be of interest such as: 

language extensions, non-standard library functions, calls to the OS, or embedded 

assembler code [34]. 

 Textual measurement is another type of static analysis where it is based on the count of 

tokens or words in the document. The three main types of textual measurement are: 

measures of size such as lines of codes, or the density of comments [34]. Software size 

measures, based on the work of Halstead, are based on the source code and aim to predict 

the effort and difficulty associated with understanding the program. At the simplest level 

of counting the operands and operators of the program, these metrics can indicate size and 

amount of vocabulary. According to Wang [34], the third type of textual measurement is 

readability indices, defined on natural languages. It is also called the Fog index which is a 

measure of the readability of a passage of written text, the number of reported faults in a 

delivered software product and the number of person-days required to develop a system 

component [25]. Spelling checkers find faults in code comments [34]. Textual 

measurement can be used to determine the readability of documents in the case of natural 

language documents, and for source code it can be used to derive metrics which relate to 

maintainability (for program documentation) or usability (for user’s documentation). 

Further illustration to quality characteristics is that an important part of the maintenance 

task understands how the existing software works. There are a number of proposed 

complexity metrics which measure the readability of the software. Among these factors 

are the size and structure of the modules. If the modules are too large then it becomes 

difficult to understand them. If on the other hand they are too small the maintainer will 

have to constantly switch attention between different parts of the code. Textual measure 

can be used to measure the size of the modules. In addition to maintainability, textual 

measurement affects the usability characteristic where the quantity and quality of the user 

manual will clearly have a bearing on the products’ usability [34]. Textual metrics may be 

used to assess both the size of user documentation and its readability. Lines of code or 

text, number of characters, number of pages could be simple measures of size to be used 
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as metrics. The Halstead metrics are based on counts of the number of operands and 

operators in the code [34]. Operands are the variables, labels, and constants used in the 

program, and operators are the key words, arithmetic symbols, brackets, comparison 

operators, and other symbols (like ‘,’ and ‘;’). Names of functions and procedures count 

as operands where the function is being defined, but as operators where it is being called. 

Comments and declarations are ignored. Thus the four base metrics can be defined as: 

N1 The total number of operators  

N2 The total number of operands  

D1 The number of distinct operators  

D2 The number of distinct operands 

The size of the vocabulary V can be derived to be: 

V = D1 + D2 

and the length of the program: 

N = N1 + N2. 

The third technique related to static analysis is structural analysis which is applied to 

format notations such as source code or formal specifications [34]. Structural models such 

as flowgraphs or call graphs are derived from the code and from these, various structural 

metrics can be derived. In other words, structural analysis is based on deriving directed 

graph models of the software and then calculating metrics from these models. The most 

common models used are the control flow-graph which captures the algorithmic structure 

of a given module and the call graph which captures the interrelations between the 

modules in a compound module or subsystem. It is a graph with nodes represented by 

functions and their callers. The static analyzers for structural analysis typically have two 

parts: a front end and a back end. The front end reads in the source code, and outputs 

intermediate files. Front ends are always specific to a particular language. The back end 

reads in the intermediate files, calculates the metrics and displays them. Normally the 

graphs displayed by the back end can be used to create documentation or for inspection 

purpose [34]. We rather rely on metrics to assess the structural attributes than the graphs 

themselves because their layouts will depend heavily on the underlying implementation 

algorithm. Structural analysis can be used to decide on the maintainability where the 

structure of the various software components will affect how easy they are to understand 
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and test and this in turn will influence the maintainability of the software. There are 

already tools that structural metrics can be derived from. Logiscope in [34] defines 

directly from the flow-graph, the following metrics: number of nodes, number of edges, 

cyclomatic complexity number (defined as: edges – nodes + 2), and number of levels (the 

maximum number of nesting levels of control-flow constructs within the flow-graph). 

Regarding the call graph metrics, Logiscope calculates the hierarchical complexity which 

is the average number of modules on each level of the call graph. It also calculates the 

structural complexity which is the average number of calls per module. QUALMS in [34] 

is another tool that calculates other call graph metrics which are the maximum depth of 

call, number of recursions, Yin and Winchester metrics (a family of metrics which 

calculate how much the call graph deviates from a tree), and the re-use metrics (which 

determine to what extent modules are called by many different other modules).  

The last static analysis technique presented by Wang [34] is the test cross-referencing 

where the test cases and functions of the software as described in the documentation can 

be cross-referenced to give measures of the functional coverage of the tests for gauging 

functionality. In simple words, test cross-referencing is a technique that connects 

functions of the product with specific test cases. The technique is based on following 

three steps. First is the extraction of the functionality from the functional specification 

describing the functional behaviors of the product. Then the specification of test cases 

with indication of the functions that are covered by each of them. Finally, the 

computation of functional coverage on the basis of tests and of their relationship with 

functionalities. The technique is oriented to the definition and monitoring of testing 

activities. The next logical stage is to perform the actual testing to determine whether the 

test cases pass or fail. Its key feature is that it creates a strong link between specifications 

and test documents (by means of the list of functions). It also gives a coverage measure 

which is closer to the user’s perception than the actual testing coverage measure because 

the calculation of a measure for actual execution testing counts the hidden functions 

(supporting procedures) that may not appear on the specification. It is only possible to 

apply this technique to specification and test plans where they have been specially 

instrumented [34]. Therefore, test cross-referencing is related to the functionality quality 

characteristic which is mainly directed to the verification that all the functions are 
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expressed in the specifications of the product work correctly. TEFAX in [34] is a tool 

supporting the software testing and quality-control activities. It proposes some metrics 

that are related to assessment concerning test structure and functional coverage. Test-

structure metrics are test redundancy (average number of tests covering functionality) and 

test power (average number of functionalities as stated in the documents covered by a 

test). Furthermore, there are two related metrics for actual execution testing namely test 

progress (percentage of tests actually executed) and functional coverage (percentage of 

passed functions, that is functions that were tested without causing a failure) [34]. 

2.1.7. The Use of an Intermediate Relation Set to Simplify 

Metrics Extraction 

Succi et al [28] believe that the field of software metrics is constantly changing. There is 

no standard set of metrics, and new measures are always being proposed. Metrics 

researchers have to modify their existing parser tools in order to accommodate the new 

measures. Therefore, they presented a paper that details the use of an intermediate 

relation set to decouple code parsing from metrics analysis [28]. Parsers simply generate a 

set of intuitive relations, which a separate analyzer uses as input to compute arbitrary 

metrics. Then, new metrics simply have to be specified in terms of these relations. More 

specifically, the language parsing should be decoupled from the metrics analysis portion 

of the process. This requires an additional layer of abstraction with an associated 

intermediate representation [28]. 

This is done by presenting a high-level, metrics-oriented intermediate representation in 

the form of a set of relations. The relations describe the interaction between different 

language entities, such as classes and methods. Metrics can be calculated by directly 

querying the relation set. For example, a metrics researcher who wants to calculate the 

depth of inheritance tree for a class needs to look at the inheritance hierarchy to deduce 

the measure. The metrics researcher should not have to deal with language parsing 

production concepts such as declarations, class specifiers, and base clauses in order to 

calculate the measure [28]. 
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2.1.7.1. Advantages and Disadvantages of Modular Metric Extraction 

Succi et al [28] believe that the disadvantage of their approach lies in adding an extra 

layer of abstraction which leads to elongating the initial development time. However, the 

savings in maintenance effort later on in the development lifecycle offset this 

disadvantage. On the other hand, they believe that the advantages lie in that a user only 

needs to deal with the high-level, metrics-oriented intermediate representation when 

adding or modifying metrics to be calculated [28]. 

2.1.7.2. C++ Metrics Extractor 

To test the overall concept of the relation set, Succi et al [28] built a tool to calculate OO 

design metrics from relations extracted from C++ source code. They presented only seven 

relation types in their relation set (shown in table 2.5 below). These have been chosen to 

specifically facilitate the calculation of certain OO design metrics. 

 

Relation Description Simple Example 

hasLOC(entity, x) 
The specified entity has x lines of 

code. 
hasLOC(Stack, 6) 

hasMethod(entity, 

method) 

The specified entity has the 

specified method. 

hasMethod(Stack, 

Stack::push) 

hasAttribute(entity, 

attribute, typename) 

The specified entity has an 

attribute of the specified type. 

hasAttribute(Stack, 

Stack::size, int) 

Extends(entity, class) 
The specified entity is a 

specialization of the specified 

l

extends(Stack, Collection) 

hasClass(entity, 

class) 

The specified entity contains the 

specified (inner) class. 

hasClass(Stack, 

Stack::Iterator) 

calls(entity, method, 

x) 

The specified entity called the 

specified method x times. 

calls(Stack::push, 

Stack::isFull, 1) 

UsesAttribute(entity, 

attribute, x) 

The specified entity uses the 

specified attribute x times. 

usesAttribute(Stack::isFull, 

Stack::size, 2) 

 

Table 2.5: Relation types (adapted from [28]) 

 35



2.1.7.3. Application of Relation Set 

The first module of the tool takes preprocessed C++ source code as input, and writes the 

extracted relation set as output [28]. The second module takes the relation set as input and 

calculates the following for each class: 

- LOC (Lines Of Code in terms of number of semicolons) 

- WMC (Weighted Method Count) 

- DIT (Depth of Inheritance Tree) 

- NOC (Number Of Children) 

- CBO (Coupling Between Object classes) 

- RFC (Response For a Class) 

- LCOM (Lack of Cohesion between Methods) 

Succi et al [28] expressed the CK metrics in terms of the relations using a set-based 

notation. Table 2.6 shows an example of these metrics: 

 

Metric Expressed in terms of relations 

WMC WMC(X) = |{i : hasMethod(X, i)}| 

DIT                     1 + max ({DIT(i) : i є I}), I  {i : extends (X, i)} ^  I ≠ ø 

DIT(X) =     0, I = ø 

NOC NOC(X) = |{i : hasClass(X, i)}| 

 

Table 2.6: Expression of CK metrics in terms of relations (adapted from [28]) 

 

As shown in table 2.6, the relations can be easily used to formally express metrics. The 

metric values can then be calculated directly using these expressions [28]. 

2.1.8. Semantic Metrics from Requirements or Design 

Specifications 

Software metrics can provide an automated way for software practitioners to assess the 

quality of their software. The earlier in the software development life cycle this 

information is available, the more valuable it is, since changes are much more expensive 

to make later in the life cycle. Stein et al [26] presented a research that focuses on using 
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semantic metrics to assess systems that have not yet been implemented. They chose 

semantic metrics as they do not rely on the syntax or structure of code, they can be 

computed from requirements or design specifications before the system is implemented. 

2.1.8.1. Background of Semantic Metrics 

According to Stein et al [26] a suite of semantic metrics that is calculated based on 

concepts in a knowledge base that are associated with a class or method was introduced 

by Etzborn and Delugach. The suite includes the following metrics: 

- LORM (logical relatedness of methods): the number of relations in a class 

divided by the number of pairs of methods in the class. 

- CDC (class domain complexity): the sum of the concepts associated with a 

class, each multiplied by a weighting factor, plus their associated 

conceptual relations. 

- RCDC (relative class domain complexity): the class’s CDC value divided 

by the maximum CDC value for any class in the system. 

- KCI (key class identity): 1 if the class’s RCDC value is at least 0.75; 0 

otherwise. 

- COa (class overlap): the sum of the concepts in common between two 

classes, divided by the total number of unique concepts in either class, 

computed for all classes in the system and divided by the number of 

classes in the system [26]. 

2.1.8.2. Design Metrics 

According to Stein et al [26], Bieman and Kang proposed a new way to assess the 

cohesion of a module (here, a procedure or function) from the design alone. They defined 

six types of relationships that could exist between any pair of outputs of a module. These 

relationships are: 

- Coincidental Relationship (R1): the two outputs do not depend on each 

other, and they don’t depend on any common input. 

- Conditional Relationship (R2): the two outputs depend on the same input, 

and that input is a condition in a branch control structure. 
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- Iterative Relationship (R3): the two outputs depend on the same input, and 

that input is a condition in a repetition control structure. 

- Communicational Relationship (R4): two outputs depend on the same 

input, and that input is not a condition in any branch or repetition control 

structure. 

- Sequential Relationship (R5): one output depends on the other. 

- Functional Relationship (R6): the module has only one output [26]. 

Some of these relationships might still be difficult to identify during the design phase, 

particularly the ones that depend on whether the input is a condition in a control structure; 

however, this metric is a step in the right direction for true design metrics [26]. 

Moreover, Bieman and Kang defined three other design level cohesion metrics [26]. They 

defined isolated components to be those that affect only one output of the module; 

essential components are those that affect or depend on all outputs of the module. In this 

context, a component is an input or output of a module. From these definitions, Bieman 

and Kang’s metrics are defined as follows [26]: 

- LC (loose cohesiveness): the number of isolated components divided by 

the number of components in the module. 

- TC (tight cohesiveness): the number of essential components divided by 

the number of components in the module. 

- MC (module cohesiveness): the sum over all components of the 

connectedness of each component, divided by the number of components 

in the module [26]. 

Stein et al [26] presented another study of design level metrics that was performed by 

Bansiya and Davis that defined a model called QMOOD, containing four levels to be 

analyzed in object-oriented design: 

- Components: objects, classes, and relationships. 

- Metrics (several new ones) 

- Properties: abstraction, encapsulation, coupling, cohesion, complexity, and 

size. 

- Quality attributes: functionality, effectiveness, understandability, 

extensibility, reusability, and flexibility [24]. 
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2.1.8.3. Metrics Used to Predict Aspects of Software Quality 

Stein et al [26] explained the studies done by Basili, Briand, and Melo and Briand et al 

that dealt with analyzing existing metrics for their use as predictors of probability of fault. 

Probability of fault is the likelihood that a fault will be detected in a module during an 

inspection. Basili, Briand, and Melo found that fault probability had significant positive 

correlation to DIT (depth of inheritance tree), RFC (response for class), and CBO 

(coupling between objects). They also found a significant negative correlation to NOC 

(number of children), which they attributed to more design and testing effort being 

expended on classes on which other classes will be based [26]. Moreover, Briand et al 

began with a set of 49 metrics compiled from 12 different sources. Using logistic 

regression, they found that the best model contained 11 of the original metrics. This 

model found 95% of the faults in the system, and 85% of the modules it flagged as 

probably having faults actually had faults [26]. 

2.1.8.4. Analyzing Design Documents 

Furthermore, Stein et al [26] went through a few studies that addressed different 

perspectives on processing design specifications. One of these studies was conducted by 

Lague et al where they compared design documents’ descriptions of layered architecture 

systems with the way the source code was organized into files. Another study done by Li 

and Horgan [26] involved analyzing a design specification to check its correctness before 

using a tool to automatically generate code from it. They developed a tool called XSuds 

to go through the design specification, generate a flow diagram, and analyze coverage 

features of the flow diagram. Then the tool would run a simulation of the design 

specification, collect the flow data from that, and compare the two sets of flow data. The 

goal of this study was to facilitate round-trip engineering [26]. Stein et al [26] presented a 

study done by Lakshminarayana et al. that its goal was to generate visual representations 

of the metric values for each class in a system, to aid developers in quickly pinpointing 

areas for improvement. They used Rational Rose’s extensibility interface and Rose 

scripting language to get class information from UML diagrams. They developed a visual 

representation for each class based on its value for each metric. In the resulting model, the 

visual representation makes it immediately clear which classes have complicated 
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interactions with other classes [26]. This allows developers to analyze a large system 

much more quickly than they ever could with a standard printout of metric values. 

According to Stein et al [26], Lakshminarayana et al’s study is most relevant to their 

research because both involve processing design specifications to calculate metrics on 

classes before they get implemented. However, whereas Lakshminarayana et al. 

processed UML diagrams to compute syntactic metrics, Stein et al. address performing 

natural language understanding on text in design documents to compute semantic metrics 

[26]. 

2.1.9. Metric Extraction Method to Be Visually Represented 

One concern in software engineering is how high-quality software can be produced with 

predictable costs and time. Software metrics include a broad array of measurements for 

computer software. Metrics can be used in the software development process to help 

continually improve the software product as it is developed. Software metrics provide a 

quantitative means to predict the software development process and evaluate the quality 

of the software products. Several software metrics have been proposed for measurement 

of structural complexity of procedural software. Examples of these metrics include 

McCabe’s cyclomatic complexity metric and Halstead’s software science metric. 

Lakshminarayana et al [15] presented a new approach to aid understanding of object-

oriented software through 3D visualization of software metrics that can be extracted from 

the design phase of software development. The focus of their paper is a metric extraction 

method and a new collection of glyphs for multi-dimensional metric visualization. 

According to Lakshminarayana et al [15], information visualization is a useful tool to aid 

users in comprehending large and/or complex data. Effective information visualization 

can accelerate perception and insight into large volumes of data. Scientific visualization, 

which can be viewed as a branch of information visualization, involves generating 

complex graphical images representing vast amounts of scientific data derived from real-

world physical phenomena in order to help scientists have a better understanding of the 

data [15]. Another branch of information visualization is software visualization. Software 

visualization involves the graphical display of software characteristics and behavior. 

Software visualization techniques can foster better understanding of software 
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performance or structure. Lakashminarayana et al presented a classification proposed by 

Price et al [15] that software visualization has two major subclasses, namely, program 

visualization and algorithm animation. Program visualization is used to visualize static 

and dynamic characteristics of the program, while algorithm animation is a method to 

visualize the flow of an algorithm. Software visualization can help software engineers 

cope with the complexity of large software systems and understand the relationships 

between the entities, modules, and subsystems in a software system, thereby significantly 

improving the software quality and its maintainability [15]. 

2.1.9.1. Software Visualization and Software Metrics 

It is often claimed that the object-oriented programming paradigm allows for a faster 

development time and higher quality software. However, software metrics are less well 

studied in the object-oriented paradigm. A small number of metrics have been proposed 

to measure object-oriented systems. One of the first attempts at defining software metrics 

for object-oriented systems was made by Chidamber and Kemerer. Lakshminarayana et al 

[15] listed the set of six object-oriented metrics proposed by Chidamber and Kemerer that 

are based on measurement theory as follows: Depth of Inheritance Tree (DIT), Number of 

Children (NOC), Coupling Between Objects (CBO), Response For a Class (RFC), 

Weighted Methods per Class (WMC), and the Lack of Cohesion in Methods (LCOM). 

Moreover, Lakshminarayana et al [15] mentioned another set of six metrics for object-

oriented systems that was presented by Li. These include Number of Ancestor Classes 

(NAC), Number of Descendant Classes (NDC), Number of Local Methods (NLM), Class 

Method Complexity (CMC), Coupling Through Abstract Data Type (CTA), and Coupling 

Through Message Passing (CTM) [15]. 

An important phase in software development using the object-oriented paradigm is the 

design of classes. Design metrics can aid in assessing class design. For developers, design 

metrics tend to be more beneficial than metrics of later phases of development. 

Lakshminarayana et al [15] focus was visually representing design metrics to enhance 

their utility. Namely, visual representation can assist the software developers in quickly 

comprehending the values of the metrics and thereby aid detection of anomalies in the 

design. As a result, the design can be improved and, ideally, made more robust. 
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2.1.9.2. Software Design Metrics Extraction and Visualization 

Lakshminarayana et al [15] grouped seven metrics to use in their tool that were initially 

proposed by Chidamber and Kemerer and Li. These seven metrics are defined for each 

class in the design as follows: 

1) Depth of Inheritance Tree (DIT), proposed by Chidamber and Kemerer, is the 

class’s depth (level) in the inheritance tree. 

2) Number of Children (NOC) for a class is the count of the class’s immediate 

descendents. 

3) Number of Ancestor Classes (NAC), proposed by Li, is the count of the ancestor 

classes in the class inheritance hierarchy. 

4) Number of Descendant Classes (NDC) is the count of all the descendant classes 

(subclasses) of a class. 

5) Number of Local Methods (NLM) of a class is the count of local methods which 

are accessible outside the class (a count of the number of public methods in a 

class). 

6) Coupling of Abstract Data Type (CTA) is the count of classes that are used as 

abstract data types in the data attribute declaration of a class. 

7) Design Coupling through Message Passing (DCTM) is a metric Lakshminarayana 

et al [15] had created for design-based estimation of the Coupling Through 

Message Passing (CTM) metric. The DCTM measures the number of objects 

passed as parameters to the methods of a class [15]. 

2.1.9.3. Design Metrics Implications and their Visualization 

Lakshminarayana et al [15] presented the following implications regarding the various 

design metrics: 

1) DIT: As the DIT value increases, the classes in the lower level of the inheritance 

tree will inherit many methods. This may lead to potential difficulties when 

attempting to predict the behavior of a class. Also, the lower a class is in the 

inheritance tree, the greater is the design complexity. On the other hand, larger 

values of the DIT metric could imply a higher reusability, since many methods 

may be reused (through inheritance). 
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2) NOC: Higher values of NOC imply greater reusability. But this could also lessen 

the abstraction represented by the parent class (i.e. some of the children might not 

be appropriate descendants of the parent class). Also, the amount of testing 

(needed to test each descendant of the parent class) will increase with a higher 

value of the NOC metric. 

3) NAC: This metric represents the influence of parent classes on the class under 

consideration. A higher value would imply a greater influence. But this would also 

mean that more testing is required in order to test the operation of class. 

4) NDC: Similar to the NOC metric, this metric captures the influence of a parent 

class on all its descendant classes. The implications are similar to that of the NOC 

metric. (The NOC metric is a subset of the NDC metric). 

5) NLM: This metric indicates the size of a class’s interface for other classes. As 

NLM grows larger (i.e. as the number of local methods increases), more effort is 

required to comprehend the class’s behavior. (Implementation, testing, and 

maintenance also require more effort). 

6) CTA: Coupling is a measure of interconnection between classes. A greater 

coupling between classes will tend to break the encapsulation provided by the 

object-oriented paradigm. A higher value of the CTA metric implies that the 

design is complex; more effort will be necessary to test and maintain the class. 

7) DCTM: This metric has similar implications to the CTA metric. 

 

Lakshminarayana et al [15] then presented a UML class diagram that shows the class 

structure and class relationships. Each box in the following diagram represents a class. 

There are three compartments in each box - the class name is specified in the first 

compartment, a list of attributes (with optional types and initial values) are specified in 

the second compartment, and a list of operations (with optional argument lists and return 

types) are specified in the last compartment. It is possible to suppress the attribute and 

operations list to reduce the level of detail in the diagram [15]. Associations represent 

structural relationships between different classes (not just procedural dependency 

relationships). These are represented as solid lines between pairs of classes, with the 

name of the association placed on or adjacent to the association line. Inheritance is 
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represented by drawing a solid line from subclass to superclass with a triangular 

arrowhead pointing toward the superclass [15] (as shown in figure 2.4). 
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Figure 2.4: UML class diagram (adapted from [15]) 

 

A visual representation of the metrics created by Lakshminarayana et al’s [15] tool for the 

classes of the above UML class diagram was displayed. The values of the metrics for a 

class can be quickly obtained from their visual representation and conclusions about the 

class complexity can be drawn with ease [15]. 

 

 

 

 44



2.2. Automation by Software Measurement Tools 

This section discusses with some of the automated tools for software measurement. For 

example, a central repository of an Integrated CASE that records and manages 

information generated from various CASE tools was developed by Liu et al [18]. Another 

tool is the one proposed by Tanaka et al [30] that detects and traces irregular size 

programs or complexly structured programs. Also, Stein et al [26] presented the semMet 

tool that computes semantic metrics on software systems. Lakshminarayana et al’s [15] 

tool extracts class features and represents the calculated metrics in three-dimensional 

glyphs. 

2.2.1. An Automated Tool for Software Measurement 

Liu et al [18] believe that after identifying and defining software quality factors, criteria 

and the corresponding metrics, the rest of the task is to perform the measurement. In other 

words, with the Factor-Criteria-Metrics (FCM) model, software quality eventually falls 

on the software quality measurement. In general, software measurement is a costly task in 

the absence of an automated tool. Performing software measurement includes the data 

collection, extraction of measures, and analysis and evaluation [18]. The data collection is 

concerned with building a software engineering database and recording data of interest 

from software projects. Data collection is the most labor intensive process in software 

measurement. The extraction of measures is concerned with purposes of the 

measurement, and exactly what is to be measured. Determining and defining software 

metrics are also difficult issues from a theoretical point of view. Due to the expensive 

labor costs and lack of adequate techniques, software measurement has been a weak part 

in software engineering [18]. Experiments on the proposed metric measures were carried 

out for the development process and a research project is concerned with automating 

software measurement based on an integrated CASE repository was conducted. The 

prototype developed in this project covers a general OO model so that OO design metrics 

can be defined and measured. Integrated CASE (ICASE) repositories bring about the 

opportunity of automating software measurement. ICASE supports requirement analysis, 

software design and code generation. The central repository of the ICASE records and 

manages information generated from various CASE tools. The information in the 
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repository is the resource for software measurement [18]. The repository information is 

organized by using a meta-model. The meta-model is central to the repository, which 

describes all models used in each development stage using a uniform scheme. The 

uniform schema of the meta-model guarantees the share-ability and consistency of the 

repository information, and facilitates the automation of software measurement. 

According to Liu et al [18], a metrics tool is required as a part of the integrated CASE to 

perform the automation of software measurement by navigating repository information. 

Originally the Oracle CASE supports traditional Functional-Oriented CASE tools such as 

Entity-Relationship diagram, Data Flow diagram, and Function Hierarchy. The metrics 

tools in Oracle support COCOMO software cost model, and support the software size 

model of Function Point Analysis Mark 2 (FPA Mark 2). In Liu et al’s research [18], they 

extended the Oracle CASE repository meta-model to support a general OO design model. 

Therefore, the tool is able to perform required OO software measurement. In conclusion, 

they emphasize that the quality of a design is crucial for the quality of software products. 

To contribute to the control of the quality of OO software products, an FCM model was 

used to derive possible metrics for OO design. Suggestions were made in considering the 

metric aspects to produce an OO design. The proposed metric measures were applied to 

the software development process. A number of complicated experiments to illustrate the 

approach proposed by Liu et al [18] to developing quality measurement for OO designs 

were conducted. The general results were satisfactory.  

2.2.2. Program Analysis in Parallel with Development Tasks 

According to Tanaka et al [30], it is very important to improve software quality by using 

program analysis and measurement tools and software quality assurance methods at the 

appropriate points during the process of development. To illustrate, periodic analysis and 

quality measurements of software products throughout the life - cycle are very important 

to manage and improve software quality. The importance of program analysis is that 

repeated analysis in parallel with the actual development phases is the most important 

point for quality improvement, because analyzed data can be fed back to development in 

a timely and effective manner. Figure 2.5 shows the process of analyzing programs in 

parallel with development tasks. Only recently has the development cycle become short; 
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therefore, some relevant needs became important. For example, to make timely checks of 

the software quality before unit testing or integration testing. Also, to quickly feedback 

information about software quality, to improve efficiency of review and testing. Tanaka el 

al [30] developed a tool that detects and traces irregular size programs or complexly 

structured programs in which faults tend to appear before testing. The tool also 

determines review or testing priority and provides messages pointing out concerns about 

the programs [30]. 
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Figure 2.5: Program analysis in parallel with development tasks (adapted from [30]) 

2.2.3. Computing Metrics on Design Specifications 

Stein et al [26] presented a tool that they created called semMet to compute semantic 

metrics on software systems. In its current form, semMet consists of two parts: the source 

code interface and the main processing module. The source code interface performs the 

following steps: 

- Generates abstract syntax tree information from code. 
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- Processes the abstract syntax tree to retrieve the inheritance hierarchy and 

each class’s attributes and behaviors and their accessibility (public, 

private, or protected). 

- Processes the code itself to retrieve all comments at both class and 

function levels. 

- Uses natural language processing to try to determine the part of speech for 

each identifier. Performs sentence-level natural language processing on 

comments to determine the part of speech of each word [26]. 

The main processing module performs the following steps: 

- Processes all words from comments and identifiers through a knowledge 

base of concepts and keywords of the domain of the system. 

- Counts concepts and keywords related to each class and each method of 

each class. 

Uses class- and method-level concept and keyword information to calculate metrics and 

generate a report [26]. 

These two parts together allow the semMet system to calculate semantic metrics on code. 

The next step is to modify semMet to calculate semantic metrics from design 

specifications [26]. 

2.2.4. Automated Tool for Extraction and Visualization 

Capabilities 

The tool proposed by Lakshminarayana et al [15] includes extraction and visualization 

capabilities. It can be closely integrated with Computer Aided Software Engineering 

(CASE) tools. Lakshminarayana et al [15] utilized the Rose script interface in their tool to 

extract class features which support calculation of the seven design metrics. The 

visualization tool is aimed at enabling the software developer to obtain a quick 

understanding of this multi-dimensional information, thereby providing a fast and 

intuitive means to assess the design complexity and maintainability. 

The tool makes use of intuitively meaningful three-dimensional glyphs to represent the 

ensemble of metrics [15]. For each class in the UML diagram, a 3D object is used to 

represent the multi-dimensional structural characteristics. Each of these objects begins as 
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a basic box which is then augmented with glyphs and other cues to allow simultaneous 

display of all the seven metrics. The following glyphs are used to display the metrics: 

1) For the DIT metric, Lakshminarayana et al [15] use a stacking representation 

along the depth of the glyph box; higher degrees of stacking symbolize a greater 

depth of inheritance for the class. 

2) The number of ancestor classes (NAC) is represented using arrowheads pointing 

upwards placed on the 3D box. Each full arrow represents a NAC count of two, 

and half arrow represents a NAC count of one. 

3) Arrows pointing downward are used to represent the number of descendant 

classes (NDC). Each full arrow represents a NDC count of two and a half arrow 

represents a NDC count of one. 

4) The number of children metric (a subset of the NDC metric) is represented using a 

different coloring (red) for some of the downward arrows. Similar to the NAC and 

NDC, a half arrow represents a count of one, and each full arrow represents a 

NOC count of two. 

5) The Coupling Through Abstract Data Type (CTA) metric is represented as hooks 

on the side of the glyph box. The hooks are of three lengths in order to be able to 

display large values of the CTA metric. Each long hook represents a CTA count 

of three, and the shortest hook represents a CTA count of one. 

6) The Design Coupling Through Message Passing (DCTM) metric is represented by 

emerging envelopes from the top surface of the glyph (the number of envelopes 

signifies the DCTM value). 

7) The NLM metric is represented by coloring the box boundary. Cold colors (blues) 

represent a relatively small number of local methods in the class, while hot colors 

(reds) represent higher counts of local methods [15]. 

Finally the tool presented by Lakshminarayana et al [15] generates and emits Virtual 

Reality Modeling Language (VRML) code for the class visualizations and launches an 

external VRML browser that the developer can use to view the structural characteristics 

of the design and draw meaningful conclusions. 
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2.3. Evaluation by Software Measurement Tools 

This section explains how each group of researchers evaluated their proposed model. For 

example, Liu et al [18] chose their metrics based on their experience and understanding in 

teaching. Others such as Stiglic et al [27] based their work on the findings of a workshop 

where its main objective was to propose metrics for estimating cost and schedule and for 

evaluating productivity of OO techniques. Harrison et al [8] based their theoretical 

validation on a comparison between the results of collecting the MOOD metrics and 

Kitchenham et al’s metrics. Bansiya et al [2] based the validation of the QMOOD quality 

model on quality attributes’ effectiveness and the overall software quality estimation. 

2.3.1. Evaluation of Metrics for Object-Oriented Design 

Liu et al [18] chose three metrics to indicate the quality of OO design. They selected 

these metrics on the basis of their experience and understanding in teaching and projects 

of OO systems development. These three metrics are the number of classes, the degree of 

interaction between classes, and the length of operations in a class [18]. It was shown that 

there is a relationship between the total number of classes (TNC), the number of classes 

newly developed (NCN), and the number of classes reused (NCR) where TNC = NCN + 

NCR. From this equation, the ratio between NCR and TNC can be expressed as NCR / 

TNC = 1 – (NCN / TNC) [18]. It was stated that a higher ratio indicates a better quality 

because of a higher reuse of the classes that have been used and tested in previous cases 

and that means that these classes are more reliable and correct. Therefore, the number of 

classes gives us information about the size of a system which varies depending 

subjectively on the skill and practice of the designer. Liu et al [18] state that a low degree 

of interaction between classes produces a better quality OO design. The degree of 

interaction was measured using the average number of message paths per class, which is 

expressed as TM / TNC where TM is the total number of message paths in the system and 

TNC is the total number of classes. There are four Chidamber and Kemerer Object 

Oriented (CK OO) metrics that can be used to assess the degree of interaction between 

classes [18]. They are depth of inheritance tree, number of children, coupling between 

object classes, and lack of cohesion in methods. Depth of inheritance of the class is the 

DIT metric for the class. In cases involving multiple inheritance, the DIT will be the 
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maximum length from the node to the root of the tree. The deeper a class is in the 

hierarchy, the greater is the number of methods it is likely to inherit, making it more 

complex to gain specifications for it. Deeper trees constitute greater design complexity, 

since more methods and classes are involved which cause difficulty for development. The 

deeper a particular class is in the hierarchy, the more complicated design steps will be 

performed on it [18]. Number of children (NOC) calculates the number of immediate sub-

classes subordinated to a class in the class hierarchy. The greater the number of children, 

the greater the likelihood of improper abstraction of the parent class. If a class has a large 

number of children, it may be a case of misuse of sub-classing. Therefore, it is easy to 

design those parent classes. The number of children gives an idea of the potential 

influence a class has on the design. If a class has a large number of children, it may 

require a more complicated design [18]. As for a class, coupling between object classes 

(CBO) is a count of the number of other classes to which it is coupled. It relates to the 

notion that two classes are coupled when methods in one class use methods or instance 

variables defined by another class. The more independent a class is, the easier it is to 

extract its object and specifications and to transform it. The larger the number of 

couplings, the higher the sensitivity to changes in other parts of the design, and therefore 

development procedures will become more difficult. The higher the inter-object class 

coupling, the more rigorous design will be added [18]. Lack of cohesion in methods 

(LCOM) is when considering a class C1 with n methods M1…Mn. Let {Ij}= set of 

instance variables used by method Mi. There are n such sets {I1}…{In}. Let P={(Ii, Ij) | 

Ii ∩ Ij = Φ} and Q={(Ii, Ij) | Ii ∩ Ij ≠ Φ}. If all n sets {I1}…{In} are Φ then let P=Φ. 

LCOM=|P| - |Q|, if |P| > |Q|, and = 0 otherwise. Cohesiveness of methods within a class is 

desirable, as fewer specifications and transformations will be added to the whole 

program. Lack of cohesion implies classes should probably be split into two or more-sub-

classes. Any measure of disparateness of methods helps identify flaws in the design of 

classes. Low cohesion increases difficulty of design and implementation. The last metric 

which Liu et al [18] consider particularly relevant to an OO design is the length of 

operations in a class. Length of operations is usually measured in lines of code (LOCs). 

At the design stage, this is not applicable. However, a method may call other methods (or 

itself, if it is recursive) and thus the length of method (LOM) can be defined as the 
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number of methods called by the method. The length of a method without calling any 

other method can be counted as one. Each call of the other method adds one to the length. 

The average length of method per class can be obtained by LOM / TNC. A quality OO 

design should keep down the average length of operations. Liu et al [18] indicate that one 

of CK OO metrics can be used here in relation to measuring the length of operations 

which is the weighted methods per class (WMC). WMC = ∑ Ci for i = 1 to n where a 

class C1, with methods M1, … Mn that are defined in the class has c1,… , cn as the 

complexity of the methods. If all method complexities are considered to be unity, then 

WMC = n, the number of methods. Here the number of methods is calculated as the 

summation of McCabe’s cyclomatic complexity of all local methods [18]. The number of 

methods and the complexity of methods involved is a predictor of how complex the 

design will be applied to the software. The larger the number of methods in a class, the 

greater the potential impact on children since it will be worse in design cases.  

2.3.2. Evaluation Criteria for Object-Oriented Software 

Development 

According to Stiglic et al [27], adoption of object-oriented technology by the software 

industry is to a large extent interfered with a lack of appropriate evaluation criteria. 

Therefore, they presented a paper to discuss some evaluation criteria, measures and 

metrics, suitable for object-oriented software development. They believe that the focus of 

scientific research regarding object orientation has already shifted from implementation to 

earlier phases of software and information system development [27]. Additionally, the 

emphasis should be placed on all aspects of software development that have been 

investigated in the context of structured techniques, from executable specifications, 

testing strategies to estimation models and metrics. Their work was based on the findings 

of a workshop whose main objective was to propose metrics for estimating cost and 

schedule and for evaluating productivity of OO techniques. The main finding, stated at 

the workshop, was that they have a better insight in product metrics than in process 

metrics [27]. 
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2.3.2.1. Importance of Measures for OO Software Development 

Stiglic et al [27] believe that object technology does not guarantee that the software 

developed with OO techniques will be better and that the developers have been using the 

available facilities in the best possible way. Therefore, it is necessary to establish some 

basic standards and guidelines that developers should follow. Corresponding OO 

evaluation criteria have to be defined too. These measures should enable objective 

comparison of the results of accomplished work and provide a reliable evaluation 

framework. Moreover, if many claimed and expected benefits and advantages of object 

technology are to be realized and achieved, then measures of OO systems are necessary 

and inevitable [27]. Automated support might assist investigation and comparison of the 

achieved and expected benefits as are the improved reusability and higher productivity. 

Metrics are also important according to the emphasized needs and demands for 

improvements in the software development process. Measures are necessary to identify 

weaknesses of the development process. They also direct corrective activities and enable 

monitoring of the obtained results. In this manner a close loop feedback mechanism is 

established within which incremental improvements to the software development process 

can be made over time [27]. 

2.3.2.2. Proposed Definitions for Measures of OO Software 

The authors of “How to Evaluate Object-Oriented Software Development?” paper define 

the word “metric” as a function, whose value is derived from a product, process, or 

resource [27]. They stated that it is important to distinguish between objective and 

subjective metrics. An objective metric is a function whose inputs are software data 

(elements) and whose output is a single numerical value [27]. Subjective metrics, on the 

other hand, attempt to track less quantifiable data and usually depend on the subjective 

judgment. The obtained metric value indicates the degree to which software possesses a 

given quality attribute. Therefore, quality metrics are an indirect measure of software 

quality. It is required to have a validated set of metrics, metrics whose values have been 

proven to be statistically associated with corresponding software attributes. After all, the 

philosophy of the standard for a Software Quality Metrics Methodology is that an 
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organization can use whichever metrics it deems most appropriate for its applications as 

long as the methodology is followed and the metrics are validated [27]. 

Stiglic et al [27] further discuss the importance of coupling and cohesion for structured 

approach where they have already proven to be useful criteria for evaluation of the quality 

of encapsulation. Coupling measures the interface between units. It measures an observed 

unit’s dependence on other units. Cohesion is a qualitative measure that considers the 

relationship between elements within a unit, how strongly they are connected and how 

many tasks are performed inside the unit. Ideally, coupling should be minimized and 

cohesion should be maximized [27]. 

2.3.3. Evaluation and Comparison of MOOD Metrics with 

Other Proposed Metrics 

Harrison et al [8] present a comparison between the results of collecting the MOOD 

metrics and Kitchenham et al’s metrics for three releases (R1, R2, and R3) of an 

electronic retail system (ERS) and for the second release of a suite of image processing 

programs (EFOOP2). These results are shown in the tables 2.7 and 2.8: 
 

 R1 R2 R3 EFOOP2 

LOC 1149 2536 2753 8977 

Total Classes 4 13 13 12 

Total Methods 20 96 96 134 

Total attributes 8 35 35 33 

Table 2.7: Kitchenham et al’s metrics (adapted from [8]) 
 

 R1 (%) R2 (%) R3 (%) EFOOP2 (%) 

AHF 100 100 100 100 

MHF 0 20.4 20.4 6.3 

AIF 12.5 0 0 0 

MIF 9.1 0 0 0 

CF 0 5.8 5.8 3.0 

PF 60 Undefined Undefined Undefined 

Table 2.8: MOOD metrics (adapted from [8]) 

 54



The Attribute Hiding Factor (AHF) metric for all of these systems has its maximum value 

of 100 percent, indicating that all the attributes were declared as private. Method Hiding 

Factor (MHF), on the other hand, has relatively low values, indicating a lack of 

information hiding. Inheritance was not utilized at all, with the exception of R1 of ERS, 

as shown by Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF). 

The undefined Polymorphism Factor (PF) values also reflect this lack of inheritance in 

the other systems. All of the systems displayed only small amounts of interclass coupling 

(shown by the Coupling Factor (CF)), possibly pointing to well-designed systems. 

Tables 9 and 10 show the MOOD metrics and code metrics, respectively for nine samples 

of a large commercial retail system [8]. 

 

System Label 1 

(%) 

2 

(%) 

3 

(%) 

4 

(%) 

5 

(%) 

6 

(%) 

7 

(%) 

8 

(%) 

9 

(%) 

AHF 45.9 66.7 66.3 44.0 62.5 67.5 52.4 48.5 50.8 

MHF 10.1 7.7 16.4 9.5 25.4 15.4 15.8 15.7 15.4 

AIF 17.1 11.3 15.3 30.6 46.8 26.1 19.7 36.6 32.0 

MIF 15.2 14.3 20.7 27.4 45.5 33.6 22.5 36.5 26.5 

CF 3.5 3.5 3.8 6.3 3.1 4.5 5.4 4.9 4.6 

PF 4.3 5.4 8.9 2.9 6.7 4.5 6.6 6.2 6.4 

 

Table 2.9: The MOOD metrics (adapted from [8]) 

 

System Label 1 

(%) 

2 

(%) 

3 

(%) 

4 

(%) 

5 

(%) 

6 

(%) 

7 

(%) 

8 

(%) 

9 

(%) 

LOC 15837 23750 47106 23154 20747 44930 28582 19254 20085 

Total Classes 65 57 91 51 154 92 71 69 74 

Total Methods 1446 1535 2141 1420 2814 2224 1978 1815 1876 

Total 

Attributes 

537 876 1178 538 1113 1132 839 675 700 

 

Table 2.10: Product metrics (adapted from [8]) 
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From Table 2.8, we can see that the values for the AHF vary between 44 to 68 percent. 

This is interesting as a figure of 50 percent would suggest an even balance between the 

public and private data attributes. Ideally, the AHF should be close to 100 percent, to 

adhere to the concept of information hiding [8]. The values for the Method Hiding Factor 

(MHF) vary between 8 to 25 percent. These low values indicate a low degree of 

information hiding, possibly suggesting a lack of abstraction at the design stage. 

The Attribute Inheritance Factor (AIF) varies between 11 to 47 percent. These are also 

rather low, suggesting only a moderate use of inheritance. 

The Coupling Factor metric ranges from 3 to 6 percent, suggesting little interclass 

coupling. According to Harrison et al. [8], Abreu suggests that CF should be neither too 

low, nor too high. Low coupling reduces potentially harmful side-effects such as 

unnecessary dependencies and limited reuse. However, a very low value of CF (0 

percent) indicates that a system has no interclass coupling, which might point to a 

pathological system in which classes only communicate via inheritance, or in which there 

is excessive code duplication. On the other hand, a CF of 100 percent may also indicate a 

problematic communications infrastructure; excessive coupling implies that software will 

be difficult to maintain, evolve, and reuse [8]. 

The values for the Polymorphism Factor metric range from 3 to 9 percent; these low 

values are fairly typical and unsurprising considering the relatively moderate use of 

inheritance [8]. 

Harrison et al [8] conclude that their investigation into the validity of the six MOOD 

metrics, as far as information hiding, inheritance, coupling, and dynamic binding are 

concerned, can be shown to be valid measures within the context of this theoretical 

framework. The main problems which they encountered during their theoretical 

validation stemmed from imprecise definitions of the attributes to be measured [8]. 

They believe that the MOOD metrics operate at the systems level. Comparing them with 

those of Chidamber and Kemerer, the two sets are complementary, offering different 

assessments of a system. According to Harrison et al [8], the Chidamber and Kemerer 

metrics appear to be useful to designers and developers of systems, giving them an 

evaluation of a system at the class level. The MOOD metrics, on the other hand, could be 

of use to project managers providing an overall assessment of a system [8]. 
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2.3.4. Validation of QMOOD Metrics 

Concluding their work, Bansiya et al [2] based the validation of the QMOOD quality 

model on two levels: validation of the individual quality attributes’ effectiveness and 

validation of the overall software quality estimation. In order to verify that the computed 

values of the quality attributes are within valid ranges, it was desirable that the quality 

attribute values be computed for several designs and it was decided that these designs had 

been developed for similar requirements and objectives. Therefore, Bansiya et al [2] 

decided to use several versions of two popular Windows application frameworks, 

Microsoft Foundation Classes (MFC), and Borland Object Windows Library (OWL) as 

their test-beds. It was expected that the quality characteristics for each version of the two 

framework systems evaluated should match the generally expected trends from one 

version to the next. Specifically, it was expected that the quality attributes reusability, 

flexibility, functionality, extendibility, and effectiveness should increase from one release 

to the next. Furthermore, Bansiya et al [2] stated that releases of a mature framework are 

expected to reverse the trend of the understandability measure since development efforts 

in mature frameworks can be expected to improve their usability, reduce complexity, and 

make them easier to understand. Using the QMOOD++ tool, Bansiya et al [2] gathered 

the metric data required and then normalized their values. Then they analyzed and 

compared these values with the expected results and found that the expected increase in 

values of the quality attributes is compatible with the hypothesis that these quality 

attributes should improve with new releases in framework-based systems. 

The second level at which Bansiya et al [2] based the validation of the QMOOD quality 

model was to assess how well the model is able to predict the “overall quality” of an 

object-oriented software design. They carried out this validation by comparing the 

predictability of QMOOD for several separate object-oriented designs that had been 

developed for the same set of requirements with the study of a group of 13 independent 

evaluators for the same set of object-oriented designs. Bansiya et al [2] ended up finding 

that the rankings of the validation suite projects indicated a close agreement between the 

assessments done by the evaluators. 
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2.3.5. Types of Execution Analysis 

As mentioned earlier, Wang [34] classified static analysis, execution analysis, and manual 

inspection as the three basic metric collection techniques that could be used to assess any 

software product. Execution analysis is being sub-divided into three types. The first 

technique in the execution analysis is black-box testing. This is where the executable 

components are tested against the functional specifications or user manuals using a 

checklist. It checks for consistency between the documents provided and the actual 

execution of the code. Black-box testing assesses functionality where the checklist 

ensures that every function described in the specification is tested and that everything 

performed by the software is described in the specification. Furthermore, it assesses the 

usability quality characteristics whereby the standard checks that the functions of the 

software are described in the user manual. It also checks aspects of the user interface such 

as if information is presented to the user in a uniform manner and that the error messages 

produced are useful. Assessing efficiency using black-box testing can be achieved by 

looking at the response times and comparing them with the performance requirements 

[34]. The proposed metrics here could be the number of failures discovered during the 

testing of the product where there are two types of errors: class I are the most significant 

errors like a system crash or a function not implemented or data corrupted during the test 

run. If one of these is found the product is deemed to have failed the test. Class II are 

minor failures such as bad representation of data or error message [34]. 

Failure data collection is another type for execution analysis where data concerning the 

type and frequency of failures during execution is being collected. This can be used to 

ensure that the corresponding faults have been fixed [34]. However, a record of failures 

cannot be used by itself to assess the software unless we know also the amount of usage 

the software has had. Failure data collection for software assessment means recording the 

first manifestation of each failure and the time between the occurrences of each failure. 

Time in this sense means a measure of the amount of usage rather than of calendar time. 

Therefore, it assesses reliability where the only way we can estimate the reliability of 

software (i.e., the probability it will run for a given period of time without failing) is by 

analyzing the past failure history. The metrics needed with the failure data collection 

should estimate the times between failures over the amount of usage of the software. 

 58



There are various measures of usage time we can use, and the one chosen will depend on 

the type of software: CPU time, elapsed time (the time between the start and stop of each 

program run), number of test runs (this may be used if each test run is of similar length in 

CPU time) [34]. 

 The third type of execution analysis is the test coverage which is a way of measuring the 

amount of code which has been exercised during testing (either in terms of LOC, number 

of entities, or number of program branches) [34]. Test coverage contributes to the 

functionality quality characteristic where it measures the quality of the test data rather 

than of the code itself. If part of the code has not been tested, then the functionality that 

this part provides could not have been tested. All coverage metrics are of the form: 

(number of items executed / total number of items) * 100 and differ only in which items 

are counted. The most commonly calculated coverage measures are statement coverage, 

branch coverage (every branch in the control flow-graph), basic block coverage (a basic 

block is either a single statement or a set of simple statements enclosed in block 

separators), procedure coverage, and PPP coverage (procedure-to-procedure paths are the 

edges in the call graph between any two modules) [34]. 

2.3.6. Checklists as an Example of Manual Inspection 

The last basic type of activity that can be used to assess software products is manual 

inspection where the term inspection covers a whole range of activities based on 

evaluation of the software by humans [34]. One commonly used approach is by using 

checklists where they provide a structured way of performing inspection. We can apply 

inspection to many software components such as function specifications, design 

documents, user documentation, and source code. Checklists comprise a number of 

questions, for which there are a finite number of specified replies. Each reply has a score 

associated with it and adding up the scores will yield a total for that checklist. The 

checklist score can be viewed as a metric [34]. Inspection via checklists is related to all 

quality characteristics where it is related to functionality since by applying checklists to 

the specification and test documentation we can find out if the functions provided by the 

system are clearly described and if the test data addresses these functions. It is related to 

reliability where checklists can be used to assess technical aspects of fault tolerance and 
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recoverability in areas such as restart, rollback, robustness to hardware failure and so 

forth. It assesses usability where the checklists can check if certain features appear on 

user documentation such as general description of the product, a table of contents, an 

index and a list of error messages. Maintainability is being evaluated as checklists can be 

applied to the source code and design documentation to ensure that the software is easy to 

understand, such as the meaningful identifier names, and a description of each module. 

Checklists can check whether those parts which are non-portable have been clearly 

identified and documented and thus contribute to the portability quality characteristic. 

Finally, efficiency is being assessed when checklists can be used to identify those 

software features that will affect efficiency, such as choice of algorithm and optimization 

of certain parts of the code such as using assembly for the most critical parts [34].  

Wang [34] concludes that there is no reason why each of these assessment techniques 

should be used in isolation. It is often possible to combine two complementary techniques 

in order to assess a particular characteristic. The tools-based methods such as static 

analysis and test coverage are quite cheap but many important attributes of the software 

such as Class I error tracked by black-box testing cannot be measured automatically. 

Checklists, on the other hand, get around this problem but are labour-intensive. A mixture 

of the tools-based and inspection-based techniques can lead to a more efficient use of 

effort during assessment [34]. 

 

2.4 Prioritization  

We searched extensively for the application of prioritization in the field of quality 

assessment. Two research papers came close to our work. Their metric sets were not at all 

similar to ours but they applied prioritization based on weighted values which is what we 

wanted to apply in our research.  

 

2.4.1 Value - Based 

Lee et al [17] provided that Value-based review techniques add cost effectiveness into the 

review processes and they report on an experiment on Value-based reporting. They 

consider cost effectiveness as one of the important issues for developing products in a life 
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cycle. Review is a key activity that can detect defects from the early stage and help in 

fixing them [17]. The review effectiveness metrics proposed by Lee et al [17] (table 2.11) 

involved weighted sums of distinct issues reported, using impact metrics. Each issue 

reported has a priority value and criticality value. Priority values and criticality values 

have three levels: high, medium, and low. They calculate the effectiveness metric 

according to the following equation: 

  Effectiveness Metric =    (Artifact Priority) * (Issue Criticality) 
        issues 

 

         Artifact  
         Priority 
Issue  
Criticality 

H M L 

H 9 6 3 

M 6 4 2 

L 3 2 1 

 

Table 2.11: Review effectiveness metric, Issue metrics, and optimality guidelines 

(adapted from [17]) 

 

The impact of each issue is the product of its priority and criticality value. For example, if 

one issue has medium priority and high criticality, the impact of the issue is six, the result 

from two (medium) times three (high). The overall review effectiveness metric is the sum 

of all the issue impacts [17]. 

2.4.2 Pair-Wise Comparison 

Another reported research on software requirements prioritizing was conducted by 

Joachim Karlsson [11]. His research was a case study at Ericsson Radio Systems AB of 

two techniques for software requirements prioritizing as a means for determining the 

importance of candidate requirements, a pair-wise comparison technique and a numeral 

assignment technique. In the pair-wise comparison technique, the candidate requirements 

are compared pair-wise to estimate their relative importance. The scale used by Karlsson 

[11] for the pair-wise comparisons is outlined in Table 2.12. 
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Intensity of Importance Definition 

1 Equal importance 

3 Moderate importance of one over another 

5 Essential or strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values between the two adjacent judgments 

Reciprocals If requirement i has one of the above numbers assigned to it 
when compared with requirement j, then j has the reciprocal 
value when compared with i. 

Table 2.12: The fundamental scale used for pair-wise comparisons (adapted from [11]) 
 

To illustrate the concept of pair-wise comparisons, Karlsson [11] presented an assumed 

example where there are three candidate requirements; A, B, and C with the following 

relationships: 

 A is essentially more important than B (intensity of importance 5). 

 C is moderately more important than A (intensity of importance 1/3). 

 C is very strongly more important than B (intensity of importance 1/7). 
 

Accordingly, the relative priorities are to be calculated by inserting the n candidate 

requirements in the rows and columns of a matrix of order n. For each pair of 

requirements, e.g. A and B, their relative intensity of importance is inserted in the position 

where the row of A meets the column of B. In the transposed positions, the reciprocal 

values of the pair-wise comparisons are inserted. Since a requirement is equally important 

when compared to itself, a ‘1’ is inserted in the main diagonal. Table 2.13 shows the 

comparison matrix for the previous example as presented by Karlsson [11]: 
 

 A B C 

A 1 5 1/3 

B 1/5 1 1/7 

C 3 7 1 

Table 2.13: The comparison matrix for the example proposed by Karlsson             

(adapted from [11]) 
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Chapter 3: The Solution Approach 
 

In this chapter we describe our solution approach and give a brief explanation about the 

tool (SDAnalysis) in which we embedded the solution approach. We first summarize the 

design metrics and acronyms and our assumptions about the relationship between design 

properties, metrics and quality attributes based on Bansiya et al’s [2] set of design metrics 

in section 3.1. Then we describe our solution approach (the input, the processing and the 

output) in section 3.2. Finally, we present the tool’s architecture and describe how it 

works in section 3.3.  
 

3.1 The Design Metrics 

Bansiya et al [2] used a fairly comprehensive list of design metrics to measure the design 

properties in a class diagram. The following is a list of the design metrics that we adopted 

from Bansiya et al’s [2] work along with their descriptions as applied in our solution. 

Design Size in Classes (DSC): This metric is a count of the total number of classes in the 

design. 

Number of Hierarchies (NOH): This metric is a count of the number of class hierarchies 

in the design. 

Average Number of Ancestors (ANA): This metric value signifies the average number of 

classes from which a class inherits information. It is computed by determining the number 

of classes along all paths from the “root” class(es) to all classes in an inheritance 

structure. 

Data Access Metric (DAM): This metric is the ratio of the number of private (protected) 

attributes to the total number of attributes declared in the class. 

Direct Class Coupling (DCC): This metric is a count of the different number of classes 

that a class is directly related to. This metric includes classes that are directly related by 

attribute declarations and message passing (parameters) in methods. 

Cohesion Among Methods of Class (CAM): This metric computes the relatedness among 

methods of a class based upon the parameter list of the methods. The metric is computed 

using the summation of the intersection of parameters of a method with the maximum 

independent set of all parameter types in the class. 
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Measure of Aggregation (MOA): This metric measures the extent of the part-whole 

relationship, realized by using attributes. The metric is a count of the number of data 

declarations whose types are user defined classes. 

Measure of Functional Abstraction (MFA): This metric is the ratio of the number of 

methods inherited by a class to the total number of methods accessible by member 

methods of the class. 

Number of Polymorphic Methods (NOP): This metric is a count of the methods that can 

exhibit polymorphic behavior. 

Class Interface Size (CIS): This metric is a count of the number of public methods in a 

class. 

Number of Methods (NOM): This metric is a count of all the methods defined in a class. 

Each design metric represents a design property. Table 3.1 [2] shows the relation between 

the design metrics and the design properties.  

 

Design Property Derived Design Metric 
Design Size Design Size in Classes (DSC) 
Hierarchies Number of Hierarchies (NOH) 
Abstraction Average Number of Ancestors (ANA) 
Encapsulation Data Access Metric (DAM) 
Coupling Direct Class Coupling (DCC) 
Cohesion Cohesion Among Methods in Class (CAM) 
Composition Measure of Aggregation (MOA) 
Inheritance Measure of Functional Abstraction (MFA) 
Polymorphism Number of Polymorphic Methods (NOP) 
Messaging Class Interface Size (CIS) 
Complexity Number of Methods (NOM) 

 

Table 3.1: Design Metrics Corresponding to Design Properties (adapted from [2]) 

 

According to Bansiya et al [2], a quality attribute is a combination of more than one 

design property. Table 3.2 [2] shows the design properties needed for each quality 

attribute and their relationships as expressed in index computation equations proposed by 

Bansiya et al.[ 2]. 
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Quality 
Attribute 

Index Computation Equation 

Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * 
Design Size 

Flexibility 0.25 * Encapsulation – 0.25 * Coupling + 0.5 * Composition + 0.5 
* Polymorphism 

Understandability -0.33 * Abstraction + 0.33 * Encapsulation – 0.33 * Coupling + 
0.33 * Cohesion – 0.33 * Polymorphism – 0.33* Complexity – 
0.33 * Design size 

Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 * Messaging + 
0.22 * Design Size + 0.22 * Hierarchies 

Extendibility 0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance + 0.5 * 
Polymorphism 

Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 
* Inheritance + 0.2 * Polymorphism 

 

Table 3.2: Computation Formulas for Quality Attributes (adapted from [2]) 

 

3.2 The Solution Approach 

3.2.1 The Input: Class Diagram and Raw Metrics 

At the outset of the research we hoped to extract the desired list of metrics directly from a 

class design drawn within a CASE tool. Different versions of Rational Rose (RR) were 

examined. We expected the extraction of the metrics to be straightforward on RR which 

would then leave us the tasks of analysis and reporting on the design. However, Rational 

Rose did not offer the feature of metrics extraction from any drawn design. Hence, we 

had to work around this problem in 2 steps. The first step is to draw the design in a CASE 

tool such as Rational Rose, then import it into another tool to extract the desired list of 

metrics. 

We finally settled on the IBM Rational Software Development Platform version 6.0 as the 

software for drawing the class diagram and for each diagram, we create a new UML 

Project. The class diagram is stored in the form of a package holding all the classes inside 

it with all attributes and operations listed in each class. Also, the relationships between 

classes are expressed clearly. Finally, we get a complete class diagram file that contains 

our class diagram information. 
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This file is then input to the next step in our system. This second step is a software tool to 

extract the metrics list of interest from a class diagram. We conducted a wide search to 

find a measurement tool that imports a class diagram from Rational Rose and collects the 

same metrics in question. We were directed to the SDMetrics tool (Software Design 

Metrics tool for the UML) version 2.11 [36] and fortunately, the owner (Jürgen Wüst) of 

this tool [36] gave us a full free version to use in our academic research. The tool offers 

its own list of metrics that covers information collected from class, package, object, and 

composition structure diagrams. The language used for writing the list of metrics offered 

by SDMetrics [36] is XML. The output of this tool is displayed in the form of a graph or a 

table view. The output could be exported to different file formats including raw text, 

which is what we used. We could now export the table view to XML file format for use in 

the main stage of our system. 

We enhanced the XML code for the list of metrics in the SDMetrics package and 

removed all the metrics that were not within our scope. We developed additional code for 

the missing metrics and adjusted the code for other metrics that we needed to extract. The 

list below shows the names and meanings of the metrics used directly from the SDMetrics 

package: 

 NumCls: The number of classes in the package. 

 NumAnc: The number of ancestors of the class. 

 NumDesc: The number of descendents of the class. 

 NumAttr: The number of attributes in the class. 

 IC_Attr: The number of attributes in the class having another class or interface as 

their type. 

 H: Relational cohesion. 

 NumOps: The number of operations in a class. 

There were 3 design metrics required by Bansiya et al [2] for which there are no 

equivalents in SDMetrics. Therefore, we had to develop the XML code for these 3 design 

metrics. They are: 

 NumPriAttr: The number of private attributes in a class. 

 NumPolyMeth: The number of polymorphic methods in a class. 
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 NumAttrandPara: The number of unique classes that are either attributes’ type or 

parameters’ type of methods. 

Sample of the Additional Code 

The XML code shown below was developed for the 3 missing metrics: 

1- <metric name="NumPriAttr" domain="class" category="size"> 
     <description> 
 The number of Private Attribute in a class. 
     </description> 
     <projection relset = "ownedattributes" target = "property" condition = "association=''   
         and visibility='private'"/> 
     </metric> 
 2- <metric name="NumPolyMeth" domain="class" category="size"> 
       <description> 
             The number of Polymorphic Methods in a class. 
       </description> 
       <projection relset = "ownedoperations" condition="name startswith 'virtual'"/> 
        </metric> 
3- <set name="NumAttrandParaTypeSet" domain="class" mulitset="true"> 
     <projection relset="AttrTypeSet+ParaTypeSet" /> 
     </set> 
     <metric name="NumAttrandPara" domain="class" category="Coupling (import)"> 
     <description>The number of unique classes that are either attributes' type or 
parameters'    
             type of methods. 
     </description> 
     <compoundmetric term="size(NumAttrandParaTypeSet)" /> 
     </metric> 
We modified the code of the metric OpsInh to calculate the sum of inherited operations 

from distinct classes instead of calculating the total number of inherited operations. 

The XML code below shows the modification done to this metric: 

<metric name="OpsInh" domain="class" category="Inheritance"> 
<description>The number of inherited operations.((p)) 
This is calculated as the sum of metric metric://class/NumOps/ taken over 
all ancestor classes of the class. 
((ul))((li))Also known as NMI ref://LK94/. 
((li))See also: metric://class/DIT/.((/ul)) 
</description> 
<projection relset="AncSet" eltype ="class" sum="NumOps" recurse="false"/> 
</metric> 
Finally, we modified the metric: 

NumPubOps: The number of public operations in a class 

to 
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NumPriOps: The number of private operations in a class. 

The XML code below shows the modification done to this metric: 

   <metric name="NumPriOps" domain="class" category="Size"> 
   <description>The number of private operations in a class.((p)) 
                 Same as metric metric://class/NumOps/, but only counts operations with 
                 private visibility. Measures the size of the class in terms 
                 of its private interface. 
                ((ul))((li))Also known as: NPM (Number of Private Methods) 
  </description> 
  <projection relset="ownedoperations" condition="visibility='private'"/> 
  </metric> 
As a final result, the list of design metrics were extracted for any class diagram within the 

SDMetrics package and saved. The extracted values that are represented in a table view in 

SDMetrics are now saved in an XML file. 

 

3.2.2 The Processing: Metric and Quality Attribute 

Calculations 

In order to calculate the quality attributes given by Bansiya et al [2] as shown in table 3.2, 

we had to extract the corresponding design properties from the class diagram. For each 

design property, there is a design metric as listed in table 3.1. However, the SDMetrics 

tool [36] does not offer this exact set of design metrics directly. Hence, we had to adjust 

the list of metrics offered by SDMetrics to obtain the list of metrics of interest. These 

adjustments were either a calculated value of an arithmetic operation for some metric 

offered by SDMetrics, or a developed code or a change in parameters in the code given 

by SDMetrics. 

Moreover, we had to make an adjustment to the Reusability, Understandability, and 

Functionality quality attributes’ equations with regards to the sign of the cohesion design 

property where we reversed its sign from + to -. This issue is explained in section 3.2.3.1. 

Table 3.3 summarizes our approach in adjusting the SDMetrics values to make them 

equivalent to the QMOOD metrics. 
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QMOOD Adjusted SDMetrics 

DSC: # of classes in the design NumCls 

NOH: # of class hierarchies in the design Count (NumAnc = 0 && NumDesc > 0) 

ANA: average # of classes from which a 
class inherits info 

Sum (NumAnc)                        
NumCls 

DAM:       #of private attributes  (in class)   
Total # of attributes 

1- NumPriAttr* (Per Class)               
NumAttr (Per Class) 

2- Sum No. 1 for all classes             
NumCls 

DCC: # of classes that a class depend 
upon 

Sum NumAttrandPara*                  
NumCls 

CAM: ∑ of independent set        H 

MOA: count of the # of data declarations 
who are user defined classes 

Sum (IC_Attr)                         
NumCls 

MFA: level of nesting of classes in an 
inheritance hierarchy 

1-       OpsInh**             .                
OpsInh**+NumOps 

  2- Sum No. 1 for all classes             
NumCls 

NOP: Count of polymorphic methods 
(virtual) 

Sum (NumPolyMeth*)                  
NumCls 

CIS: # of public methods in a class 1- (NumOps – NumPriOps**) 
    2- Sum No. 1 for all classes            

NumCls 
NOM: # of methods in a class Sum (NumOps)                        

NumCls 
 

Table 3.3: Adjusting the SDMetrics’ metrics to QMOOD’s metrics 

 

3.2.2.1 The Suggested Thresholds for the Design Metrics 

In order to analyze the values of the design metrics, and subsequently the quality 

attributes, we used the Chidamber and Kemerer [5] suite (C&K) as the reference for 

judging the values of the metrics. According to C&K [5], the following judgments are 

applied on the NOM, ANA, DCC and CAM: 

i. The NOM (Number of Methods) 

1) The larger the number of methods in a class the greater the potential impact on 

children, since children will inherit all the methods defined in the class.  

                                                 
* Metrics adjusted by developing additional code. 
** Metric adjusted by changing a parameter in its given code by SDMetrics. 
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2) Classes with a large number of methods are likely to be more application specific, 

thus limiting the possibility of reuse. 

ii. The ANA (Average Number of Ancestors) 

1) The deeper a class is in a hierarchy, the greater the number of methods it is likely 

to inherit, making it more complex to predict its behavior. 

2) Deeper trees constitute greater design complexity, since more methods and classes 

are involved. 

3) The deeper a particular class is in the hierarchy, the greater the potential reuse of 

inherited methods. 

Chidamber and Kemerer [5] gave their viewpoints about the Number of Children (NOC) 

which is the number of immediate subclasses subordinated to a class in the class 

hierarchy. While our NOH design metric is a count of the number of class hierarchies in 

the design, we found that Chidamber and Kemerer’s suggestions for NOC do apply to our 

NOH metric as NOH could be considered as a subset of the NOC. Hence, we interpret 

their viewpoints to be: 

1) The greater the number of children, the greater is the reuse, since inheritance is a 

form of reuse. 

2) The greater the number of children, the greater is the likelihood of improper 

abstraction of the parent class. If a class has a large number of children, it may be 

a case of misuse of sub classing. 

iii. The DCC (Direct Class Coupling) 

1) Excessive coupling between classes is detrimental to modular design and prevents 

reuse. The more independent is a class, the easier it is to reuse in another 

application. 

2) In order to improve modularity and promote encapsulation, inter-object class 

couples should be kept to a minimum. The larger the number of couples, the 

higher the sensitivity to changes in other parts of the design, and therefore 

maintenance is more difficult. 
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3) A measure of coupling is useful to determine how complex the testing of various 

parts of a design is likely to be. The higher the inter-object class coupling, the 

more rigorous the testing needs to be. 

iv. The CAM (Cohesion Among Methods of Class) 

1) Cohesiveness of methods within a class is desirable, since it promotes 

encapsulation. 

2) Lack of cohesion implies classes should probably be split into two or more 

subclasses. 

3) Any measure of disparateness of methods helps identify flaws in the design of 

classes. 

4) Low cohesion increases complexity, thereby increasing the likelihood of errors 

during the development process. 

The last metric judged by Chidamber and Kemerer was the Response For a Class (RFC). 

However, this metric did not match any of the metrics proposed by Bansiya et al and 

therefore, we could not apply their judgment for this metric. 

In order to judge the extracted metrics, we suggested a threshold for each design metric. 

However, we faced a problem with this task which is choosing the reference for the 

threshold. Some design metrics could be related to the number of classes in the whole 

class diagram. Some others as suggested by Bansyia et al [2] ranged between 0 and 1. 

Table 3.4 shows a list of the design metrics, our suggested maximum and/or minimum 

thresholds and some examples. 
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Design 
Metrics 

Suggested Maximum and/or 
Minimum Threshold 

Examples 

DSC None None 

         
NOH = 0 

If we have n classes and each one of 
them is a stand alone class. 

NOH 

NOH = 1  
and  
ANA > ½ (DSC/DSC) 

If we have n classes and all of them 
under each other (having one root 
only), then the maximum value of 
ANA is (n/n). Exceeding half this 
value means that still there is high 
level of inheritance with reference to 
the total number of classes. 

 ANA = 0 
If we have n classes and each one of 
them is a stand alone class. 

ANA 

ANA > ½ (DSC/DSC) 

If we have n classes and all of them 
under each other (having one root 
only), then the maximum value of 
ANA is (n/n). Exceeding half this 
value means that still there is high 
level of inheritance with reference to 
the total number of classes. 

DAM 
NumPriAttr < (NumAttr/2) (per 
class) 

In a class, if we have x private 
attributes and y public attributes, and 
x is less than y, then the total number 
of attributes will be (x + y). If the 
number of private attributes is less 
that half the total number of 
attributes. Therefore, this will be an 
offline class. 

DCC 
NumAttrandPara > (NumAttr + 
NumOps)/2 (per class) 

If a class has x attributes of other 
classes’ type and a method with y 
parameters of other classes’ type, then 
the NumAttrandPara will be (x + y). If 
this class has a total of z attributes and 
operations which is less than half the 
value of NumAttrandPara, then this 
class is an offline class. 

CAM None None 

MOA IC_Attr > NumAttr/2 (per class) 

If a class has x attributes of other 
classes’ type and a total of y attributes 
where half the value of y is less than 
x, then this class is an offline class. 
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MFA 

NumAnc > 0  
and 
       OpsInh             < 0.5 
OpsInh + NumOps 

If an inherited class has a total of 7 
methods and 4 of them are inherited 
from the parent class, then the value 
of MFA for this class will be 4/7 = 
0.57 which is logically acceptable. 
However, if this class inherits only 3 
methods and still has a total of 7 
methods, then the MFA value will be 
3/7 = 0.4 which is not a favorable 
solution. 

NOP 
NumPolyMeth > OpsInh/2 (per 
class) 

If a class inherits x methods and y of 
them are determined dynamically at 
run-time and y is more than half the 
value of x. Then this offline class will 
create a problem for the whole 
structure. 

CIS NumPriOps > NumOps/2 (per class)

If a class has a total of x methods and 
y of them are private methods and y is 
more than half the value of x; then, 
this class is an offline one. 

NOM None None 
 

Table 3.4: The Design Metrics, the Suggested Thresholds, and Examples on the 

Thresholds  

3.2.2.2 The adopted Prioritization scheme 

Our survey on prioritization techniques on quality assessment led us to the conclusion 

that each research devised a prioritization technique based on the problem requirement. 

For example as mentioned in Chapter 1, Lee et al [17] proposed the effectiveness metrics, 

whereas Karlsson [11] used the pair-wise comparison technique. We created our own 

prioritization technique based on a weighted average geometric series which best suits our 

prioritization requirement. Under this scheme, each quality attribute is assigned a weight 

according to the following geometric series [29]: 

w1 =          1          . 
1 – (½)n 

               1 – ½ 
               =          ½          .   [Equ. 1] 
                 1 – (½)n 
          and  

wn = (½) n-1 w1    [Equ. 2] 
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where w1 is the weight of the first priority and n is the number of priorities chosen by the 

user. We first calculate the first priority according to Equ.1, and then the following 

prioritized quality attributes are calculated according to Equ. 2. 

For example, considering our six software quality attributes, if the user did not assign any 

priority to any of them, then they will all get equally-weighted values of 1/6 each. 

However, if the user gave a priority to each quality attribute, then it will be calculated 

according to the above equation. For example, if we arrange our quality attributes as 

follows: 

1) Functionality 

2) Effectiveness 

3) Reusability 

4) Flexibility 

5) Extendibility 

6) Understandability 
 

Then the weighted value to be assigned to Functionality will be 0.51. Then Effectiveness 

will take the weighted value of 0.25. Reusability will take the weighted value of 0.13. 

Being the fourth item in the priority list, Flexibility will take the value of 0.06. The 

weight for Extendibility will be 0.03. Finally, the weight for Understandability will be 

0.02. Each weight is multiplied by the value of the corresponding quality attributes. All 

these multiplications are summed up and displayed as the weighted average value.  

It is also possible that the user chooses to assign priorities for only 2 quality attributes and 

leaves the rest un-prioritized. For example, if the first priority is given to Effectiveness, 

and the second to be Reusability, and the user selects not to prioritize the rest of the 

quality attributes list then the calculation for the weighted average for each priority will 

be as follows: 

Effectiveness will take the first weight of 0.57. Then Reusability will take the weight of 

0.29, and then each of the remaining quality attributes will take an equal weight of 0.14. 

Finally the weighted average value is calculated as the sum of the products of each 

computed quality attribute value multiplied by its weight. 
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3.2.3 The Output: Observation and Analysis Report 

The aim of the observation report is to identify the deficiencies in the quality of the class 

diagram being examined. The report is based on Bansiya et al’s quality metrics suite that 

we selected to work with (as listed earlier in section 3.2.2). Within the report, a threshold 

for each quality metric is first generated (as explained in section 3.2.2.1 above). Some 

thresholds are computed for each individual class (e.g. direct class coupling) while some 

others are computed for the entire class diagram (e.g. number of hierarchies). We then 

test the selected metric values for the given class design against the corresponding 

threshold values. We alert the user whenever a metric value generated from the class 

diagram deviates from its threshold values. We also identify the sources of deviation and 

may even suggest some solutions to the user. 

From within the tool, we present a more detailed observation report to the user. The user 

would then know the exact classes that are causing the defect in his/her design and may 

be guided to fix the defect without restructuring the whole class diagram. Hence, our tool 

does not only help the user assess the quality of the class diagram, but also identifies the 

possible sources of deficiencies and in many cases can help direct the user as to how 

he/she can go about treating the deficiencies. 

3.2.3.1 Analysis of Specific Metrics 

In the next few paragraphs we summarize our approach in addressing the design metrics 

suggested by Bansiya et al [2]. Our method in handling each metric is explained 

separately under the metric name. It is worth noting here that all values that are 

transformed from decimal to whole numbers are based on the floor of the computed 

values. 

DSC 

Design Size in Classes (DSC) is a count of the total number of classes in the design. 

According to Bansiya et al’s [2] experimental work, the total number of classes in one 

package could reach up to 356 classes as in the Object Windows Library, OWL 5.2 

project that was released mid 1997 with Borland C++  5.2. Therefore, it is difficult to set 

a threshold for this metric.  
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NOH 

The Number of Hierarchies (NOH) metric measures the number of class hierarchies in the 

design. It counts the number of non-inherited (root) classes that have children in the 

design. Two extreme cases are considered as worst case scenarios. The first extreme case 

is when all classes are totally disjoint and each one stands alone (as shown in figure 3.5 if 

we have 7 classes in the diagram). The other extreme case is when all classes are under 

one root (as shown in figure 3.6, with 7 classes). If we calculate the value of NOH for the 

fist scenario, we will get a zero as there are no hierarchies. But, if we calculate the value 

of NOH for the second scenario, we will get the value of 1 as there is only one hierarchy. 

All other cases would give a value greater than 1. If we calculate the maximum NOH 

value for the 7 classes, we will get 3 which is the floor value of the total number of 

classes divided by 2. Therefore, the range of NOH is between 0 and DSC/2. 

If the value of NOH is 0, we inform the user that the design lacks hierarchy as classes are 

disjoint and each one stands alone. 

Also, if the value of NOH is equal to 1, we check if the value of ANA is the maximum 

value (see ANA below for full definition of the maximum value), then we inform the user 

that the design consists of only one hierarchy and that there is high dependency between 

classes. 

The above two extreme cases negatively affect the functionality quality attribute of the 

whole design. 

Figures 3.1 through 3.6 show sample diagrams for acceptable and unacceptable class 

inheritances and their corresponding ANA and NOH values.  

  

1

2 3

5
4 

6 7

Figure 3.1: First Acceptable Class Diagram that consists of 7 classes, ANA=10/7=1.43, 

NOH = 1 

 76



 

Figure 3.2: Second Acceptable Class Diagram that consists of 7 classes, ANA=6/7=0.86, 

NOH = 2 

 

 

Figure 3.3: Third Acceptable Class Diagram that consists of 7 classes, ANA=4/7=0.57, 

NOH = 2 

 

 

Figure 3.4: Class Diagram that consists of 7 classes resulting in max. value for NOH,  

ANA= 3/7 = 0.43, NOH = 3 
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Figure 3.5: First Worst Case Scenario for 7 Classes that are Totally Disjoint, ANA = 0, 

NOH = 0 
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Figure 3.6: Second Worst Case Scenario for 7 Classes that are Under One Root, ANA = 

21/7 = 3, NOH = 1 

ANA 

The Average Number of Ancestors (ANA) is computed by determining the number of 

classes along all paths from the “root” class(es) to all classes in an inheritance structure. 

Similar to NOH, we have the same two worst case scenarios where the first case is the 

disjoint classes shown in figure 3.5 and the other case is when they are all under one root 

as shown in figure 3.6. When we have all classes under one root (figure 3.6), this will 

give us the maximum value for ANA which is the triangular number [35] of DSC divided 

by the total number of classes (DSC). The triangular number for n classes is the sum of 

ancestors from 1 to (n - 1) which is computed as (n*(n - 1))/ 2 [35]. However, if we 

examine the first worst case scenario where there is no class inheritance (figure 3.5), then 

in this case the value of ANA will be zero. Therefore, the threshold that we suggest for 
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this metric is either ANA equal to zero or ANA greater than (1/2(DSC/DSC)). For 

example, in the case of the class diagram that consists of 7 classes, the range of values is 

between 0 and 3. Consequently, we compare the value of the ANA to the threshold and if 

the computed ANA is equal to 0, we inform the user that the design exhibits a bad 

inheritance structure where there is no inheritance which is undesirable. Also, if the 

computed ANA is greater than half the maximum value of ANA, we similarly alert the 

user that the design consists of a huge hierarchy structure which in turn means that there 

is no abstraction. We indicate that this will negatively affect the extendibility and 

effectiveness of the overall design. 

DAM 

The Data Access Metric (DAM) is the ratio of the number of private attributes to the total 

number of attributes declared in a class. Bansiya et al [2] mentioned that a higher value 

for DAM is desired as this metric will highly enhance the encapsulation design property. 

Accordingly, it is preferable to have a high average number of private attributes to the 

total number of attributes per class. We therefore consider any class that has a number of 

private attributes which is less than half the total number of attributes as being a weak 

class and that this in return will affect the overall value for this metric. We report that the 

specific class is offline regarding the number of private attributes to the total number of 

attributes and that it negatively affects the overall flexibility, understandability, and 

effectiveness quality attributes of the whole class diagram. 

DCC 

Direct Class Coupling (DCC) is a count of the different number of classes that a class is 

directly related to in the form of attribute declarations or message passing in methods. For 

each class, we count the number of unique classes that are either attribute type or 

parameter type within a method. If this counted value exceeds half the value of the total 

number of attributes and operations for the same class, we alert the user about this class. 

We display the class name and inform the user that this class exhibits high coupling. 

CAM 

Bansiya et al [2] define the computation of the metric Cohesion Among Methods (CAM) 

for a Class to be the summation of the intersection of parameters of a method with the 

maximum independent set of all parameter types in a class. However, we found a readily 
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calculated value for the cohesion metric in SDMetrics [36] based on the average number 

of internal relationships per class. According to SDMetrics owner, Juergen Wuest, 

cohesion is the degree to which the elements in a design unit (package, class etc) are 

logically related. He explains the proposed cohesion metric as quantifying the 

connectivity between elements of the design unit: the higher the connectivity between 

elements the higher the cohesion. Wuest continues to explain how previously proposed 

cohesion metrics are normalized to have a notion of minimum and maximum cohesion, 

usually expressed on a scale from 0 to 1. Minimum cohesion (0) is assumed when the 

elements are entirely unconnected, maximum cohesion (1) is assumed when each element 

is connected to every other element. Finally, Wuest introduces the idea of not normalized 

metrics which are based on counts of connections between design elements in a unit (e.g., 

method calls within a class). As such, un-normalized metrics are conceptually similar to 

complexity metrics. Therefore, according to Wuest a low cohesive design element has 

been assigned many unrelated responsibilities. Consequently, the design element is more 

difficult to understand and therefore also harder to maintain and reuse. Design elements 

with low cohesion should be considered for re-factoring, for instance, by extracting parts 

of the functionality to separate classes with clearly defined responsibilities. Therefore, we 

used the metric proposed by Wuest, which is called H, as a measure for the CAM metric. 

The importance of this metric is that it adversely affects the reusability, understandability, 

and functionality of any class diagram and hence in the corresponding equations, we 

reversed the sign assigned to cohesion (from + to -). 

MOA 

Measure of Aggregation (MOA) is a count of the number of data declarations whose 

types are user defined classes. We compare the total number of attributes which exhibit 

this feature to the average total number of attributes per class. If the compared value 

exceeds half the total number of attributes, we inform the user that this class has more 

than half of their data declaration types as user defined classes and that this in turn 

negatively affects the composition design property and the flexibility quality attribute of 

the whole design. 
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MFA 

The Measure of Functional Abstraction (MFA) is the ratio of the number of methods 

inherited by a class to the total number of methods accessible by member methods of the 

class. Hence, the normal range of values for this ratio is between 0 and 1. In each 

descendant class, we check if the value of MFA for this class is less than 0.5, then we 

alert the user that the total number of methods for this class by far outnumbers the 

inherited methods, which is structurally fault-prone and that this will affect the values of 

extendibility and effectiveness quality attributes. In each class we check if the number of 

methods is larger than twice the number of inherited methods, then we alert the user that 

this structure can negatively affect all quality attributes. This measure is significant in 

determining the inheritance feature. 

NOP 

The Number of Polymorphic Methods (NOP) counts the methods that can exhibit 

polymorphic behavior. It is a measure of services that are dynamically determined at run-

time in an object. We set our threshold for this metric to be not more than half the total 

number of inherited methods. Our justification is that the polymorphism design property 

directly affects the flexibility, functionality, extendibility, and effectiveness quality 

attributes of the whole design. Therefore, the user needs to know which classes with 

numerous virtual methods will dynamically match during run-time. For example, if a 

class inherits 6 methods and 5 of these methods are virtual, then this will cause enormous 

overhead during run-time. 

CIS 

The Class Interface Size (CIS) metric measures the number of public methods in a class. 

It is a measure of services that a class provides to other classes. Therefore, the more the 

public methods found in a class the better is the overall result of this metric. We check if 

the number of private methods is greater than half the total number of methods in the 

class. We inform the user that this class is offline and accordingly reusability and 

functionality quality attributes will be negatively affected. 

NOM 

The Number of Methods (NOM) is a count of all the methods defined in a class. It is an 

important metric as it measures the degree of difficulty in understanding and 
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comprehending the internal and external structures of classes and their relationships. The 

NOM metric measures the complexity of any design and hence, the more complex a 

design, the harder it is to understand. However, it is very hard to suggest a threshold for 

this metric as there is no logical value for the number of operations per class. Also, this 

was very clear in the examples cited by Bansiya el al [2] where a design with 92 classes 

has 9384 methods, i.e. 102 methods per class.  

Table 3.5 summarizes our suggested maximum and/or minimum thresholds for each 

design metric and the messages displayed to the user in the case of deviation from the 

threshold.  

 

Design 
Metrics 

Suggested Maximum and/or 
Minimum Threshold 

Message to the User (in case of 
deviation) 

DSC None None 

NOH 

NOH = 0 

The design lacks class hierarchy as 
classes are disjoint and each one 
stands alone. This negatively affects 
the functionality quality attribute of 
the whole design. 

 
NOH = 1  
and  
ANA > ½ (DSC/DSC) 

The design consists of one hierarchy 
structure and there is high 
dependency between classes. This 
negatively affects the functionality 
quality attribute of the whole design. 

ANA 

ANA = 0 

The design lacks class hierarchy as 
classes are disjoint and each one 
stands alone. This means that there is 
no abstraction and in return 
extendibility and effectiveness quality 
attributes are negatively affected. 

 ANA > ½ (DSC/DSC) 

The design consists of a huge 
hierarchy structure which means that 
there is no abstraction. This in turn 
affects the extendibility and 
effectiveness of the overall design. 

DAM 
NumPriAttr < (NumAttr/2) (per 
class) 

“Classes’ Names” classes have more 
public attributes than private 
attributes and this is structurally 
unfavorable. Their encapsulation 
values are low and therefore, they can 
affect the overall values of flexibility, 
effectiveness, and understandability 
quality attributes. 
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DCC 
NumAttrandPara > (NumAttr + 
NumOps)/2 (per class) 

“Classes’ Names” classes have high 
coupling and need restructuring to 
decrease the number of relatedness 
between objects whether as attribute 
declarations or message passing in 
methods. 

CAM None None 

MOA IC_Attr > NumAttr/2 (per class) 

“Classes’ Names” classes have more 
than half of their data declarations’ 
types as user defined classes and 
therefore, they affect the composition 
factor of the overall design. 

MFA 

NumAnc > 0  
and 
       OpsInh             < 0.5 
OpsInh + NumOps 

“Classes’ Names” are descendent 
classes; however, their own methods 
by far outnumber what they inherit 
from their parent classes. This 
negatively affects the extendibility 
and effectiveness quality attributes. 

NOP 
NumPolyMeth > OpsInh/2 (per 
class) 

“Classes’ Names” classes have too 
many virtual methods. This excess in 
the polymorphic behavior of the 
design makes it harder to understand. 

CIS NumPriOps > NumOps/2 (per class)

“Classes’ Names” classes have more 
private methods than public ones. 
Therefore, their methods are not 
accessible for other classes leading to 
higher independency between classes. 

NOM None None 
 

Table 3.5: Summary of Design Metrics and Corresponding Messages for each Offline 

Metric 
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3.3 The SDAnalysis Tool 

3.3.1 The SDAnalysis Architecture 

The architecture of the SDAanlysis tool is shown in figure 3.9. Its main components are 

the user’s visual interface, XML file reader/extractor, the metrics and quality attributes 

calculator and the report generator.  In Appendix A we give a more detailed description of 

the SDAnalysis tool classes. 

                  

 

 

 

 

 

 

Figure 3.7: The architecture of the SDAnalaysis Tool 

 

3.3.2 How the Tool Works 

The SDAnalyis tool implements our solution approach which we described above in 

section 3.2. The tool works as follows: 

1) Initializes all parameters that will hold the values of metrics to zero. 

2) Displays the main window for the user to upload the xml file. 

3) Checks the path of the xml file and if there is a mistake in the path, displays an 

error message. 

4) Reads the data in the xml file. 

5) Calls the CalculateTotal () function to execute the following steps: 

Data Set 

 
Report 

Generator 

Design Metrics 
and Quality 
Attributes  

Calculator 

XML file 
Reader / 

Extractor 

The path of XML file Priority Settings 

Metrics and 
Quality 

Attributes 

Complete Analysis 

Report 

Quality Manager 
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a. For every metric collected from the SDMetrics, sums up all its values 

across all classes. 

b. For each design metric presented by Bansiya et al [2], computes an 

average by dividing the above summed value (in a) by the total number of 

classes. 

6) Defines the required design metrics along with their weights for each quality 

attribute according to the equations shown in Table 3.2 (Default). 

7) Displays the main window once again to the user, to arrange the quality attributes 

in priority form according to the user’s selections (if he/she chooses to prioritize). 

8) Reads in the priority as entered by the user and assigns a priority value to each 

quality attribute according to the following geometric series [29]: 

w1 =          1          . 
1 – (½)n 

               1 – ½ 
               =          ½          .   [Equ. 1] 
                 1 – (½)n 
          and  

wn = (½) n-1 w1    [Equ. 2] 

where w1 is the weight of the first priority and n is the number of priorities chosen   

by the user. The first priority quality attribute is calculated according to Equ.1, and 

then the following prioritized quality attributes are calculated according to Equ. 2.  

9) Calculates the weighted average for all the 6 quality attributes according to the 

weight assigned by the user to each of them. 

10) Displays the weighted average along with all the values of the 11 metrics outlined 

by Bansiya et al [2]. A tab shows the individual values of the 6 quality attributes. 

Another tab displays the analysis report based on our suggested thresholds. 
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Chapter 4:  Experimental Tests and 
Results 
 

In this chapter, we present 3 examples of test cases on 3 different class diagrams. We 

show the priority settings and analysis report generated in each case which is fairly 

distinct from the other two. The reports demonstrate our suggested solution approach (as 

described in chapter 3 and embedded in the SDAnalysis tool) for computing and 

addressing weak design metrics in class diagrams and their associated quality attributes. 

The first two examples span a wide variety of weaknesses in class metrics. The third 

example focuses on the hierarchy and abstraction design properties as they are very much 

linked to each other. Each example is fully covered in one section of the chapter. 
 

4.1 The First Example 

In this section, we present our first example of an adapted class diagram [31] with some 

weak design attributes and we show how our analysis report can assist in correcting this 

class diagram. The initial class diagram is shown in figure 4.1. 
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Figure 4.1: First Adapted Class Diagram [31] 

 

We applied 3 cases of priority settings on this example. In the first case (case I) we 

applied an equal priority scheme for the quality attributes: Reusability, Functionality, 

Flexibility, Extendibility, Effectiveness and Understandability. 

 87



In the second case (case II) we gave each quality attribute a separate priority as follows: 

Priority   1  :  Reusability   

Priority   2  :  Functionality 

Priority   3  :  Flexibility 

Priority   4  :  Extendibility 

Priority   5  :  Effectiveness 

Priority   6  :  Understandability 

In the third case (case III) we gave two quality attributes a higher priority and the 

remaining attributes were given equal priorities. The priority settings were set as follows: 

Priority   1  :  Extendibility 

Priority   2  :  Functionality 

Priority   3  :  Reusability, Flexibility, Understandability, Effectiveness 

Table 4.1 shows the set of design metrics and their values as computed for the class 

diagram in figure 4.1. These values were calculated by both the SDMetrics and 

SDAnalysis tools. 

 

Design Metric Value 

DSC (Design Size) 6 

NOH (Hierarchies) 1 

ANA (Abstraction) 0.33 

DAM (Encapsulation) 0.5 

DCC (Coupling) 2 

CAM (Cohesion) 3.17 

MOA (Composition) 1.5 

MFA (Inheritance) 0.13 

NOP (Polymorphism) 1.67 

CIS (Messaging) 4 

NOM (Complexity) 5.83 

 

Table 4.1: The values for the design metrics for the adapted class diagram 
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The SDAnalysis tool calculated the quality attributes according to the formulas given by 

Bansiya et al.  In Table 4.2a we show the values of these quality attributes for the class 

diagram in figure 4.1 and Table 4.2b shows the weights obtained for the 3 cases of 

priority settings. 

 

Quality Attribute Value 

Reusability 3.71 

Flexibility 1.21 

Understandability -6.10 

Functionality 2.41 

Extendibility 0.06 

Effectiveness 0.83 

 

Table 4.2a: The quality attributes values for the adapted class diagram 

 

Case # Weighted Average Value 

Case I 0.35 

Case II 2.58 

Case III 0.66 

 

Table 4.2b: The weighted averages obtained for the 3 cases of priority settings 

 

The SDAnalysis tool computes the design metrics for each class separately. Our aim is to 

identify the classes that have drawbacks and to decide whether they do affect the whole 

class diagram metrics (and consequently the quality attributes). 

The analysis report generated from the SDAnalysis tool for the class diagram in figure 4.1 

included a number of observations which were as follows: 

 

Observation No. 1: 

EntryStation classes have more public attributes than private attributes and this is 

structurally unfavorable. Their encapsulation values are low and therefore, they can affect 

the overall values of flexibility, effectiveness, and understandability quality attributes. 
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Observation No. 2: 

Consortium classes have high coupling and need restructuring to decrease the number of 

relatedness between objects whether as attribute declarations or message passing in 

methods. 

Observation No. 3: 

CashierStation, and Consortium classes have more than half of their data declarations’ 

types as user defined classes and therefore, they affect the composition factor of the 

overall design. 

Observation No.4: 

ATM and CashierStation are descendent classes; however, their own methods by far 

outnumber what they inherit from their parent classes. This negatively affects the 

extendibility and effectiveness quality attributes. 

Observation No. 5: 

CashierStation and ATM classes have too many virtual methods. This excess in the 

polymorphic behavior of the design makes it harder to understand. 

Observation No. 6: 

ATM and CashierStation classes have more private methods than public ones. Therefore, 

their methods are not accessible for other classes leading to higher dependency between 

classes. 

 

Each class was revised separately and the defects detected and repaired as follows: 

1. The class EntryStation contains two attributes that are not used by any other class; 

therefore, there is no need to have them as public attributes. As a result, we 

changed their visibility to private. 

2. The values for the Direct Class Coupling (DCC) and Measure of Aggregation 

(MOA) metrics for the Consortium class were observed to be very high. We noted 

that this class has three attributes whose types are defined to be of other classes. 

According to Basili et al [3] highly coupled classes are more fault-prone than 

weakly coupled classes because they depend more heavily on methods and objects 

defined in other classes. Hence, the Consortium class metrics indicate that it has 

high coupling. A close examination of the class attributes revealed that two of 
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3. The CashierStation class was found to have high values for the Measure of 

Aggregation (MOA), Number of Polymorphic Methods (NOP), Measure of 

Functional Abstraction (MFA), and Class Interface Size (CIS) metrics. We noted 

that this class has two attributes declared to be of other class types; has five virtual 

methods out of a total of eight methods; and has five private methods out of the 

same eight methods. Moreover, we found that this class returns 3 primitive types, 

namely; Float, Integer, and Boolean, but there is no attribute declarations for these 

types. Therefore, we declared 3 new attributes of these types. The private methods 

were carefully studied and we found that there is no need to have them as private 

methods and hence we changed their visibility to public. However, with respect to 

the virtually inherited methods we found that all five methods need to be 

substituted at run-time as their services are dynamically determined. It was 

difficult to alter any of them and hence we could not handle the observations 

about the MFA and NOP metrics.  

4. The ATM class is similar to the CashierStation class in that it exhibits high values 

for MFA, NOP and CIS metrics. The solutions applied to the CashierStation class 

were also applied to the ATM class where the private methods’ visibility was 

changed from private to public and the virtually inherited methods were left 

unchanged. 

 

The above solutions were implemented based on the analysis report. After repairing the 

identified errors that were detected in the observations, the class diagram was 

restructured. The corrected diagram is shown in figure 4.2. 
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Figure 4.2: The Refined Class Diagram of Figure 4.1 

 

We ran the corresponding file for the diagram in figure 4.2 into SDMetrics to get the 

required metrics and the results were piped into the SDAnalysis tool. Table 4.3 shows all 

the values extracted from the class diagram by SDMetrics and calculated by the 

SDAnalysis tool.  
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Design Metric Value 

DSC (Design Size) 6 

NOH (Hierarchies) 1 

ANA (Abstraction) 0.33 

DAM (Encapsulation) 0.72 

DCC (Coupling) 1.33 

CAM (Cohesion) 2.83 

MOA (Composition) 1.17 

MFA (Inheritance) 0.13 

NOP (Polymorphism) 1.67 

CIS (Messaging) 5.83 

NOM (Complexity) 5.83 

 

Table 4.3: Design Metrics Values for the refined class diagram 
 

Table 4.4a shows the resulting quality attribute values for the refined class diagram. Table 

4.4b shows the weights obtained for the 3 cases of priority settings. 
 

Quality Attribute Value 

Reusability 4.88 

Flexibility 1.27 

Understandability -5.70 

Functionality 2.85 

Extendibility 0.40 

Effectiveness 0.80 

 

Table 4.4a: Quality attribute values for the refined class diagram 
 

Case # Weighted Average Value 

Case I 0.75 

Case II 3.33 

Case III 1.20 
 

Table 4.4b: The weighted averages obtained for the 3 cases of priority settings 
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The observations in the analysis report generated by SDanalysis on the refined class 

diagram in figure 4.2 were as follows: 

 

Observation No. 1: 

ATM and CashierStation are descendent classes; however, their own methods by far 

outnumber what they inherit from their parent classes. This negatively affects the 

extendibility and effectiveness quality attributes. 

Observation No. 2: 

CashierStation and ATM classes have too many virtual methods. This excess in the 

polymorphic behavior of the design makes it harder to understand. 

 

As mentioned above, it was important to keep the polymorphic operations in both the 

ATM and CashierStation classes to be dynamically determined at run-time. These are the 

operations that correspond to the overridden operations in the EntryStation class such as 

getStationID(), setStationID(), getIsOperating(), setIsOperating(). However, we show in 

the next paragraph the effect of removing the overridden operations from the parent class 

and retaining them in the child classes. 

 

For the sake of the experiment, we removed the methods in the EntryStation class that 

were redefined in both ATM and CashierStation classes and removed the word “virtual” 

from these methods in the previous two (ATM and CashierStation) classes.  Figure 4.3 

shows the new class diagram after these changes. 

 

Typically, we ran the corresponding file for the diagram in figure 4.3 into SDMetrics to 

get the new metrics and the results were piped into the SDAnalysis tool. Table 4.5 shows 

all the design metric values extracted from the class diagram by SDMetrics and calculated 

by the SDAnalysis tool.  
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Figure 4.3: The Experimental Refined Class Diagram (with no “virtual” methods) 
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Design Metric Value 

DSC (Design Size) 6 

NOH (Hierarchies) 1 

ANA (Abstraction) 0.33 

DAM (Encapsulation) 0.72 

DCC (Coupling) 1.33 

CAM (Cohesion) 2.50 

MOA (Composition) 1.17 

MFA (Inheritance) 0.03 

NOP (Polymorphism) 0 

CIS (Messaging) 5 

NOM (Complexity) 5 

 

Table 4.5: Design Metrics Values for the class diagram without “virtual” methods 

 

Table 4.6a shows the values of the resulting quality attributes for the class diagram with 

no “virtual” methods while in table 4.6b we show the weighted average obtained for the 

same 3 cases of priority settings for the quality attributes. 

 

Quality Attribute Value 

Reusability 4.54 

Flexibility 0.43 

Understandability -4.77 

Functionality 2.34 

Extendibility -0.48 

Effectiveness 0.45 

 

Table 4.6a: Quality attribute values for the class diagram without “virtual” methods 
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Case # Weighted Average Value 

Case I 0.42 

Case II 2.87 

Case III 0.47 

 

Table 4.6b: The weighted averages obtained for the 3 cases of priority settings 

 

The analysis report generated by SDAnalysis on the refined class diagram in figure 4.3 

included one observation as follows: 

 

Observation No. 1: 

ATM and CashierStation are descendent classes; however, their own methods by far 

outnumber what they inherit from their parent classes. This negatively affects the 

extendibility and effectiveness quality attributes. 

 

Discussion of Results 

Examining the analysis report generated for the experimental version of our class diagram 

(in figure 4.3), we note that there is only one observation generated. This in turn supports 

our error analysis of the inheritance design property. However, as we compare the values 

of the quality attributes in table 4.6a with those in table 4.4a, we notice a significant drop 

in most quality attribute values which depend on inheritance. The change applied to the 

class diagram was intended to decrease the values of NOP and MFA, but unfortunately 

other design metrics (namely, CIS and NOM) were also greatly affected. This lead to the 

drop in the values of most of the quality attributes (reusability, functionality, flexibility, 

extendibility, and effectiveness). Hence we note here that although a design metric or two 

appear to have a high value (such as NOP and MFA) by themselves, altering their values 

can affect other design metrics. This experiment led us to believe that our judgments 

should not be restricted to the generated observations, but should be based on all 4 

elements of the generated report, namely: the metrics’ values, the quality attributes’ 

values, the weighted average value, and finally the observation report. Our final goal is to 

identify the class diagram that has the best results in all 4 elements of the generated 

report. 
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Table 4.7 shows the comparison between values obtained for the 3 class diagrams (in 

figures 4.1, 4.2 and 4.3 above). 

 

 Original Design 
Figure 4.1 

Modified Design 
Figure 4.2 

Experimental 
Design  

Figure 4.3 

DSC 6 6 6 

NOH 1 1 1 

ANA 0.33 0.33 0.33 

DAM 0.5 0.72 (  0.22 ) 0.72 

DCC 2 1.33 (  0.67 ) 1.33 

CAM 3.17 2.83 (  0.34 ) 2.50 (  0.33 ) 

MOA 1.5 1.17 1.17 

MFA 0.13 0.13 0.03 (  0.10 ) 

NOP 1.67 1.67 0 

CIS 4 5.83 (  1.83 ) 5 (  0.83 ) 

NOM 5.83 5.83 5 (  0.83 ) 

Reusability 3.71 4.88 (  1.17 ) 4.54 (  0.34 ) 

Flexibility 1.21 1.27 (  0.06 ) 0.43 (  0.84 ) 

Understandability -6.10 -5.70 (  0.40 ) -4.88 (  0.82 )  

Functionality 2.41 2.85 (  0.44 ) 2.34 (  0.51 ) 

Extendibility 0.06 0.40 (  0.34 ) -0.48 (  0.88 ) 

Effectiveness 0.83 0.80 0.45 (  0.35 ) 

Weighted Average 
(Case I) 

0.35 0.75 0.42 

Weighted Average 
(Case II) 

2.58 3.33 2.87 

Weighted Average 
(Case III) 

0.66 1.20 0.47 

 

Table 4.7: Comparison of design metrics and quality attributes for all 3 class diagrams 
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As we compare between the quality attribute values obtained for the initial class diagram 

(in table 4.2a) with those obtained after the modifications (in table 4.4a), we observe the 

following: 

 

1) The reusability and extendibility quality attribute values increased noticeably. The 

design metric which is common between these two quality attributes is the Direct 

Class Coupling (DCC). If we consider the changes made to the class diagram 

which affected the DCC from table 4.1 and table 4.3, we find that the value of the 

DCC has dropped from 2 to 1.33. This drop in the DCC value was automatically 

reflected on both the reusability and extendibility quality attributes. 

 

2) There are two other design metrics that affected the value of the reusability quality 

attribute, which are the Class Interface Size (CIS) and the Cohesion Among 

Methods in Class (CAM). These metrics also affected the value of the 

functionality quality attribute. The CIS value improved from 4 to 5.83 which 

means that the number of public methods increased in the overall design. The 

CAM value decreased from 3.17 to 2.83 leading to improved functionality and 

reusability. 

 

3) The flexibility and understandability quality attributes values increased slightly. 

The design metrics which affect these two quality attributes are the Data Access 

Metric (DAM), Number of Polymorphic Methods (NOP), and DCC. Closer 

inspection shows that the little increase in the quality attributes came from the 

DAM as its value increased from 0.5 to 0.72. This increase was not clear enough 

as it was dominated by the decrease which occurred in the DCC value from 2 to 

1.33. As the value for the NOP did not change, we gather that it did not affect the 

values of the flexibility and understandability quality attributes. 

 

If we compare the calculated weighted average for figure 4.1 with that for figure 4.2, we 

notice that in the three cases of priority settings, the values for the calculated weights 

improved (from 0.35 to 0.75 in  case I, from 2.58 to 3.33 in case II, and from 0.66 to 1.20 

in case III). However, if we compare the values for figure 4.2 and figure 4.3 (as shown in 
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Table 4.7; Modified Design and Experimental Design), the drop in all the quality 

attributes negatively affected the results of the calculated weighted average (from 0.75 to 

0.42 in case I, from 3.33 to 2.87 in case II, and from 1.20 to 0.47 in case III). It is also 

important to clarify that the relatively large values of weighted average in case II are due 

to the Reusability quality attribute whose values are much higher compared to all the 

other quality attributes. 

 

From all the computed metrics, quality attributes, and weighted average values listed in 

Table 4.7, we are assured that figure 4.2 is the most appropriate design for this example 

as it gave the most acceptable quality attribute values and weighted average.  Figure 4.1 

had serious weaknesses which were fixed in figure 4.2 whereas figure 4.3 (in which we 

experimented by minimizing the NOP), the results got worse because the inheritance 

became meaningless and in turn had an adverse effect on the quality attributes that 

depend on MFA ( Measure of Functional Abstraction, the Inheritance measure). 

 

As a final observation we note that most quality attributes decreased as indicated in the 

brackets in Table 4.7, with figure 4.3. This is clearly attributed to the drop in most of the 

design metrics in the same figure while most metrics (and quality attributes) increased, 

except for the DCC and CAM values, with figure 4.2. 

  

4.2 The Second Example 
 

In this section, we present our second example of an adapted class diagram [23] in figure 

4.4 with a different set of weak design attributes and we show how our analysis report 

helped in correcting this class diagram.  
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Figure 4.4: The Second Adapted Class Diagram [23]  

 

We applied 3 cases of priority settings on this example. In the first case (case I) we 

applied an equal priority scheme for the quality attributes: Reusability, Functionality, 

Flexibility, Extendibility, Effectiveness and Understandability. 
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In the second case (case II) we assigned each quality attribute a separate priority. The 

priority setting in this case is as follows: 

Priority   1  :  Effectiveness 

Priority   2  :  Functionality 

Priority   3  :  Understandability 

Priority   4  :  Flexibility 

Priority   5  :  Extendibility 

Priority   6  :  Reusability   

In the third case (case III) we gave two quality attributes higher priorities and the 

remaining attributes were given equal (third) priority. The priorities were set as follows: 

Priority   1  :  Flexibility 

Priority   2  :  Extendibility 

Priority   3  :  Reusability, Effectiveness, Understandability, Functionality 

 

Table 4.8 shows the set of design metrics and their values as computed for the class 

diagram in figure 4.4. These values were calculated by using both the SDMetrics and 

SDAnalysis tools. 

 

Design Metric Value 

DSC (Design Size) 12 

NOH (Hierarchies) 2 

ANA (Abstraction) 1.33 

DAM (Encapsulation) 0.55 

DCC (Coupling) 0.92 

CAM (Cohesion) 3.25 

MOA (Composition) 0.92 

MFA (Inheritance) 0.30 

NOP (Polymorphism) 0 

CIS (Messaging) 2.92 

NOM (Complexity) 2.92 

 

Table 4.8: The values for the design metrics for the adapted class diagram in figure 4.4 
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The SDAnalysis tool calculated the quality attributes according to the formulas set by 

Bansiya et al [2]. Table 4.9a shows the values of these quality attributes for the class 

diagram in figure 4.4 and Table 4.9b shows the weights obtained for the 3 cases of 

priority settings. 

 

Quality Attribute Value 

Reusability 6.42 

Flexibility 0.37 

Understandability -6.56 

Functionality 3.33 

Extendibility 0.36 

Effectiveness 0.62 

 

Table 4.9a: The quality attributes values for the adapted class diagram in figure 4.4 

 

Case # Weighted Average Value 

Case I 0.76 

Case II 0.49 

Case III 0.85 

 

Table 4.9b: The weighted averages obtained for the 3 cases of priority settings 

 

The analysis report generated by the SDAnalysis tool for the class diagram in figure 4.4 

included two observations which are as follows: 

 

Observation No. 1: 

The Street, User, and SimDrug classes have a larger number of public attributes than 

private attributes and this is structurally unfavorable. Their encapsulation values are low 

and therefore, they can affect the overall values of flexibility, effectiveness, and 

understandability quality attributes. 
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Observation No. 2: 

The PoliceStation, TreatmentCenter, Street, Dealer, and User are descendent classes; 

however, their own methods by far outnumber what they inherit from their parent classes. 

This negatively affects the extendibility and effectiveness quality attributes. 

 

Each class was revised separately and the defects detected and repaired as follows: 

1. The attributes in the SimDrug class were examined and it was noted that they are 

not used outside the class and hence, the visibility of all attributes was changed 

from public to private. 

2. Similarly the attributes in the User class were revised and their visibility changed 

from public to private. Also, upon a close inspection, we noted that the 

relationship between the User class and the Street class could be an association 

relationship instead of inheritance. 

3. Equally the relationship between the Wholeseller class and the Dealer class need 

not to be an inheritance relationship. A simple association relationship could be 

more applicable. 

4. The PoliceStation, TreatmentCenter, and Street are inherited classes from the Cell 

class. However, we noted that the Cell class contains no attributes or methods. We 

made each of these classes a stand alone class and removed the inheritance 

relationship between them and the Cell class. 

 

The above solutions were implemented based on the analysis report. After repairing the 

identified errors, the class diagram was restructured. The new corrected diagram is shown 

in figure 4.5. 

 

Table 4.10 shows all the design metric values extracted from the class diagram by 

SDMetrics and calculated by the SDAnalysis tool. 
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Figure 4.5: The Refined Class Diagram (for the second adapted example) 

 

Table 4.11a shows the corresponding values for the resulting quality attributes for the 

refined class diagram. Table 4.11b shows the weights obtained for the 3 cases of priority 

settings. 
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Design Metric Value 

DSC (Design Size) 12 

NOH (Hierarchies) 4 

ANA (Abstraction)         0.5 (0.33) 

DAM (Encapsulation) 0.68 

DCC (Coupling) 0.83 

CAM (Cohesion)          2.25 (2.17) 

MOA (Composition) 0.83 

MFA (Inheritance)           0.25 (0.22) 

NOP (Polymorphism) 0 

CIS (Messaging) 2.92 

NOM (Complexity) 2.92 
 

Table 4.10: Design metric values for the refined class diagram in figure 4.5  

(and figure 4.6) 

Quality Attribute Value 

Reusability           6.69 (6.71) 

Flexibility 0.38 

Understandability            -5.88 (-5.80) 

Functionality             3.89 (3.90) 

Extendibility            -0.04 (-0.14) 

Effectiveness            0.45 (0.41) 
 

Table 4.11a: Quality attribute values for the refined class diagram in figure 4.5 

(and figure 4.6) 

Case # Weighted Average Value 

Case I 0.92 (0.91) 

Case II 0.63 (0.62) 

Case III 0.93 (0.91) 
 

Table 4.11b: The weighted averages obtained for the 3 cases of priority settings for the 

class diagram in figure 4.5 (and figure 4.6) 
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Only one observation was generated by SDAnalysis on the refined class diagram in figure 

4.5 which is as follows: 

 

Observation No. 1: 

SimDrug is a descendent class; however, its own methods by far outnumber what it 

inherits from its parent class. This negatively affects the extendibility and effectiveness 

quality attributes. 

 

According to the above report the SimDrug class was further examined and we noted that 

we could do away with the inheritance relationship between this class and the Drug class. 

The changes are shown in figure 4.6. Deleting this relationship from the model had a 

positive impact on the ANA and CAM design metrics, but a negative effect on the MFA 

design metrics. Their new values are indicated in brackets in table 4.10, next to the 

original values. The values of the quality attributes that were affected by the changes in 

the design metrics are indicated in brackets in table 4.11a and their corresponding 

weighted averages are indicated in brackets in table 4.11b. Only the Extendibility 

attribute got negatively affected while the remaining attributes remained almost the same. 

The decrease in the Extendibility attribute (from -0.04 to -0.14) was a result of the 

decrease in the ANA (from 0.5 to 0.33) and the slight decrease in the MFA (from 0.25 to 

0.22).  

 

The improvements in the refined class diagram (in figure 4.6) may be attributed to the 

following: 

 A slight enhancement occurred in two quality metrics while the rest of the metrics 

remained unchanged. 

 Most of the quality attributes were slightly (positively) affected except for the 

Extendibility, which contains both ANA and MFA as metrics in its equation, and 

they both decreased in value when compared to the calculated metrics in figure 

4.5. 

 There is no reported observation on this class diagram (figure 4.6). 

 The calculated weighted averages in the three cases for both figure 4.5 and 4.6 are 

very similar. 
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Figure 4.6: The Refined Class Diagram without SimDrug/Drug Inheritance 

 

However, for the sake of experimentation, we wished to test the effect of changing the 

inheritance relationships between classes, when it is not needed, to simple association. 

We returned to the original diagram in figure 4.4 where there were inheritance 

relationships between the PoliceStation, TreatmentCenter, and Street classes with the Cell 

class. The change that we suggested was to group common attributes and common 

methods from all 3 classes and define them in the Cell class.  The detailed changes made 

were as follows: 

1. Setting the visibility of all attributes to private. 

2. Finding similar attributes and methods in PoliceStation, TreatmentCenter, and 

Street classes, deleting them from these classes, and declaring them in the Cell 

class. Then re-establishing the inheritance relationships between each of the three 

classes and the Cell class. 
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3. Changing the relationship between the Dealer and Drug classes from inheritance 

to association. 

4. Changing the relationship between the OutreachWorker class and 

TreatmentCenter and Street classes from inheritance to association. 

5. Changing the relationship between the Constable and PoliceStation classes from 

inheritance to association. 

6. Checking all classes for excess usage of attributes which had resulted in that the 

SimDrug class has two attributes (myAttr4 and myAttr11) which are of the same 

type (class type: Drug). Therefore, we deleted the attribute myAttr11. 

 

Figure 4.7 shows the new class diagram after the above changes were applied. 

 

 
 

Figure 4.7: Applying New Changes to the Class Diagram in figure 4.4 (Experimental) 
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Table 4.12 shows all the values extracted from the class diagram by SDMetrics and 

calculated by the SDAnalysis tool. 

 

Design Metric Value 

DSC (Design Size) 12 

NOH (Hierarchies) 1 

ANA (Abstraction) 0.25 

DAM (Encapsulation) 0.92 

DCC (Coupling) 0.83 

CAM (Cohesion) 2.75 

MOA (Composition) 0.83 

MFA (Inheritance) 0.16 

NOP (Polymorphism) 0 

CIS (Messaging) 2.67 

NOM (Complexity) 2.67 

 

Table 4.12: Design metrics values for the new changed class diagram 

 

Table 4.13a shows the values for the resulting quality attributes for the new class diagram 

after implementing the above changes. Table 4.13b shows the weights obtained for the 3 

cases of priority settings. 

 

Quality Attribute Value 

Reusability 6.44 

Flexibility 0.44 

Understandability -5.80 

Functionality 3.12 

Extendibility -0.21 

Effectiveness 0.43 

 

Table 4.13a: Quality attribute values for the new changed class diagram 
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Case # Weighted Average Value 

Case I 0.74 

Case II 0.43 

Case III 0.78 

 

Table 4.13b: The weighted averages obtained for the 3 cases of priority settings 

 

The final report did not include any observations. 

 

Discussion of Results 

As we examine the experimental version of our class diagram, we note that there is no 

observation generated. This in turn supports our experimental hypotheses in which we 

claim that 1) changing the inheritance relationships between classes, when it is not 

needed, to simple association and 2) using the inheritance relationship when we find more 

than one class having similar attributes and similar methods, leads to better metric values. 

 

Table 4.14 compares all the design metrics and quality attribute values extracted from the 

above 4 class diagrams. 
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 Original 
Design 

(fig. 4.4) 

Refined 
Class 

Diagram 
(fig. 4.5) 

Without  
SimDrug/Drug 

Inheritance  
(fig. 4.6) 

Experimental 
Design       

(fig. 4.7) 

DSC 12 12 12 12 

NOH 2 4 4 (  2 ) 1 (  3 ) 

ANA 1.33 0.5 0.33 (  1 ) 0.25 (  0.08 ) 

DAM 0.55 0.68 0.68 (  0.13 ) 0.92 (  0.24 ) 

DCC 0.92 0.83 0.83 (  0.09 ) 0.83 

CAM 3.25 2.25 2.17 (  1.08 ) 2.75 (  0.58 ) 

MOA 0.92 0.83 0.83 0.83 

MFA 0.30 0.25 0.22 (  0.08 ) 0.16 (  0.06 ) 

NOP 0 0 0 0 

CIS 2.92 2.92 2.92 2.67 (  0.25 ) 

NOM 2.92 2.92 2.92 2.67 (  0.25 ) 

Reusability 6.42 6.69 6.71 (  0.29 ) 6.44 (  0.27 ) 

Flexibility 0.37 0.38 0.38 0.44 (  0.06 ) 

Understandability -6.56 -5.88 -5.80 -5.80  

Functionality 3.33 3.89 3.90 (  0.57 ) 3.12 (  0.78 ) 

Extendibility 0.36 -0.04 -0.14 (  0.5 ) -0.21 (  0.07 )

Effectiveness 0.62 0.45 0.41 (  0.21 ) 0.43 (  0.02 ) 

Weighted Average 
(Case I) 

0.76 0.92 0.91 (  0.15 ) 0.74 (  0.17 ) 

Weighted Average 
(Case II) 

0.49 0.63 0.62 (  0.13 ) 0.43 (  0.19 ) 

Weighted Average 
(Case III) 

0.85 0.93 0.91 (  0.06 ) 0.78 (  0.13 ) 

 

Table 4.14: Comparison of design metrics and quality attributes for all 4 class diagrams 

in figures 4.4 through 4.7 
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Figures 4.6 and 4.7 did not generate any observations and we claim that they provide the 

best solutions. Figure 4.5 resulted in one observation that was resolved in figure 4.6. 

Therefore, we focus on figures 4.6 and 4.7 class diagrams and discuss their results. 

Nevertheless, we still need to examine the rest of the analysis report to support our claim. 

If we compare the quality attributes and hence the design metrics of figure 4.6 with those 

obtained for figure 4.5, we note the following: 

1) Figure 4.6 shows an increase in Reusability which is attributed to the sharp drop 

in CAM by 1.08.  

2) Functionality is another quality attribute that exhibited a fair increase in its value 

(by 0.57). The most distinguishable indicator in this quality attribute is NOH (as it 

is not found in any other quality attributes’ equation) whose value increased by 2. 

Also, the decrease that occurred in the CAM was reflected on the increase in 

Functionality. 

3) However figure 4.6 shows a drop in both Extendibility and Effectiveness quality 

attributes. The common design metric in both equations is ANA and its value 

decreased from 1.33 to 0.33. However, the decrease in Effectiveness was not as 

high as that in Extendibility as it was dominated by the increase that occurred in 

the DAM. 

4) Finally, figure 4.6 shows an interesting increase in the weighted average value in 

all 3 priority cases in. This supports our first judgment that figure 4.6 could be 

considered one of the best solutions for the original problem.  

 

As we compare the values of the quality attributes in the Experimental class diagram 

(figure 4.7) with those in the Refined (Without SimDrug/Drug Inheritance) class diagram 

(figure 4.6), we notice the following: 

1) Figure 4.7 shows an opposite result to what was calculated for figure 4.6 where 

both Reusability and Functionality decreased. Apparently, the decrease in 

Reusability came from the increase in CAM where we increased the number of 

relationships between classes when we restored the inheritance relationships in 

figure 4.4. 

 113



2)  Functionality decreased tremendously as the number of hierarchies (NOH) 

dropped from 4 to 1. Also, the decrease in messaging (CIS) contributed to this 

decrease where it had dropped by 0.25. 

3) The last decrease that occurred to a quality attribute was by a very minor 

proportion from that of figure 4.6 where Extendibility decreased by 0.07. 

4) Finally, figure 4.7 shows a high drop in the values of the weighted average for the 

3 priority cases. 

 

Although figure 4.7 shows lower values in a number of metrics, quality attributes, and 

weighted averages when compared to the values in figure 4.6, this could be attributed to 

the retained inheritance relationships between the Cell class and the PoliceStation, 

TreatmentCenter, and Street classes. 

 

4.3 The Third Example 
 

In this section, we present our third example of an adapted class diagram [24] with a 

different set of weak design attributes and we show how our metrics/attributes analysis 

technique can lead us to refine this class diagram. The initial class diagram is shown in 

Figure 4.8. 
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Figure 4.8: Third Adapted Class Diagram [24]   

 

As in the previous 2 examples, we applied 3 cases of priority settings on this example. In 

the first case (case I) we applied an equal priority scheme for the quality attributes: 

Reusability, Functionality, Flexibility, Extendibility, Effectiveness, and 

Understandability. 
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In the second case (case II) we assigned each quality attribute a separate priority as 

follows: 

Priority   1  :  Understandability 

Priority   2  :  Reusability 

Priority   3  :  Functionality 

Priority   4  :  Flexibility 

Priority   5  :  Effectiveness 

Priority   6  :  Extendibility 

In the third case (case III) we gave two quality attributes higher priorities and the 

remaining attributes were given equal (third) priority. The priorities were set as follows: 

Priority   1  :  Effectiveness 

Priority   2  :  Extendibility 

Priority   3  :  Reusability, Flexibility, Understandability, Functionality 

Table 4.15 presents all the design metrics and their values as computed for the class 

diagram in figure 4.8. These values were calculated by using both the SDMetrics and 

SDAnalysis tools. 

 

Design Metric Value 

DSC (Design Size) 15 

NOH (Hierarchies) 1 

ANA (Abstraction) 4.47 

DAM (Encapsulation) 0.29 

DCC (Coupling) 0 

CAM (Cohesion) 1.13 

MOA (Composition) 0 

MFA (Inheritance) 0.74 

NOP (Polymorphism) 0 

CIS (Messaging) 1.47 

NOM (Complexity) 1.47 

 

Table 4.15: The Design Metrics for the Adapted Class Diagram in figure 4.8 
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Table 4.16a shows the values of these quality attributes for the class diagram in figure 4.8 

and Table 4.16b shows the weights obtained for the 3 cases of priority settings. 

Quality Attribute Value 

Reusability 7.95 

Flexibility 0.07 

Understandability -7.19 

Functionality 3.71 

Extendibility 2.61 

Effectiveness 1.1 

 

Table 4.16a: The quality attributes values for the adapted class diagram 

 

Case # Weighted Average Value 

Case I 1.37 

Case II -1.03 

Case III 1.99 

 

Table 4.16b: The weighted averages obtained for the 3 cases of priority settings 

 

 The analysis report generated by the SDAnalysis tool for the class diagram in figure 4.8 

included a number of observations which are as follows: 

 

Observation No. 1: 

The design consists of one hierarchy structure and there is high dependency between 

classes. This negatively affects the functionality quality attribute of the whole design. 

Observation No. 2: 

The design consists of a huge hierarchy structure which means that there is no 

abstraction. This in turn affects the extendibility and effectiveness of the overall design. 

Observation No. 3: 

The OCRparameter class has more public attributes than private attributes and this is 

structurally unfavorable. Its encapsulation value is low and therefore, it can affect the 

overall values of flexibility, effectiveness, and understandability quality attributes.  
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Observation No. 4: 

The OCRparameter is a descendent class; however, its own methods by far outnumber 

what it inherits from the parent class. This negatively affects the extendibility and 

effectiveness quality attributes. 

 

Each class was revised separately and the defects detected and repaired as follows: 

1. The inherited relationships that connect to the OCRgui were replaced by simple 

association since OCRengine and OCRparameter do not inherit any of the 

functions in OCRgui. 

2. Image_reader and Graphic_char classes were extracted from the long hierarchy 

tree and were placed as two separate classes with their own subclasses. 

3. The OCRparameter class was examined separately and the following was noticed: 

a. Observation No. 4 is automatically solved after changing the relationship 

between this class and the OCRgui to be a simple association (as resolved 

in 1 above). 

b. The public attributes found in the class are constant attributes and they 

need to be public to be accessible from any other class. 

 

The above solutions were implemented based on the analysis report. After repairing the 

identified errors that were detected in the observations, the class diagram was 

restructured. The new corrected diagram is shown in Figure 4.9. 
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Figure 4.9: The Refined Class Diagram (third example) 

  

Table 4.17 shows the computed design metric values for the refined class diagram in 

figure 4.9.   
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Design Metric Value 

DSC (Design Size) 15 

NOH (Hierarchies) 3 

ANA (Abstraction) 0.93 

DAM (Encapsulation) 0.29 

DCC (Coupling) 0 

CAM (Cohesion) 1 

MOA (Composition) 0 

MFA (Inheritance) 0.36 

NOP (Polymorphism) 0 

CIS (Messaging) 1.47 

NOM (Complexity) 1.47 

 

Table 4.17: Design Metric Values for the Refined Class Diagram in Figure 4.9 
 

Table 4.18a shows the values for the resulting quality attributes for the refined class 

diagram. Table 4.18b shows the weights obtained for the 3 cases of priority settings. 
 

Quality Attribute Value 

Reusability 7.98 

Flexibility 0.07 

Understandability -5.98 

Functionality 4.16 

Extendibility 0.65 

Effectiveness 0.32 

 

Table 4.18a: Quality attribute values for the refined class diagram in figure 4.9 
 

Case # Weighted Average Value 

Case I 1.20 

Case II -0.41 

Case III 1.23 
 

Table 4.18b: The weighted averages obtained for the 3 cases of priority settings 
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Only one observation was generated by SDanalysis on the refined class diagram in figure 

4.9 which is as follows: 

 

Observation No. 1: 

The OCRparameter class has more public attributes than private attributes and this is 

structurally unfavorable. Its encapsulation value is low and therefore, it can affect the 

overall values of flexibility, effectiveness, and understandability quality attributes. 

 

The public attributes are constants that could be used by any other class; and therefore, 

we could not work any further on this observation. 

 

Discussion of Results 
 

We selected the class diagram in figure 4.8 as it illustrates the typical problems that result 

from a dense hierarchy structure. As noted in figure 4.8, the class diagram started with 

seven levels of inheritance. The most significant design properties here are hierarchies 

and abstraction. The corresponding design metrics are Number of Hierarchies (NOH) and 

Average Number of Ancestors (ANA) respectively. According to the total number of 

classes in the diagram, if the depth of inheritance exceeds half the worst value for ANA 

(which is DSC/DSC), then this will be expected to negatively affect understandability, 

extendibility, effectiveness and functionality quality attributes. This is easily shown in the 

calculated data in Tables 15 and 16a.  

Table 4.19 presents a comparison between the design metrics, the quality attributes, and 

the weighted average values obtained for the initial class diagram (in figure 4.8) with 

those obtained for the refined diagram (in figure 4.9). 
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 Original Design 
Figure 4.8 

Modified Design 
Figure 4.9 

DSC 15 15 

NOH 1 3 (  2 ) 

ANA 4.47 0.93 (  3.54 ) 

DAM 0.29 0.29 

DCC 0 0 

CAM 1.13 1 (  0.13 ) 

MOA 0 0 

MFA 0.74 0.36 (  0.38 ) 

NOP 0 0 

CIS 1.47 1.47 

NOM 1.47 1.47 

Reusability 7.95 7.98 (  0.03 ) 

Flexibility 0.07 0.07 

Understandability -7.19 -5.98 (  1.21 ) 

Functionality 3.71 4.16 (  0.45 ) 

Extendibility 2.61 0.65 (  1.96 ) 

Effectiveness 1.1 0.32 (  0.78 ) 

Weighted Average 
(Case I) 

1.37 1.20 (  0.17 ) 

Weighted Average 
(Case II) 

-1.03 -0.41 (  0.62 ) 

Weighted Average 
(Case III) 

1.99 1.23 (  0.76 ) 

 

Table 4.19: Comparison between the Design Metrics, Quality Attributes,  

and Weighted Averages for the class diagrams in figures 4.8 and 4.9 
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As we compare the quality attribute values for the 2 class diagrams in Table 4.19, we note 

the following: 

1) The functionality quality attribute’s value increased due to the increase in the 

NOH (from 1 to 3). The NOH design metric is only found in the functionality 

quality attribute equation.  

2) All the quality attributes that have either MFA (Measure of Functional 

Abstraction) or ANA as terms in their equations decreased in value. This fact is 

quite noticeable in the extendibility and effectiveness quality attributes’ values as 

they both have the MFA as well as the ANA in their equations. It is quite 

noticeable that the drop in the extendibility is more than that of the effectiveness 

due to the fact that the coefficient in the extendibility equation (0.5) is greater than 

that of the effectiveness (0.2). 

3) The value for understandability increased due to the decrease encountered in the 

design metric ANA. 

 

If we compare the weighted average values for the 3 priority cases (I, II and III) for the 2 

class diagrams (in figure 4.8 and figure 4.9), we note the following: 

1) In Case I, where we have equal weights for all quality attributes, there is a net 

decrease in the weighted average since we have a decrease in the values of two 

quality attributes (extendibility and effectiveness) with a total drop of 2.74, while 

the other three quality attributes (reusability, understandability, and functionality) 

increased by 1.69. 

2) In Case II, where understandability gets the highest weight and extendibility the 

lowest weight, the weight on the increase in understandability is higher than the 

weight on the decrease in extendibility. This in turn, resulted in a net increase in 

the weighted average. 

3)  In Case III, we wanted to go in the opposite direction of Case II. The two quality 

attributes (effectiveness and extendibility) whose values dropped down 

significantly were given the first and second priorities and the remaining quality 

attributes were given equal priority. The net result on the weighted average value 

was a sharper decrease. 

 123



We experimented with a part of the MFC version 7.0 class diagram [9] and our results 

showed the consistency with Bansiya et al’s results [2] that if the number of classes by far 

out number the level of inheritance, then the class design is acceptable. We show the 

drawn part of the MFC and its corresponding NOH and ANA values in Appendix C. 
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Chapter 5: Analysis of Results 
 
In this chapter, we highlight the significance of our findings. We sum up all our 

experimental results, which were based on relationships set by previous researchers 

between class design metrics and product quality metrics, and we try to draw fine lines 

through our findings. The chapter is divided into 4 main sections which represent the 

components of the analysis report (the output of our solution approach). The Design 

metrics are discussed in section 5.1, The Quality Attributes in section 5.2, the Weighted 

Average in section 5.3, and the Observations in section 5.4. 

 

5.1 Design Metrics 

From our experimental work with the design metric calculations recommended by 

previous researchers and complemented by our tool calculations, we got to see more 

clearly, the profound relationship between class design metrics and product quality 

attributes. We were able to identify which metrics should increase and which should 

decrease in order to improve the product quality attributes. Our objective was to improve 

the quality of the overall class diagram design which would lead to a better quality of the 

product. Through the metric calculations we are more confident in guiding the user 

improve the class diagram. In this section we discuss our findings about the effect of each 

metric, based on our experimental results. 

 

5.1.1 Design Size in Classes – DSC 

The importance of this metric is that it provides the basic figure on which the rest of the 

metrics depend. It is the denominator in most of our computations. We take the average 

of other metrics based on the total number of classes (DSC) and accordingly we evaluate 

the influence of these metrics positively or negatively with respect to the entire class 

diagram. 
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5.1.2 Average Number of Ancestors – ANA 

It is acceptable to increase the value of the ANA as it indicates the average level of 

inheritance in the whole class diagram. However, if the value of ANA increases to more 

than 1/2(DSC/DSC), i.e. if the number of ancestors increases to more than 

1/2(DSC/DSC), then this could lead to unfavorable results. Hence, in order for the 

value of ANA to be controllable within its optimization range, we suggested to set its 

acceptable range to be more than zero and less than 1/2(DSC/DSC).  

 

5.1.3 Number of Hierarchies – NOH 

It is preferable to increase the number of hierarchies in a design than to have deeper levels 

of inheritance and to have every group of classes linked together in one bundle. It is 

important to avoid the two worst cases of NOH: the first where there is no inheritance as 

this means that there is no structure. The second is linked to ANA, where we should not 

have a deep level of inheritance that exceeds 1/2(DSC/DSC). 

 

5.1.4 Data Access Metric – DAM  

The value of DAM should increase in order to elicit a positive effect on the class diagram 

under study. A large value of DAM implies that the classes possess a high encapsulation 

property. Our results support this argument. A larger value of DAM could be reached by 

minimizing the number of public attributes in the class diagram. Hence, we make sure to 

have public attributes only when they will be needed by other classes.  

 

5.1.5 Direct Class Coupling – DCC  

Our experimental results complied with what was stated in the literature about the 

negative effect of increased coupling between classes. It is thus preferable to keep the 

value of the design metric DCC as low as possible. This could be achieved by minimizing 

the number of class attributes or parameters in methods that are of other class types. We 

need to make sure that the classes in our class diagram are self dependent.  
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5.1.6 Cohesion Among Methods of Class – CAM  

This was the most difficult measure to work with. We took its value directly from the 

SDMetrics tool [36]. However, the cohesion property in SDMetircs was computed 

differently from the commonly known value. According to the literature, it is better to 

increase the cohesion (the quantitative indication of the degree to which a module – in 

this case a class – focuses on just one thing [20]). SDMetrics defines cohesion as 

quantifying the connectivity between elements of the design unit: the higher the 

connectivity between elements the higher the cohesion. SDMetrics thus seeks lower 

values for CAM.  This meant that it was better to minimize the interrelatedness between 

classes since the more the interrelatedness the less is the cohesion. In our experimental 

examples we sought to decrease the value of cohesion i.e. the interrelatedness between 

classes. 

 

5.1.7 Measure of Aggregation – MOA 

MOA is a measure of the number of attributes that are of other class types. Our 

experiments show that it is better to minimize the value of MOA. In other words, when 

we decrease the total number of attributes that are of other class types, we decrease the 

dependency among classes. We can think of MOA as a subset of DCC where only the 

number of attributes is being considered. Hence, as we work on decreasing the value of 

MOA, we get to decrease the value of DCC. 

 

5.1.8 Measure of Functional Abstraction – MFA  

Both our experiments and the literature emphasize the importance of increasing the value 

of MFA. This means that the inheritance relationship between classes is more effective 

when the sub-classes are using all the methods in the parent classes. In our analysis, we 

check which sub-classes are using a lower percentage of their parents’ methods. These 

classes negatively affect the inheritance design property and hence we recommend that 

they should be either extracted from the inheritance relationship and be treated as stand 

alone classes or they should implement more of their parents’ methods. 
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5.1.9 Number of Polymorphic Methods – NOP  

This is the count of the methods that can exhibit polymorphic behavior. From our 

experiments, the less the virtual methods in a class the worse was the measure of NOP. 

Moreover, other metrics (namely, CIS and NOM) were negatively affected when NOP 

went down to the zero level in some cases. Hence, in our analysis report we recommend 

the reduction of virtual methods if applicable, not their complete elimination. We warn 

the user that a large number of virtual methods however, has a negative effect on the 

understandability quality attribute. 

 

5.1.10 Class Interface Size – CIS 

Our experiments confirm what is stated in the literature; that it is better to increase the 

value of the CIS. A high value for this indicator implies that the public methods found in 

the examined class diagram dominate the number of private methods.  

 

5.1.11 Number of Methods – NOM 

This metric is left to the user’s judgment as it is directly proportional to the total number 

of classes. Therefore, if the user finds that NOM is too high with respect to the total 

number of classes, then the class diagram needs to be re-examined. However, our results 

show that the lower is the NOM the better is the class diagram as this lowers the 

complexity design property of the class diagram. It was difficult to set an acceptable 

number of methods per class. Therefore, this metric was left to the user’s judgment. 

 

5.2 Quality Attributes 

In this research work, quality attributes are the most important indicators. The increase or 

decrease in their values leads us to discover the weak design metrics. Also, their values 

are important in calculating the weighted average. Therefore, they act as a double head 

sword with one head pointing to the design metrics values and the other to the weighted 

average value. 
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Bansiya et al [2] set formulas to calculate the values for the quality attributes. We based 

our quality attributes on Bansiya’s Definitions (Table 2.2, Section 2.1.5.1) and 

Computation formulas (Table 3.2, Section 3.1). 

 

In the following points we explain how we interpreted and managed each quality attribute 

in this research: 

1) Reusability: signifies reusing the components found in one class diagram to 

another without spending much effort. In Bansiya et al’s formula, Reusability has 

4 main measurements: coupling, cohesion, messaging, and design size. To reach a 

high value of reusability, we have to have lower values of cohesion and coupling, 

and higher values of messaging, and design size. If we have a class diagram that 

consists of this combination of values, then it is easy to reuse it in another similar 

situation. 

2) Flexibility: the ability of a design to be adapted to provide functionally related 

capabilities. Its formula consists of encapsulation, coupling, composition, and 

polymorphism, all of which are significant characteristics when we make changes 

in the class diagram. Hence, if our user knows that his/her class diagram is in its 

early phases and might need more development later, then he/she has to increase 

the value of flexibility by increasing the value of encapsulation, polymorphism 

and composition while decreasing the value of coupling.  

3) Understandability: signifies how easy the class diagram is to work with. Seven 

design properties out of a total of eleven are involved in Bansiya et al’s formula 

for Understandability. To enhance understandability, we try to minimize the 

complexity, cohesion and coupling and increase abstraction, polymorphism, 

design size and encapsulation. The computation of understandability results in a 

negative value as it measures how hard it gets to learn and understand the class 

diagram. This could explain the fact that in Bansiya et al’s [2] quality attribute 

computation equation for understandability, most metrics are given a negative 

sign. Bansiya et al [2] expect understandability to decrease from one release to the 

next as a result of adding more functionality. The objective of our research 

however was to improve quality attributes by improving their underlying design 
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4) Functionality: responsibilities assigned to the classes and made available through 

their public interfaces. It indicates how the classes in a design could be fully 

utilized. Hence, we seek to increase/decrease the appropriate values of the design 

properties found in this quality attribute’s equation (namely: cohesion, 

polymorphism, messaging, hierarchies, and design size) to achieve higher 

functionality.  In our experimental work, when we distributed a dense hierarchy 

into smaller hierarchies of classes, the functionality improved significantly. 

5)  Extendibility: shows the capability of the existing classes in a design to receive 

new additional requirements. For this attribute, we measure the abstraction, 

coupling, inheritance, and polymorphism properties of the class diagram. If we 

have higher values of inheritance, and polymorphism and lower values of 

coupling and abstraction, then this class diagram is ready to accept additional 

improvements. In our work, extendibility improved significantly when we reduced 

class coupling but got worse when we decreased inheritance and polymorphism. 

6) Effectiveness: this attribute signifies the design’s ability to achieve the desired 

functionality and behavior using object-oriented design concepts and techniques.  

We note that the weights given by Bansiya et al [2] to this quality attribute’s 

design metrics are much smaller than those given to the same metrics in other 

quality attributes. Consequently, we realized from our experimental work that an 

increase in the values of abstraction, encapsulation, inheritance, polymorphism 

and composition has a milder effect on the effectiveness quality attribute than in 

other attributes.  

 

The coefficients that Bansiya et. al [2] gave to each design metric in each quality attribute 

equation were not explicitly stated. However, the signs that they used, positive and 

negative, were helpful in making the above interpretations.  Through our experiments, we 

were able to show which design metric had a stronger negative or positive effect on each 

corresponding quality attribute. We summarize our findings as follows: 

 Reusability is positively affected whenever CIS increases or when CAM 

decreases. 
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 Flexibility is positively affected whenever DAM increases or when MOA 

decreases. 

 Understandability is positively affected whenever DAM increases or when ANA 

decreases. 

 Functionality is positively affected whenever NOH increases, or when CIS 

increases, or when CAM decreases. 

 Extendibility is positively affected whenever ANA or MFA increases. 

 Effectiveness is positively affected whenever ANA or MFA increases. 
 

Table 5.1 shows the positive effects on quality attributes which result from the increase/ 

decrease of the design metrics. The arrows show the increase/decrease in the design 

metric that cause a net increase in the Quality attribute. For example, in the first column, 

Reusability increases with the increase in DSC and CIS, and decreases with each of the 

DCC and CAM. 

 

 Reusability Flexibility Understandability Functionality Extendibility Effectiveness 

DSC       

NOH       

ANA       

DAM       

DCC       

CAM         

MOA       

MFA       

NOP       

CIS       

NOM       
 

 

Table 5.1: The Increase/Decrease in Design Metrics which Positively Affects the 

Corresponding Quality Attributes 
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5.3 Weighted Average 

The aim of the weighted average is to help the user (optionally) express and implement 

the degree of importance of each quality attribute by setting his/her list of priorities. The 

default setting is that all six quality attributes are given equal priorities. However, the user 

may select the first item in the priority list according to the following: 

1) If the user is interested in making the components in the examined class diagram 

highly reusable, then he/she should assign reusability first priority. 

2) If the user does not have a complete or a clear requirement document and 

accordingly expects more development and changes in the class diagram, then 

he/she sets flexibility to be of first priority. 

3) If the user is interested in an easy self-explanatory class diagram, then he/she 

chooses understandability as having first priority. 

4) If the user needs to make sure that all classes are fully utilized in the class 

diagram, then he/she assigns functionality first priority. 

5) If the user needs to measure the capability of the existing classes to receive new 

additional requirements, then extendibility may be given first priority. 

6) If the user needs to ensure the design’s capability in achieving the desired 

functionality and behavior, then he/she would give effectiveness first priority. 

 

The remaining attributes may also be given second, third or lower priorities according to 

the user’s interest, in a sequential manner.  For example, if the user has an incomplete 

requirement document, then 2 important priorities (namely flexibility and extendibility) 

should be chosen to be of highest priority. The user has to decide on which of them gets 

first and which gets second priority. The rest of the quality attributes would then take 

equal weights (at third priority level). 

The user has to make sure that when changes are made to the class diagram, the same set 

of priorities should be applied on all versions of the design. This makes it easier on the 

user to visually compare the different results of the weighted average for all runs. 

The weighted average value acts as an indicator that points to the importance of quality 

attributes. Its effectiveness is in that it shows how the quality attribute in question is 

evaluated relative to the other quality attributes. 
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Therefore, in setting the priority for the weighted average, it is very important that the 

user decides on which quality attributes are most significant in the product being tested. 

Each quality attribute is based on a set of design metrics. If we want a certain quality 

attribute to be in the lead, then we have to examine the design metrics that affect this 

attribute. Through the SDAnalysis tool, we are able to trace these metrics and work with 

the user on increasing their values. Our experiments have demonstrated that we could 

work our way, based on calculated values, to guide the user in improving the design 

metrics for the individual classes. 

 

 

 

In our experiments we applied 3 different cases of prioritization: 

1) The first (Case I) was a non-prioritized list where all quality attributes were given 

equal weights. It acted as a frame of reference for the other two cases. 

2) In the second case (Case II) we assigned each quality attribute a priority i.e. six 

levels of priority were used. We varied each list with every example. 

3) In the third case (Case III) we gave only two quality attributes the first and second 

priorities, and the remaining quality attributes were given equal weights at the 

third priority level.  

 

The first case where all quality attributes have equal weights provides the base case to 

refer to when comparing the second and third cases.  In the second and third cases, the 

weighted average value is based on varying priorities.  We tested the 3 cases with 

different settings of priorities on different quality attributes with each example that we 

studied.  From our experiments we were able to prove the following: 

 

If the first priority is given to a specific quality attribute (say A), then if the net weighted 

average value is higher than the value of quality attribute A, this implies that the priority 

selection was appropriate. Otherwise if the net weighted average value is lower than the 

value of the quality attribute A, then the values of the other quality attributes dominated 

A’s value.  In the latter case, the user is expected to work on improving quality attribute 

A. 
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For example, when we gave the understandability - which is usually a negative value - the 

first priority, the result of the weighted average became negative. This shows that the 

value of the understandability quality attribute is high enough to dominate the rest of 

quality attributes. But when Effectiveness was given first priority in another example and 

was dominated by other quality attributes, we worked on improving the Effectiveness 

design metrics (ANA, DAM, MOA, MFA and NOP) which gave a much better value for 

net weighted average. 

 

5.4 Observations 

The observations in the analysis report were a major part of our solution approach. It is 

through these observations that we are able to give the user feedback on the examined 

class diagram and to point out the weaknesses. The observations in the report were based 

on individual class analysis instead of the value of the design metrics or the value of the 

quality attributes. This is to save the user’s time in finding the exact location of the 

weakness. 

 

Only 3 design metrics were not covered by our observations. They are DSC, CAM, and 

NOM. As mentioned above, it was very difficult to set a threshold for the total number of 

classes (DSC) or the total number of methods (NOM). The number of classes in a class 

diagram could range anywhere from 6 classes to more than 300 classes. Therefore, this 

metric was left without a specific threshold, but it was used as a basis in computing other 

design metrics. Similarly, it was difficult to set upper and lower limits for the number of 

methods per class diagram. Hence, we just took the average of the total number of 

methods per class (total methods/num of classes) to be the value of the NOM.  

 

As mentioned earlier, since we used a different design metric to measure the cohesion 

property (CAM) and this design metric was not normalized, then it was difficult to set a 

range for it. Therefore, we did not include a threshold for this design metric. However, it 

was affirmative to note that when CAM decreased it had a positive effect on the 

reusability, understandability, and functionality quality attributes.  
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The user needs to go through all observations in the report first before resolving any of 

them. Some classes could appear in many different observations, but when one of them is 

resolved, it can automatically resolve the others. Moreover, the user is required to 

evaluate the report against the requirements document in order to differentiate between 

the observations that should be dealt with and the observations that could be neglected. 

Therefore, although the analysis report presented to the user helps to identify the 

weaknesses in the classes, yet the human judgment and experience is still very much 

needed. 

 

To wrap up, we conclude that the user should examine all the four elements of the 

analysis report (the metrics, quality attributes, weighted average and observations) before 

deciding whether to pass the class design to the next phase in the software development 

life cycle or not. 
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Chapter 6: Summary and Conclusion 
In this chapter we summarize our research work and contributions and we point out 

directions for further research work. 

 

6.1 Research Overview 

The main objective of this research was to present a metrics-based solution for evaluating 

class diagrams which would help project managers and software quality personnel (as 

well as developers) quantitatively assess the class diagram. The main problem that we 

address in this work is to pinpoint the weaknesses in a class diagram, based on solid 

metrics, and give well-analyzed directions on how the user can deal with them.  

Our solution is based on measuring quality attributes which are computed from class 

design metrics. The approach was to collect the metrics, compute the quality attribute 

values, analyze the metrics and finally present a report to the user. We offer the user the 

choice of setting priorities on the quality attributes. We applied computation formulas for 

the metric and quality attributes prescribed by earlier researchers but our experimental 

work gave us much insight into their meanings and dependencies. This enabled us to give 

a more concrete report to the developer which would guide him/her in improving the 

diagram’s quality.  

 

6.2 The Research Approach 

In this thesis, we first presented our literature survey results about the following essential 

topics: 

1. The list of metrics proposed by earlier researchers and used to measure the quality 

of Object-Oriented designs in general and of class diagrams in particular. We 

summarized the different quality metrics collected by each research and the main 

techniques for collecting these metrics. Also, we showed how some researches 

addressed the issue of visually representing their metrics.  

2. The features offered by automated metric tools and how they extract, record, 

manage, and represent the design metrics extracted from a class diagram. 
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3. The quality attribute evaluation models based on different aspects chosen by 

earlier researchers. This evaluation could be based on experience and 

understanding, or on findings, or on comparison between results. 

4. Prioritization techniques applied in earlier work on software quality attributes. 

 

Based on the above findings, we presented our solution approach which went as follows: 

1. We selected and computed an appropriate list of design metrics from the class 

design diagram which would help us assess the diagram and compute the basic 

product quality attributes. 

2. We selected and computed the six basic product quality attributes and added a 

prioritization scheme for the user to set on them. 

3. We suggested thresholds for most design metrics. We were able to compare the 

extracted metrics from the examined class diagram against these thresholds and 

subsequently assess the class diagram and each individual class. 

4. Through a visual tool that we developed, we offered the user the list of quality 

attributes and a means to arrange them in a priority setting that would match 

his/her desired product quality.  

5. We calculate a weighted average value for the prioritized quality attributes based 

on formulas set by earlier researchers. 

6. We present a list of observations based on the computed values for each design 

metric and the overall quality attribute values.  

7. We assist the user in identifying the weaknesses in the class diagram and how 

he/she can go about resolving them.  

 

We used a CASE tool (IBM Rational Software Development Platform version 6.0) for 

drawing the class diagram and a ready-made tool for extracting some of the class diagram 

metrics (SDMetrics). The output file from the SDMetrics was the input to our visual tool 

(SDAnalysis) in which we compute the remaining class diagram metrics and interact with 

the user to set priorities and generate the analysis reports. 
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6.3 Research Contribution 

Our research contributions may be summarized in the following outcomes: 

1. The extension of the work of earlier researchers on class design metrics and 

quality attribute modeling. 

2. The addition of a prioritization scheme for product quality attributes. 

3. The addition of a design metrics analysis layer and generation of analysis reports. 

4. The refinement of the analysis report based on experimental results. 

5. An interactive visual tool for the computation of some metrics, setting of priorities 

and generation of analysis reports. 

 

6.4 Directions for Further Work 

The quality of object-oriented designs has become one of the major concerns of both 

researchers and industry personnel. They both seek a high quality class diagram structure 

which would lead to high quality code. This in turn would save time and effort during the 

later phases of the software development life cycle.  

We believe that the work done in this thesis paves the way for further research, 

specifically in the following directions: 

 More in-depth analysis of the intricate relations between the software product 

quality attributes.  

 Optimization of the range of values for each quality attribute’s metrics with 

respect to the other attributes’ metrics which may sometimes have contradicting 

priorities. This would lead to the addition of another set of observations that can 

help the user arrive at an optimized overall quality attribute level. 

 Creation of a repository of reports for each project which would keep record of the 

first class diagram and its modifications. This would give another dimension to 

the analysis reporting layer in which a comparison of the effects of changes 

applied may be stored and tracked. 

 Building a database of normative values for the thresholds which the user may be 

allowed to set. Further research work may suggest hypotheses about the best 
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 The establishment of a framework of quality metrics and quality attributes 

evaluation based on our solution approach. 

 Enhancement of the SDAnalysis tool to track the repository of class diagrams and 

analysis reports from earlier versions of the same class diagram.  
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Appendix A: the SDAnalysis Tool 
 

As the aim of our research is mainly to help the quality assurance manager in evaluating a 

class diagram prior to implementation, we had to develop a means to communicate with 

our user. We developed the SDAnalysis tool to read the extracted values of the class 

metrics (available from the SDMetrics tool) for a class diagram drawn in Rational Rose 

and interact with the user in setting quality attribute priorities. The SDAnalysis tool 

computes the additional metrics and quality attribute values and generates an analysis 

report about the overall quality of the class diagram. The end result that we present to our 

user is a weighted average for all the quality attributes listed in table 3.2 and an analysis 

report about the diagram. Figure A.1 shows the scenario between the designer and the 

quality assurance manager: 
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Figure A.1: The scenario between the designer and the quality assurance manager 

 

 

Figure A.2 shows the scenario when the quality assurance manager is not satisfied with 

the output analysis report: 
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Figure A.2: The scenario for modifying the class diagram according to the analysis report 

 
 

Figure A.3 is a use case diagram summarizing the services offered by the SDAnalysis 

tool. 
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Figure A.3: Use Case Diagram for the SDAnalysis Tool 
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In Figure A.4 we show the class diagram of the interactive tool which shows an overview 

of our classes and the relationships among them. Followed by a detailed explanation for 

each class separately. 

Figure A.4: The class diagram for SDAnalysis Tool 
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The frmReadXML class is the control class in the tool. It takes in the location and name 

of an xml file, sends the file to the XMLParser class and takes back from it a data set that 

consists of the items found in the xml file. It then sends this data set to the SDMetricData 

class to divide the items in the data set into PackageData and ClassData. The 

frmReadXML class sends the divided data to the CalculatedResult class to calculate the 

design metrics and quality attributes. Also, this class (frmReadXML) loads the priority 

for the quality attributes and calculates their weights. Finally it sends the weighted 

average and the results of the design metrics and quality attributes to the frmResult class. 
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This class (XMLParser) takes in the path of an xml file, then reads the data in the file and 

return a data set with all the data it read. It reads the xml file in a sequential manner and 

saves its reading in a table form. 

 

  

SDMetricData is a class responsible to break down the information found in the data set 

into PackageData and ClassData. The information found in the fields of these two 

structures is what gets used in carrying out the calculations. 
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The frmReadXML class calls CalculatedResult class and sends to it an instance of 

SDMetricData. The CalculatedResult class calculates the quality metrics and design 

attributes and saves their values in the appropriate structure. 
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The frmReadXML class finally sends the calculated weighted average according to the 

priority list, the calculated design metrics and quality attributes, and the raw values of the 

package and classes. The frmResult class displays the values of the design metrics, 

quality attributes, and the weighted average value. Also, it displays the observations for 

each metric based on the evaluation of the thresholds conducted within the Analysis class.  

 

The Analysis class checks the status of each metric for each class and accordingly returns 

the appropriate message to the frmResult class. 
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Appendix B: Permission for Use of 
SDMetrics 
 
 
From: Juergen Wuest (SDMetrics) <info@sdmetrics.com> 
To: "Dalia Kamal A. Rizk" <drizk@aucegypt.edu> 
Date: Wed, Mar 12, 2008 at 2:38 PM 
Subject: Re: Your SDMetrics Academic License Request 
mailed-by sdmetrics.com 
 
Hello, 
 
thanks for your interest in an SDMetrics academic license. 
 
Please find below the conditions of the SDMetrics academic license. If you agree with 
these conditions, please reply to this e-mail stating that you accept the SDMetrics 
Academic License. You will then receive the SDMetrics full version by e-mail (Zip 
archive, 490 KBytes). 
 
 
Best regards, 
 
Juergen Wuest 
SDMetrics Academic license 
 
-------------------------- 
The conditions of the regular license apply to you (see 
http://www.sdmetrics.com/FullLic.html for conditons). In particular, it follows from the 
regular license that - you may use SDMetrics on commercial or non-commercial projects 
of your own or your industry partners' (i.e., measurement of commercial and non-
commercial systems developed by you or your industry partners), and you may charge the 
industry partner for your services, SDMetrics is to be used by you, or staff/students of 
your department under your supervision, on computer systems of your department of your 
organization, you MAY NOT install or use SDMetrics at an industry partner's  site, or 
have staff members of the industry partner use your copy of SDMetrics. If this is a 
necessity, the industry partner is required to purchase a regular license.  
 
Your Additional Obligations 
 --------------------------- 
 Publications and presentations of empirical studies using SDMetrics must contain an 
acknowledgment which mentions the name "SDMetrics" and the URL 
"http://www.sdmetrics.com", for example: "Design measurement was performed with 
SDMetrics, available at http://www.sdmetrics.com." 
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My Additional Rights 
 -------------------- 
 For promotional purposes, I may quote published quantitative results from your studies 
using SDMetrics on the SDMetrics website, brochures, and flyers. 
 
I may include the name of your department/organization on a list of customers of 
SDMetrics. For promotional purposes, I may post this list on the SDMetrics website, 
brochures, and flyers. 
 
 And a request 
 ------------- 
 If possible, please place a link to the URL "http://www.sdmetrics.com" in a suitable 
location at your department's, project's, or personal web site. I'd appreciate if you could 
thus help promote SDMetrics. 
 
---------------------------------------------------------------------- 
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Appendix C: MFC Library Version 7.0 
 

For the sake of testing the relationship between the total number of classes and the depth 

of inheritance, we tested on a close depth of inheritance (six levels) to our third example, 

but within a much larger structure of a class diagram. We selected a part of the Microsoft 

Foundation Class Library Version 7.0 [9]. Figure C.1 shows the part of the class diagram 

for MFC Library Version 7.0. 

 

 

Figure C.1: Part of MFC Library V 7.0 

 

The part in the freeform curve marks a six-level hierarchy, but the drawn part of MFC 

library class diagram consists of 45 classes. Therefore the value for NOH is 1. Also, the 

value for ANA is 2.82 which is far from half the worst value for ANA which is in this 

case should be 11 from (0.5*(990/45)).  

Therefore, according to the total number of classes in the diagram, if the depth of 

inheritance exceeds half the worst value for ANA (which is DSC/DSC), then this will 

affect understandability, extendibility, and effectiveness quality attributes. 
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