1,276 research outputs found

    Learning to Dress {3D} People in Generative Clothing

    Get PDF
    Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shapes. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term in SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses. The model, code and data are available for research purposes at https://cape.is.tue.mpg.de.Comment: CVPR-2020 camera ready. Code and data are available at https://cape.is.tue.mpg.d

    Deep Detail Enhancement for Any Garment

    Get PDF
    Creating fine garment details requires significant efforts and huge computational resources. In contrast, a coarse shape may be easy to acquire in many scenarios (e.g., via low-resolution physically-based simulation, linear blend skinning driven by skeletal motion, portable scanners). In this paper, we show how to enhance, in a data-driven manner, rich yet plausible details starting from a coarse garment geometry. Once the parameterization of the garment is given, we formulate the task as a style transfer problem over the space of associated normal maps. In order to facilitate generalization across garment types and character motions, we introduce a patch-based formulation, that produces high-resolution details by matching a Gram matrix based style loss, to hallucinate geometric details (i.e., wrinkle density and shape). We extensively evaluate our method on a variety of production scenarios and show that our method is simple, light-weight, efficient, and generalizes across underlying garment types, sewing patterns, and body motion.Comment: 12 page

    Motion Guided Deep Dynamic 3D Garments

    Full text link
    Realistic dynamic garments on animated characters have many AR/VR applications. While authoring such dynamic garment geometry is still a challenging task, data-driven simulation provides an attractive alternative, especially if it can be controlled simply using the motion of the underlying character. In this work, we focus on motion guided dynamic 3D garments, especially for loose garments. In a data-driven setup, we first learn a generative space of plausible garment geometries. Then, we learn a mapping to this space to capture the motion dependent dynamic deformations, conditioned on the previous state of the garment as well as its relative position with respect to the underlying body. Technically, we model garment dynamics, driven using the input character motion, by predicting per-frame local displacements in a canonical state of the garment that is enriched with frame-dependent skinning weights to bring the garment to the global space. We resolve any remaining per-frame collisions by predicting residual local displacements. The resultant garment geometry is used as history to enable iterative rollout prediction. We demonstrate plausible generalization to unseen body shapes and motion inputs, and show improvements over multiple state-of-the-art alternatives.Comment: 11 page

    PERGAMO: Personalized 3D Garments from Monocular Video

    Full text link
    Clothing plays a fundamental role in digital humans. Current approaches to animate 3D garments are mostly based on realistic physics simulation, however, they typically suffer from two main issues: high computational run-time cost, which hinders their development; and simulation-to-real gap, which impedes the synthesis of specific real-world cloth samples. To circumvent both issues we propose PERGAMO, a data-driven approach to learn a deformable model for 3D garments from monocular images. To this end, we first introduce a novel method to reconstruct the 3D geometry of garments from a single image, and use it to build a dataset of clothing from monocular videos. We use these 3D reconstructions to train a regression model that accurately predicts how the garment deforms as a function of the underlying body pose. We show that our method is capable of producing garment animations that match the real-world behaviour, and generalizes to unseen body motions extracted from motion capture dataset.Comment: Published at Computer Graphics Forum (Proc. of ACM/SIGGRAPH SCA), 2022. Project website http://mslab.es/projects/PERGAMO

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    Get PDF
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method
    corecore