7,695 research outputs found

    Hardware emulation of stochastic p-bits for invertible logic

    Full text link
    The common feature of nearly all logic and memory devices is that they make use of stable units to represent 0's and 1's. A completely different paradigm is based on three-terminal stochastic units which could be called "p-bits", where the output is a random telegraphic signal continuously fluctuating between 0 and 1 with a tunable mean. p-bits can be interconnected to receive weighted contributions from others in a network, and these weighted contributions can be chosen to not only solve problems of optimization and inference but also to implement precise Boolean functions in an inverted mode. This inverted operation of Boolean gates is particularly striking: They provide inputs consistent to a given output along with unique outputs to a given set of inputs. The existing demonstrations of accurate invertible logic are intriguing, but will these striking properties observed in computer simulations carry over to hardware implementations? This paper uses individual micro controllers to emulate p-bits, and we present results for a 4-bit ripple carry adder with 48 p-bits and a 4-bit multiplier with 46 p-bits working in inverted mode as a factorizer. Our results constitute a first step towards implementing p-bits with nano devices, like stochastic Magnetic Tunnel Junctions

    Training Restricted Boltzmann Machines on Word Observations

    Get PDF
    The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe

    Weighted Contrastive Divergence

    Get PDF
    Learning algorithms for energy based Boltzmann architectures that rely on gradient descent are in general computationally prohibitive, typically due to the exponential number of terms involved in computing the partition function. In this way one has to resort to approximation schemes for the evaluation of the gradient. This is the case of Restricted Boltzmann Machines (RBM) and its learning algorithm Contrastive Divergence (CD). It is well-known that CD has a number of shortcomings, and its approximation to the gradient has several drawbacks. Overcoming these defects has been the basis of much research and new algorithms have been devised, such as persistent CD. In this manuscript we propose a new algorithm that we call Weighted CD (WCD), built from small modifications of the negative phase in standard CD. However small these modifications may be, experimental work reported in this paper suggest that WCD provides a significant improvement over standard CD and persistent CD at a small additional computational cost

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    Efficient construction of linear models in materials modeling and applications to force constant expansions

    Get PDF
    Linear models, such as force constant (FC) and cluster expansions, play a key role in physics and materials science. While they can in principle be parametrized using regression and feature selection approaches, the convergence behavior of these techniques, in particular with respect to thermodynamic properties is not well understood. Here, we therefore analyze the efficacy and efficiency of several state-of-the-art regression and feature selection methods, in particular in the context of FC extraction and the prediction of different thermodynamic properties. Generic feature selection algorithms such as recursive feature elimination with ordinary least-squares (OLS), automatic relevance determination regression, and the adaptive least absolute shrinkage and selection operator can yield physically sound models for systems with a modest number of degrees of freedom. For large unit cells with low symmetry and/or high-order expansions they come, however, with a non-negligible computational cost that can be more than two orders of magnitude higher than that of OLS. In such cases, OLS with cutoff selection provides a viable route as demonstrated here for both second-order FCs in large low-symmetry unit cells and high-order FCs in low-symmetry systems. While regression techniques are thus very powerful, they require well-tuned protocols. Here, the present work establishes guidelines for the design of protocols that are readily usable, e.g., in high-throughput and materials discovery schemes. Since the underlying algorithms are not specific to FC construction, the general conclusions drawn here also have a bearing on the construction of other linear models in physics and materials science.Comment: 15 pages, 12 figure

    Denoising Autoencoders for fast Combinatorial Black Box Optimization

    Full text link
    Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered problem instances, DAE-EDA is considerably faster than BOA and RBM-EDA, sometimes by orders of magnitude. The number of fitness evaluations is higher than for BOA, but competitive with RBM-EDA. These results show that DAEs can be useful tools for problems with low but non-negligible fitness evaluation costs.Comment: corrected typos and small inconsistencie
    • …
    corecore