5 research outputs found

    Analyzing 3D images of the brain

    Get PDF
    International audienceDuring the past 5 years, there has been a considerable effort of research in automating the analysis and fusion of multidimensional images, yielding important theoretical and practical new results. These results could now be useful to brain research. Along these lines, and focusing on 3D images of the brain obtained with CT, MRI, SPECT, and PET techniques, I will present a number of methods useful to produce quantitative measurements necessary for an objective analysis of 3D images of the brain. Such methods include segmentation, shape analysis, rigid and elastic registration, fusion of multimodal images, analysis of temporal sequences (4D data), modeling, and matching of digital atlases. A large number of references on these topics can be found in Ayache (1995a,b), and specific examples from our research group in Malandain et al. (1994), Subsol et al. (1995), and Thirion (1995). The following text describes the research tracks to be followed in order to optimize the future exploitation of 3D images of the brain in neuroscience

    A Structural Parametrization of the Brain Using Hidden Markov Models Based Paths in Alzheimer's Disease

    Get PDF
    The usage of biomedical imaging in the diagnosis of dementia is increasingly widespread. A number of works explore the possibilities of computational techniques and algorithms in what is called Computed Aided Diagnosis. Our work presents an automatic parametrization of the brain structure by means of a path generation algorithm based on Hidden Markov Models. The path is traced using information of intensity and spatial orientation in each node, adapting to the structural changes of the brain. Each path is itself a useful way to extract features from the MRI image, being the intensity levels at each node the most straightforward. However, a further processing consisting of a modification of the Gray Level Co-occurrence Matrix can be used to characterize the textural changes that occur throughout the path, yielding more meaningful values that could be associated to the structural changes in Alzheimer's Disease, as well as providing a significant feature reduction. This methodology achieves high performance, up to 80.3\% of accuracy using a single path in differential diagnosis involving Alzheimer-affected subjects versus controls belonging to the Alzheimer's Disease Neuroimaging Initiative (ADNI).TIC218, MINECO TEC2008-02113 and TEC2012-34306 projects, ConsejerĂ­a de EconomĂ­a, InnovaciĂłn, Ciencia y Empleo de la Junta de AndalucĂ­a P09-TIC-4530 and P11-TIC-71

    A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms

    Get PDF
    This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103. The study was conducted in association with the National Institute for Health Research Collaborations for Leadership in Applied Health Research and Care (NIHR CLAHRC) East of England (EoE). The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS); EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. During the period of this work, M-CL was supported by the OBrien Scholars Program in the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health (CAMH) and The Hospital for Sick Children, Toronto, the Academic Scholar Award from the Department of Psychiatry, University of Toronto, the Slaight Family Child and Youth Mental Health Innovation Fund, CAMH Foundation, and the Ontario Brain Institute via the Province of Ontario Neurodevelopmental Disorders (POND) Network; MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816); SB-C was supported by the Autism Research Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health, UK.Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above 80% on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism (N=120, n=30/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS)EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816
    corecore