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Although much research has been undertaken, the spatial patterns, developmental course, and sexual
dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in inves-
tigating differences between the sexes in autism is the small sample sizes of available imaging datasets
with mixed sex. Thus, the majority of the investigations have involved male-samples, with females
somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction
to reveal differences in regional brain structure between individuals with autism and typically developing
participants. A four-class classification problem (sex and condition) is specified, with theoretical restric-
tions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions
were imposed on the classifier complexity and feature space dimension to assure generalizable results
from the training set to test samples. Accuracies above 80% on gray and white matter tissues estimated
from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning
male and female adults with and without autism (N = 120, n = 30/group). The proposed learning ma-
chine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted
from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions
of the “extreme male brain” theory of autism, in sexual dimorphic areas.

Keywords: MRI; multiclass classification; upper bounds; Autism; spatial overlap analysis

1. Introduction

The discovery of a characteristic pattern of struc-

tural brain differences associated with autism spec-

trum conditions (ASC) would be a major advance in

our understanding of this complex and highly vari-

able developmental disorder. Not only would it be a

substrate upon which to build a systems narrative of

autism, but from this starting point it might be pos-

sible to run development “in reverse” to disentangle

the roles of environmental and genetic risk factors

in its aetiology. Unfortunately, “inconsistent” is per-

haps the most common adjective associated with the

∗Corresponding author: gorriz@ugr.es; jg825@cam.ac.uk
†See Appendix 2
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extant literature in this area.

Initial MRI observations focused on increased

total brain, total tissue, and total lateral ventri-

cle volumes in adults with autism,2 but subsequent

meta-analyses, including MRI derived measurements

as well as head circumference and post-mortem brain

weights, were only able to detect a significant case-

control difference amongst 4-5 year olds.3 More re-

cent meta-analyses based on fully automated voxel

measures of grey and white matter volumes have con-

firmed the absence of any large difference in adults in

either total grey matter34 or total white matter,4 or

in cerebellar volume.? Thus, if there are differences in

overall brain size then they occur very early in life86

and are followed by a decrease in volume towards

normative values during maturation in adolescence

and early adulthood.3, 6

1.1. Grey and White Matter
Distributions in the Autistic Brain

Our knowledge of localized changes in brain anatomy

has historically come from grey matter (GM) and

white matter (WM) distributions estimated by

voxel-based morphometry (VBM). Undergoing sev-

eral iterations and improvements over time, VBM

pipelines are automated, reliable7 and statistically

well-behaved.8 The success of the VBM technique

can be measured by the large number of wide-ranging

longitudinally and cross-sectionally designed studies,

as well as consistent cross-study patterns of tissue

differences characterising disorders like schizophre-

nia,9 Alzheimer’s disease83 and major depressive dis-

order.10, 11

Whilst measures of global volume have gen-

erally pointed toward increases in the very early

lives of those with autism, local comparisons of

grey and white matter volume have variously im-

plicated both regional increases and decreases.

The greatest consistency that emerges from meta-

analyses12–14, 16–19, 34, 85 is the large variance of both

the primary literature and the outcomes of the de-

rived meta-analyses, where the inclusion or exclusion

of just a few primary sources can significantly alter

the aggregated pattern of differences.

Explanations for the absence of a coherent nar-

rative on the structural brain differences associated

with autism have been suggested to arise from va-

riety of origins. Whilst methodological differences

vary between studies,20 similar variability in VBM

pipelines has not hindered the observation of charac-

teristic patterns in other disorders.9–11 Autism is also

highly heterogeneous.21 Indeed, under DSM-IV four

categories were contained within Autism Spectrum

Disorder: Asperger’s disorder, childhood disintegra-

tive disorder and pervasive developmental disorder.

It has been argued that no reliable clinical diagno-

sis has been made with these sub-types22 and that

no consistent biological substrate has been discov-

ered that differentiates between them leading to a

single diagnostic category of Autism Spectrum Dis-

order in DSM-V23 that subsumes the sub-types. Nev-

ertheless, it is unlikely that there will be an observa-

tion that unites these disorders, and in fact greater

diversity in phenotyping, perhaps down to the in-

dividual level, is argued to be more likely to iden-

tify an underlying neurobiology for autism.24 Strat-

ification does appears to yield sensitivity improve-

ments; for example, children with regressive autism

appear to have increases in brain size, whereas those

with non-regressive autism are not associated with

a significant size change;25 and males and females

with autism display different patterns of grey matter

change.28 What is almost certain is that should there

be a true effect, it is spatially diffuse and generally

of low effect size.

The main demographic features of ASC are its

high prevalence, affecting 1% of the entire popula-

tion,30–32 and the significant skewing of the gender

ratio towards male individuals to give values of 2-

3:1 male:female,31–33 and potentially contributing to

the heterogeneous patterns of brain structure asso-

ciated with the disorder. Previously, most studies of

the biology of autism have focused predominantly on

males34 with male:female ratios in research samples

in the range 8-15:1. Studies of functional imaging

modalities that undertook analyses in each sex inde-

pendently have found widespread significant cross-

sectional differences.35 Structural MRI studies of

autism following similar stratification strategies have

been successful in assessing the atypical brain areas

that are shared and distinct across the sexes.4 In a

recent MRI study comprising high-functioning male

and female adults with autism,35 exploratory analy-

ses based on a VBM univariate statistical framework

uncovered substantial heterogeneity in the neurobi-

ology of autism. Furthermore, stratification by sex

can provide the empirical evidence to test predic-

tions from the “extreme male brain” (EMB) theory
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of autism76 and other similar theories79 that predict

a relationship between autism and biological sexual

differentiation.

1.2. The machine learning approach

A univariate analysis statistically processes single

features independently. Features may be voxel-wise

comparisons,70, 71 regions of interest (ROIs),72 or

models of brain features such as multiple hypothe-

sis testing on VBM estimates45 and intrinsic curva-

ture.50 However, detecting a putative small magni-

tude, diffuse spatial pattern of differences in autism

with a univariate approach is difficult, even in large

datasets,26, 27 due to its low sensitive to this type of

effect.

Recently, effort has been expended on develop-

ing multivariate predictive models of biological sex

based on univariate differential patterns of brain

structure; i.e. cortical thickness.39 In a sample of neu-

rotypical males and females these models were sub-

sequently applied to males and females with autism.

Multivariate approaches have also been applied to

other imaging measures that are hypothesized to be

altered in autism, including brain networks,40, 51 tex-

ture features,41, 43, 44 and other voxel and region-wise

decomposition techniques,52, 53, 74, 84 In general, mul-

tivatriate cross-sectional studies of autism with VBM

estimates of tissue volumes perform somewhat better

than univariate methods.26, 29

One of the major limitations of a multivariate

computer-aided diagnosis (CAD) systems87–89 is the

need for a sample size (l) that is sufficiently large

compared to the number of dimensions d (predic-

tors);58 that is, l >> d. Neuroimaging rarely satis-

fies this condition, thus the proposed learning ma-

chines must be designed and adapted to this hostile

environment, otherwise control of the generalization

ability of the learning process is arguably weak.59, 62

A solution to this problem may be achieved by the

application of feature extraction/selection (FES) al-

gorithms58 with linear classifiers rather than defin-

ing a specific metric on the data,90 or by evaluat-

ing the role that each dimension plays in the devel-

opment of the machine learning architecture.54 The

aim is twofold: i) to reduce the number of input di-

mensions, retaining the relevant information by mea-

suring the importance of each dimension, and ii) to

control the complexity of the selected classifiers to

avoid overfitting,55, 56 reducing the false positive rate

(type I error). In this way, linear regressors endowed

with regularization (e.g. Lasso) have been very use-

ful in removing variables of reduced relevance from

the model architecture, enhancing the contribution

of the remaining variables.57 Nevertheless, regular-

ization approaches work on the input space enforcing

an aggressive sparsity that results in a reduction of

the set of non-filtered variables to a value compara-

ble with the number of training instances,57 which is

particularly damaging in neuroimaging.

In this work, we propose a new multivariate

methodology based on a one vs. one group classifica-

tion scheme working on a feature space. The proposed

system is designed under theoretical conditions im-

posed on the classifier complexity and the dimen-

sionality of the input pattern. Briefly, the method

comprises a subject-specific and region-wise partial

least squares (PLS) FES that is then used to identify

differences from patterns of GM and WM derived

from MRI in a factorial design with factors of sex

(male and female) and condition (autism or control),

specifically: i) identification of potential sex-related

risk and protective factors for autism; ii) character-

ization of the four classes described in terms of sex

and condition; and iii) visualization of sexually di-

morphic areas related to the probability of classifica-

tion of autism in males and females.

This paper is organized as follows: Section 2

introduces the dataset and individual preprocess-

ing steps implemented. In the following section 3,

the overall methodology is presented, including a

distribution-free upper bound for the true error rate

of a classifier, using the resubstitution error estimate.

These theoretical considerations permit the defini-

tion of reliable statistical learning and validation

schemes using linear Support Vector Machine (SVM)

and FES algorithms. In the context of the previous

section, we demonstrate how the use of these tech-

niques provides a meaningful overlap analysis be-

tween group-difference maps for VBM comparisons.

Later, in Section 4, the experimental design is out-

lined, along with a description of a complete set of

experiments, including the results obtained in each

experiment, a t-test for significance in the classifica-

tion experiments, and finally the spatial overlap anal-

ysis of the derived PLS-based maps with the same p-

value as the t-test maps. In Section 5, these results

are discussed and critiqued, and finally in Section 6

conclusions are drawn.
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2. Materials: A heterogenous,
multidimensional and multiclass
MRI dataset

Participants (l = 120) included 30 right-handed pre-

menopausal females and 30 males with autism, along

with 30 neurotypical females and 30 neurotypical

males (see Table 1 and35). All groups were matched

for age (range: 18-49 years) and full-scale IQ. Par-

ticipants with autism had a formal clinical diag-

nosis of International Classification of Diseases-10

(World Health Organization, 1992) childhood autism

or Asperger’s syndrome, or Diagnostic and Statis-

tical Manual of Mental Disorders-IV text revision

(American Psychiatric Association, 2000) autistic

disorder or Asperger’s disorder assessed by a psychi-

atrist or clinical psychologist in the National Health

Service, UK. For further details on the inclusion

criteria and the rationale in the diagnostic algo-

rithm cut-offs please see.35–38 Exclusion criteria for

all groups are also outlined in35 and included a

current diagnosis or history of psychotic disorders,

substance-use disorders, severe head injury, genetic

disorders associated with autism (e.g. fragile × syn-

drome, tuberous sclerosis), intellectual disability (i.e.

IQ <70), hyperkinetic disorder, Tourette’s disorder,

or any other medical condition significantly affect-

ing brain function (e.g. epilepsy). The neurotypical

groups did not have autism either themselves or in

their family history.

The dataset was collected by the UK Medical

Research Council Autism Imaging Multicentre Study

(MRC AIMS) and were acquired at the Autism Re-

search Centre, University of Cambridge. Further re-

cruitment details can be found elsewhere.35, 38, 45

In addition, a larger multicentre male sample

from the MRC AIMS project38 was also used in this

paper for spatial overlap analysis. It consisted of 84

neurotypical adult males and 84 males with autism

matched for age and full-scale IQ (see38 for further

details).

3. Methodology

The main goal of this section is two-fold: i) to pro-

vide a statistical framework (see figure 1) under the

conditions detailed in section 3.1 for a set of linear

classifiers; and ii) to relieve the curse of dimensional-

ity encountered in machine learning algorithms pro-

cessing high-resolution images of the brain. The aim

of using such filter methods73 is to obtain a low-

dimensional set of features and then to reduce the

empirical risk without increasing the capacity of the

set of classifiers (VC dimension,61 or the number of

separating dichotomies65) by means of a linear SVM.

3.1. Upper bounds of error for
machine learning in neuroimaging

In a neuroimaging classification problem a d dimen-

sional input pattern x is observed and the aim is

to determine to which class or condition y belongs

to, considered as a random variable k = 1, . . . ,K. In

general, given a training sample of l pairs (xi, yi), the

parametric set of functional dependencies {F (x, α)},
where α is a parameter defining the set of specific

functions with cardinality equal to N , is required

that minimizes the probability of misclassification.

In other words, we minimize:

P (F (x, α)) ≡ P (F (x, α) 6= y) =

=

∫

y,X

(y − F (x, α))2P (x, y)dxdy (1)

on the basis of the empirical data. In this case, the

functional is known as the empirical risk and can be

computed without knowing P (x, y) as:

Pemp(F (x, α)) = 1/l

l∑

i=1

(yi − F (xi, α))
2 (2)

Let the minimum of equation 2 be attained for

F (x, αemp). The primary question is to estab-

lish when the decision rule F (x, αemp) is close to

F (x, αo), that which is obtained by minimizing equa-

tion 1. Following the derivation shown in the Ap-

pendix, the actual risk obtained by αemp is bounded

by probability 1− η:

P (αemp) ≤ Pemp(αemp) +

√
1

2l
ln

(
N

η

)
(3)

In addition, by the use of homogeneous linear thresh-

old functions as decision rules F (x, α ≡ w) : Rd −→
{−1, 1}, where

F (x,w) =

{
1 if x ·w > 0

−1 if x ·w < 0

whenever the dimension (i.e. number of vox-

els/regions) of the input pattern x is far from the

number of samples (i.e. scans), d << l, P (αemp) is
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Table 1. Demographics details of the dataset, group means with their standard deviation (sd).

Autism Normal

Sex M F Total M F Total

N 30 30 60 30 30 60
Age (SD) 27.2172 (7.2847) 27.8067 (7.6322) 27.5119 (7.4029) 28.1801 (5.6219) 27.4643 (6.4572) 27.8222 (6.0133)

seldom close to 0 and therefore the bound for the

actual risk performs satisfactorily. In other words,

for images of the brain where the number of scans

is rather small compared to the number of voxels

or regions, linear classifiers protect the system from

overfitting, thus the variance of the actual risk is not

large. Following the theory of homogeneous linear

classifiers and applying the classical combinatorial

geometry to develop the separating properties of de-

cision surfaces,59 we can take a step forward and re-

fine the bound in equation 3 as:

P (αemp) ≤ Pemp(αemp) +

√
1

2l
ln

(
N(l, d)

η

)
(4)

where N(l, d) is the number of linearly separable di-

chotomies of l samples in a d-dimensional space (see

further details in the Appendix). Therefore, under

the aforementioned conditions (d << l), the em-

pirical risk Pemp(αemp) is an indicator of the gen-

eralization ability of the statistical classifier, and

the maximum deviation of the frequencies from the

corresponding probability of the empirical solution

(∆P = P − Pemp) can be derived with probability

1− η (see Appendix).

3.2. PLS-based CAD System

Providing a significant set of features is important

to achieving a small empirical risk given a classi-

fier of fixed complexity (capacity). The binary FES

and classification stages within the multiclass clas-

sification problem are performed in a class pattern-

specific manner, rather than using other strategies

which combine different classes for subsequent fit-

ting of binary statistical classifiers; i.e. the one vs.

rest -based model. In this way, givenK class-patterns

a total number of Ns = K(K − 1)/2 binary clas-

sifiers may be fitted based on the same number of

training subsets. This one vs. one classification model

(see figure 1) allows the assessment of which neuro-

phenotypes defined in the Ns training subsets are

dominant in the corresponding Ns test subsets. Af-

ter that, the classification results can be merged to

provide an overall classification result, defined as a

decoding process in ternary error-correcting output

code algorithms.60 All of these analyses are achieved

at a high confidence level given the upper bounds

of the actual risk (see section 3.1), the conditions

regarding the sample size and the capacity of the

selected statistical classifier.

t-Test/PLS
�tting

t-Test/PLS
extraction

Training SVM Testing SVM

Multiclass
analysis

N
S one-vs-one analyses

training subset

MRI
database

test subset

Decoding

Fig. 1. Schematic representation of the proposed sys-
tem. Given the K=4-class problem to be learned, Ns = 6
different bipartitions are formed, and 6 binary prob-
lems (dichotomizers) over the partitions are trained and
tested. As a result, a codeword of the same length is
obtained for each class that is decoded by a Maximum
A-Posteriori probability principle.
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3.2.1. Structural magnetic resonance image
acquisition and preprocessing

All 120 participants were scanned using a contem-

porary 3 T MRI scanner (GE Medical Systems

HDx) fitted with an 8-channel receive-only RT head-

coil. Simulated T1-weighted inversion recovery im-

ages were segmented and normalized to the stan-

dard Montreal Neurological Institute (MNI) space

using the SPM12 software (Wellcome Trust Centre

for Neuroimaging, London, UK)68 and the CAT12

toolbox.69 Native space grey matter (GM), white

matter (WM) and cerebro-spinal fluid (CSF) images

were obtained using standard automated segmenta-

tion routines. The native space GM and WM im-

ages were registered to a study-specific template us-

ing a high-dimensional non-linear diffeomorphic reg-

istration algorithm (DARTEL)70 and then clustered

into 116 standardized areas.67 A modulation step

was included to retain voxelwise information about

local tissue volume. The modulated GM and WM

maps were smoothed with a 4mm full-width at half-

maximum Gaussian kernel. For the multicentre male

sample all preprocessing steps were developed in the

same way as described earlier for the latter dataset.

In the statistical inference part, the general linear

model for VBM considered the sites (i.e. scanning

machines) as covariates (categorical fixed-effect fac-

tors).

GM and WM maps X = {xi}, for i = 1, . . . , l,

were initially parcellated into r = 1, . . . , 116 stan-

dardized regions of a brain anatomical atlas.67 Thus,

our multivariate analysis takes as its input mean grey

and white matter volumes from within each atlas re-

gion, xi(r), separately. This procedure is appropriate

for our purpose of observing tissue-specific local vari-

ations, although partial results may be rearranged by

aggregation in a complete volume, as shown in the

following sections and figures 2 and 3.

3.2.2. Two-sample t-test and PLS extraction

A rank FES based on the standard two-sample t-test

with pooled variance in combination with a PLS-

based FES74 were region-wise applied with the one

vs. one classification model (see figure 1). Given a

training subset comprising two classes j = 1, 2 with

balanced samples sizes l1 = l2 = l/2, the t statistical

vector is defined as:

t =
x̄1 − x̄2

sp

√
4
l

(5)

where sp =
√

sx1+sx2

2 is the pooled standard de-

viation and sx1 sx2 are the unbiased estimators of

the variances of the two classes (the assumption of

the data in each group following a normal distribu-

tion was confirmed by a Kolmogorov-Smirnov test).

The effect of this operation on the brain regions is to

reduce the computational load prior to feature ex-

traction, and to assure that regional differences in

tissues volumes are considered when assessing over-

all patterns of tissue distribution.

Once the significant regions were identified by

ranking the result of the t-test, we extracted the rel-

evant patterns within those regions by a PLS regres-

sion between the l × d data matrix X and the l × 1

vector labels Y. Briefly, in the application of PLS to

supervised classification we maximized:

ωo = max
ω

(cov (Xω,Y))
2
; s.t. ||ω|| = 1 (6)

where the score vectors s = Xω were iteratively ex-

tracted and used to deflate the input matrix X by

subtracting their rank-one approximations based on

s.74 The deflation process was accomplished by the

computation of the vector of loadings p as a coeffi-

cient of regressing X on s:

p =
XT s

sT s
= XT ŝ (7)

The vector of weights ωf , where f indexes the num-

ber of extracted features, is a local property in the

images; that is, the dimensional components are not

mixed in its computation, whilst the score coeffi-

cients s(i) =
∑d

j=1 Xijωj (and the matrix of scores),

and the deflation term spT |ij =
∑d

k=1 skXiksi∑l
i=1 s2i

, etc.

are global. Therefore, the size of the input data d is

crucial to the assessment of the relationship between

GM (WM) volume and group membership with het-

erogeneous variances, where some statistical proper-

ties of the involved processes, such as the stationarity

or the ergodicity in the correlation, must be assumed

for the evaluated ROIs. In the present study the anal-

ysis was carried out on the set regions (see figures 2

and 3) selected by feature selection.
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3.2.3. Statistical parametric PLS maps

The analysis of functional and structural studies usu-

ally entails the construction of spatially extended

statistical processes where each voxel of the novel

image or map is the result of a statistical test. After

that hypothesis testing process the main problem is

to determine the significance of extrema by the use of

several statistical field-based approximations,15 i.e. a

3D t-statistical field. PLS methods have been demon-

strated in the past to be very useful in describing the

relation between brain activity and experimental de-

sign or behavior measures.42, 74 In this way PLS anal-

ysis of brain activations is able to reveal additional

regions of salience that are not identified by typical

univariate voxelwise methods such as SPM. Assume

that the label vector Y contains the two global con-

ditions in X ({1,−1} indexed as i ∈ C1, C2) and

xi1 > xi2 , for i1 ∈ C1 and i2 ∈ C2, without loss of

generalization. The scores s will be ideally located

around zero with different signs, thus from equation

7 for every loading component, we have:

p(k) =
∑

i1

xi(k)ŝ(i)−
∑

i2

xi(k)|ŝ(i)| (8)

for k = 1, . . . , d, and a deviation from zero of this

data-weighted score summation would suggest a re-

gion associated with a particular group membership

(contrast). Remapped into image space the contents

of the singular vector p indicate which pixels are

most sensitive to those predefined contrasts and de-

fine the so-called PLS map. Comparing the latter ex-

pression to equation 5, the PLS-map can be seen as a

multivariate two-sample test weighted by the scores

of each subject with unknown distribution, except for

the normalization term that depends on the pooled

standard deviation. In fact, after some manipulations

it yields:

p = x̄1 − x̄2 (9)

where x̄j(k) ≡ ∑
Ci

xi(k)P (xi(k)) and P (xi(k)) =

|ŝ(i)| is the frequency of the observation xi(k) that

is assumed to be proportional to its score in the com-

putation of the group mean.

The statistical significance of the PLS-maps can

be assessed is many ways; e.g. by the use of a per-

mutation test.42 In this work we proposed the use

of a parametric approach, that is very popular in

neuroimaging, based on the Gaussian Random Field

(GRF) theory. This theory models both the uni-

variate probabilistic features of the resulting SPM

and the non-stationary spatial covariance structure

of that image.68 This model can be applied as well

to the proposed PLS-map as the selected quantity

that characterized the PLS computation has shown

to be very similar to the classical two-sample t-

test mapping (except for the normalization factor).

The methodology can be described as the following.

Firstly, given a p-value and the T SPM extracted

from the one tailed two-sample t-test with contrast

matrix [1,−1] for C1 and C2 conditions, we de-

termine the statistically significant positive salience

threshold tcritic using the inverse cumulative density

function of the t-test distribution (the same applies

for the negative one). The biased version of the PLS-

based two-sample t-test in equation 9 makes up a

novel P SPM that is linearly projected to a (bias cor-

rected) distribution P̂ with the same parameters of

the previous T SPMa. Finally, the positive saliences

on this novel map are determined by evaluating the

regions where P̂ > tcritic at the given p-value.

3.2.4. A robust statistical classifier, SVM

The use of SVMs was motivated by the minimization

of the VC dimension and has been successfully shown

to be a robust solution in classification learning,62

which minimizes the separation margin between the

binary-labeled training data, mapped into a (PLS-

based) feature space F, by constructing a hyperplane

w whose norm is minimum:62

||w||2 + C

l∑

i=1

ξi (10)

subject to

yi(w · xi) ≥ 1− ξi; ξi ≥ 0; i = 1, . . . , l

where ξi are slack variables, C is a constant that

allows a trade-off between training error and model

complexity (C is usually optimized by several search-

ing methods at the training stage, i.e. Bayesian op-

timization in a wide range [1e− 3, 1e3]), and the de-

cision rule is defined as F (x,w) in section 3.1. The

aHere we assume that the t-distribution is approximately normal for a high number of degrees of freedom. Note that if a
variable X ∼ N (µ1, σ1) then Z = (X −µ1)/σ1 ∼ N (0, 1). Conversely, given Z then Y = µ2Z+ σ2 ∼ N (µ2, σ2). Then we

can connect any pair of distributions by Y = σ2
σ1

X +
(
µ2 − µ1

σ2
σ1

)
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solution is computed using w =
∑l

i=1 aiyixi, where

the multipliers 0 ≤ ai ≤ C were derived from the

dual Lagrangian problem in equation 10.

4. Experiments and Results

The spatial representation of the binary classifier

output and the corresponding “loading” of the PLS

image as the new reference base for the analyzed

input patterns is discussed and shown in this sec-

tion. In this sense, we take a step forward with re-

spect to the majority of exploratory analyses devel-

oped so far in the literature35, 45 and propose a spe-

cific cross-validation scheme with the purpose of dis-

covering generalizable class-features in the GM or

WM images. By training the system using binary

group differences (gender and/or condition) and un-

der the assumption that they are distributed across

statistically significant regions, we aim to general-

ize these features in the remaining study groups

which should share the same magnitude of dif-

ferences across groups. The complete analysis in-

cluded a class pattern-specific two-sample test for

region-wise FES, an overlap analysis35 across group-

difference PLS maps with a VBM comparison to eval-

uate the Autism theories, the assessment of the sam-

ple Autism label probability with the determination

of confidence intervals using the Clopper-Pearson

method and finally, permutation tests to check the

statistical significance of the classification results ob-

tained by the machine learning-based system.

4.1. Experimental Setup

As discussed previously in section 3.2, the images

were parcellated according to67 and FES algorithms

were applied to the resulting images obtained from

a standardized preprocessing and image registration

pipeline.69 For the sake of clarity, we define Ns = 6

SVM classifiers acting on their corresponding group

comparisons: Group 1 (G1): MC-MA (male controls

vs male autistic individuals), G2: MC-FC (MC vs

female controls), G3: MC-FA (MC vs female autis-

tic individuals), G4: MA-FC, G5: MA-FA and G6:

FC-FA.

4.1.1. Preprocessing:

The application of the FES approach detailed in sec-

tion 3.2 results in several weight maps for the group

comparisons as shown in figure 2.

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Fig. 2. Significant grey-matter differences (VBM) in the
study groups (p < 0.05) plotted on the standardized at-
las. Relative excesses in GM volume are displayed in or-
ange/red, while deficits are displayed in blue (jet color
map). From left to right, up to bottom: Male control
(MC) vs. Male Autism (MA); MC vs. Female control
(FC); MC vs. Female Autism (FA); MA vs. FC; MA vs.
FA; FC vs. FA.

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Fig. 3. Brain map (PLS) illustrating regions where GM
volume was associated with group membership (p load-
ing). Orange/red regions indicate areas with a positive
association between GM volume and condition (i.e. ASD
> control); blue regions indicate brain systems of de-
creased grey-matter volume in the condition group. The
selected z-coordinate was 50 for the axial slice in the stan-
dard space of the MNI template.

With the aim of increasing the generalization

ability of the proposed classification systems only the

first PLS component was considered (a single dimen-

sion d = 1), thus the associated upper bound of the

actual risk, as shown in equation 1, provides a strong

connection between the risk and the empirical risk
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(resubstitution error). It is worth mentioning what

is actually shown in figures 3 and 4 is the first load-

ing component p extracted from the brain regions,

separately. Figure 3 highlights the relevant regions in

terms of the PLS regression on the group differences.

Group differences G1 and G6 illustrate the regions

where the features associated with autism are differ-

ent in males and females, respectively. In the remain-

der of the figures, features associated with gender are

predominantly found in the PLS maps; e.g. the G2

pattern that refers to the VBM comparison between

MC and FC, is modulated and found in group dif-

ferences G3, G4 and G5. The statistical significance

of these PLS maps is discussed in the following sec-

tion 4.2, where the null distributions are modeled as

a two-tailed Gaussian distribution or a t-distribution

with large degrees of freedom ν.

In figure 4 the PLS global approach is shown on

the left and is contrasted against the regionwise com-

parison for G1 (i.e. MC-MA). Observe that the re-

gionwise comparison provides a noisy p-loading that

is used as a reference base in the feature space for

the extracted input scores. A one-sample t-test be-

tween the score data s obtained from the regionwise

approach and the global approach reveals that, at

a 95% significance level, 44 out of the 60 subjects

present a difference in means in regions including the

insula, hippocampus, and cingulum; figure 4.

4.1.2. Classification

The overall classification accuracy of each SVM

model was estimated using the re-substitution er-

ror for the training subset and a l/2-holdout cross-

validation error for the test subset, testing for signifi-

cance by repeating the validation procedure n = 500

times, after randomly permuting the class labels. In

this sense, each of Ns = 6 training subsets, under the

one vs.one classification model, allows us to estimate

the probability of the neuro-phenotype in terms of

sex or condition and to evaluate it on the remain-

ing Ns test subsets. Therefore, the four classes are

considered as a set of participants with different pro-

portions or combinations of these two types of effect

(sex and condition).

The selection of other cross-validation proce-

dures, i.e. K-fold, with the aim of “pure” classifica-

tion leads to poor classification and generalization

of results mainly due to the variability of the in-

put patterns, the potentially preponderant role of

one effect, and small sample size. Thus, we should

consider the former K = 4 classes as tentative labels

as they may contain spatially-dependent neurophe-

notypes with biases towards a particular effect that

are non-uniformly distributed in the K classes.

4.2. Visualizing the patterns of brain
regions representative of
normative sex/condition
differences

The aim of this section is to analyze the differences

of the specific patterns representing sex or condi-

tion. Following a similar analysis as,35 we undertook

a two-sample t-test based on VBM comparisons be-

tween groups. Only voxelwise height thresholds with

no spatial extent operation were applied under the

two logical contrasts; i.e. group1 > or < group2.

Three sets of VBM comparisons were performed

to test EMB theory predictions;76 namely, MC-FC,

MC-MA and FC-FA comparisons. The aim of this

procedure is to generate an overlap analysis across

group-difference maps35 and compare them with the

PLS maps. The PLS maps can be interpreted as two-

tailed statistical tests, unlike the classical one-tailed

t-test maps obtained under the SPM framework,69

and both are almost normally distributed with a

high number of degrees of freedom (e.g. ν = 57 for

the condition comparison).75 In order to make them

comparable for the computation of group-difference

maps, given a set of p values {0.0001, . . . , 0.05}, we
linearly transform the PLS maps, P ∼ N (µp, σp) to

a new Gaussian distribution with mean and standard

deviation of the corresponding comparison group T-

maps, which are normally distributed T ∼ N (µt, σt).

After this transformation, the PLS maps permit

testing of the logical contrasts in a single map by

group1 6= group2. As an example, in those regions

where there is a statistically significant sexual di-

morphism MC 6= FC, we evaluated the significant

differences in the neurophenotype of male and female

individuals with autism, that is, MA 6= MC and

FA 6= FC (see figure 5). As shown in the follow-

ing section, the overlap analysis derived from these

figures partially supports EMB theory predictions by

considering both directions of effect at the same time

(> and <).
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Fig. 4. Up: Detail of Slice #50 for the p-loading in Group 1 under global (on the left) and region-wise (on the right)
PLS FE. Note the noisy PLS loading on the left image as a result of processing the whole image simultaneously. Bottom:
one-sample t-test on the scores s, the rejection of the null hypothesis is obtained for 44 out of 60 subjects

Fig. 5. Grey matter overlapping regions in sexually di-
morphic areas of males (red) and female (green) individu-
als with autism at a voxel-level threshold of p-value=0.05.

4.2.1. Spatial Overlap Analysis

Following the discussion in section 4.2, three VBM

comparisons, MC-FC, MA-MC and FA-FC, were

evaluated on GM and WM volumes. We carried out

the experiments on our dataset (l = 120) and the

male sample (l = 168) described in,38 using our

PLS-based FE approach and the set of one-tailed

contrasts obtained from the univariate 2 × 2 facto-

rial design analysis provided by the SPM software.68

For each comparison a conjunction analysis35, 78 con-

sisting of logical AND masking, were assessed and

tested for significance by running Montecarlo simu-

lations (5000 iterations). The distribution of overlaps

at the same p-value threshold were sampled; i.e. from

0.0001 to 0.05 in steps of 0.0001. This spatial over-

lap analysis, which considers synthetic GM (WM)

map overlaps, allows us to assess the probability of

whether the overlapping voxels of the comparisons

occur by chance. In the baseline comparisons we in-

cluded an additional spatial overlap analysis using

a multicenter male sample as detailed in.35, 38 The

purpose of this MA-MC comparison is to conduct

the same analysis on a larger number of samples

(l = 168) to provide higher power to detect the group

differences, that were not found by the use of the cur-

rent database (l = 60, males only).

The spatial overlap analysis between males and

females with autism is small in both approaches (T

and PLS maps) for GM and WM (e.g. up to 15%

and 10% for GM and up to 23% and 10% for WM,

respectively) for p ≤ 0.05 as shown in the figure 6

in magenta color lines. This finding clearly identifies

the differences between the neuroanatomy of autism

across sexes that was previously demonstrated by the

high precision of the four-class learning machine de-
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tailed in the previous section, and in figure 5. The

rest of the curves show a significant difference be-

tween approaches; that is, the one-tailed T maps

versus the two tailed-PLS maps. In the latter ap-

proach, we find significant evidence for overlap be-

tween structures sensitive to diagnosis and sexual di-

morphism in both sexes (red and blue solid lines).

This evidence is only found for the one-tailed T-

based approach in females (T-MC-FC&FC-FA, red

dotted line in figure 5).

4.3. Classification Results

The output score pattern of the set of binary clas-

sifiers is shown in figure 7 for the training and test

sets. From this set of figures what is interesting to

note is the ability for generalization of the proposed

system, under some constrained conditions, over the

tests G2, G3, G4 and G5 (same rows on the fig-

ure). Another relevant feature found in the output

score maps is the presence of vertical bars represent-

ing misclassification in training and test sets. This

could be identification of the different neuropheno-

types of specific individuals, e.g. participant 42 in the

FC subset, as they are always located in the wrong

hyperplane subspace at both training and test stages

(see table 2). From this table it is clear that MA

is the class with lower performance in classification

accuracy in both stages. Surprisingly, the features

associated with autism in the training of the SVM

to classify G1 (males) cannot be generalized in the

test set (females) although these features should be

present in one class, and absent in the other (a real

binary classification problem). The almost random

pattern found in the test set could indicate the dif-

ferent nature of the features of autism in males and

females. This situation is repeated in G6 where the

females were used in the training stage and males

made up the test set, confirming the latter hypothe-

sis.

Table 2. GM (WM) Overlap and region averaged accu-
racy of the output score maps (%) for the selected sub-
sets acting as Training and Test sets (Groups 1 and 6 are
not considered). Note: the GM overlap of correctly classi-
fied patterns in the MC subset, used at the Training stage
in the comparisons MCvsFC and MCvsFA, is 90.98%.

Subsets Train Ov. Test Ov. Train Acc. Test Acc.

MC 90.98 89.68 77.07(7.68) 63.03(9.05)

G
M

FC 92.16 90.43 80.60(6.65) 70.88(7.84)
MA 92.27 89.34 73.09(7.96) 64.73(7.28)
FA 90.55 90.00 81.16(6.33) 69.47(8.19)

MC 90.92 86.95 81.38(9.16) 67.30(9.98)

W
M

FC 91.18 88.97 80.00(8.58) 70.52(9.23)
MA 93.22 87.64 77.63(9.00) 64.74(8.50)
FA 91.24 87.82 80.45(8.88) 66.16(9.39)

The quantitative analysis of the output score

pattern is found in figure 8 where we represent the

distribution of accuracies, including the notch anal-

ysis to display the variability of the median between

samples, for all the brain regions and the accompany-

ing overlay histograms. From this figure we can ob-

serve how the learning systems generalize well with

respect to the controlled upper bound (around 10%),

excluding the G1 and G6 which behave as random

classifiers on the test set. This effect indicates the

varying nature in the differences between MC and

MA (male autism features) which cannot be extrap-

olated to the FC-FA comparison, and vice versa. In

the former groups, the gender feature is the most

prevalent, providing a high overlap in the output of

the systems for several comparisons; see Table 2.

Participants with a high or low probability of

being classified as having autism may be determined

by using a predictive mapping approach.38 Given the

output score map of a participant with sex S and

condition C at the test&training stages, we first cal-

culated the predictive class probability with respect

to the male typical neurophenotype. For this pur-

pose, the ratio was obtained of the number of re-

gions associated with a classification of ”male” to

the overall number of brain regions. Then, we col-

lected all these probabilities, one for each individual,

into a discrete set of bins from 0 to 1 in steps of 0.25,

and computed the sample Autism probability (that

is, the probability of the male-neurophenotype, de-

noted in figure 9 as P (ph = M |S,C = ASD)) as

the ratio of the number of individuals classified with

autism to the total number of individuals within the

bin. As shown in figure 9 for G2-5, where confidence

intervals are determined using the Clopper-Pearson

method in the binomial test,77 the probability of an

individual being classified as autistic in males (blue)

and females (red) evolves differently across the male-
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Fig. 6. Comparison of the testing brain-level predictions of the EMB theory of Autism. (L) indicates the use of the larger
male database (i.e. using the DESPOT1 acquistions) for the VBM comparison, described in.38

Fig. 7. Output score map of the linear SVM in the training&test configuration (GM). On the left column we plot the
SVM-scores obtained from the training set while on the right column we show the consequent prediction on the test
set. Each row contains one of the 6 binary problems to solve the multiclass framework, depicting all the 116 region-wise
features (Y-axis) vs. each subject (X-axis). The hyperplane derived at each row using the training subsets on the left is
employed in the prediction of the test subsets on the right. Note that for the ideal linearly-separable problem we would
obtain two black (from 1 to 30) and white (from 31 to 60) columns in all cases. In this way, the fitted learner should
generalize fairly-well on the remaining groups, obtaining two additional black and white columns on the test set, in case
the features on the right were characterizing the groups on the left. This is clearly not the case in the 1 and 6 rows, where
we are trying to predict male/female Autistic features from the opposite sex.

neurophenotypic axis. In addition, within gender,

this probability increases or decreases depending on

whether the group is processed at the test or training

stage. This difference in behaviour is due to the pres-

ence (or absence) of the autism feature that adds to

the gender-based difference between groups, during

the training stage.

In addition, we studied the binary classifica-

tion problem using the group comparisons (MC-MA

and FC-FA) using a classical cross-validation scheme
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Fig. 8. Up: Distribution of accuracies in training and test subsets for Groups 1-6 (GM). Bottom: Overlay histogram
Analysis for Groups 1-6 (GM).

used in small sample sizes; i.e. leave-one-out cross

validation and l = 60. In this case, we employed the

same feature selection and extraction methods with a

similar parameter tuning prior to linear SVM-based

classification. As an example, for the MC-MA com-

parison, the few regions extracted on GM by this

more restrictive cross-validation scheme are coinci-

dent with the regions highlighted in figure 5, i.e.

right middle frontal gyrus, right pallidum, etc. yield-

ing classification rates from 70% up to 80% in the
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Fig. 9. Probability for autism as a Function of Normative Sex-Related Phenotypic Variability in Brain Morphology:
Probability estimates for autism across four discrete bins along the axis of predictive class probabilities for sex are plotted
for G2-5 and training (T) and test (t) stages. For male (blue) and female (red) models, the probability for autism behaves
in a different manner with increasingly male-typical class predictions; that is, it increases (decreases) in females (males)
at the test stage and the contrarily at the training stage.

study groups from GM and WM tissues.

Finally, using a one vs. one decoding scheme

based on a MAP strategy, the multiclass problem

may be undertaken on a region-wise basis and a out-

put score map of the linear SVM may be derived

with 4 class levels. Under the upper bound (∼ 0.1)

on the actual risk for d = 1 and using linear decision

functions, the six binary classifiers can be combined

obtaining the results shown in figure 10. Note in the

upper subfigure that individuals with autism are or-

dered from male to female, and a deep (light) colour

represents control (autism) participant sex. A region-

wise analysis using this decoding strategy with GM

reveals regions with a high accuracy (up to 83.33%);

namely, left and right parietal, temporal, occipital

lobes, calcarine sulcus, etc. and a mean across region

of 62.61 ± 8.23 with confusion depicted in the bot-

tom of the same figure. With WM, an improvement

in performance is observed (up to 93.33%) mainly

due to the improved classification of the MC group

(averaged accuracy across regions of 67.50 ± 9.99),

with relevant regions located at middle frontal gyrus,

inferior parietal lobe, cerebellar cortical crus II, mid-

dle occipital and temporal lobes, etc. Additionally,

in this multiclass problem we employed the output

score maps depicted in figure 7 to decode the MAP

output class for each region and then a majority vot-

ing scheme across the regions was applied to deter-

mine the final output class for each individual. Over-

all, the four groups are represented by different im-

age patterns that can be classified with an accuracy

up to 86.7% (91.70% on WM) using the information

contained in the entirety of the image, as shown in

the confusion matrix (fig 11).

4.4. Permutation Tests

Although the experimental conditions were rigor-

ously established in the previous sections; that is,

the results obtained by linear classifiers in low di-

mensional spaces are theoretically meaningful at a

significance level η (see section 3.1), a permutation

test to validate these results was applied to the whole

dataset. For the complete set of binary classifiers

the cross-validation procedure was repeated n = 500

times after randomly permuting the class labels to

derive p-value maps. As expected, the classification

obtained with this analysis for the set of classifiers is

almost random and , at the 95% level of confidence,

almost all the regions were considered as significant

in this analysis as shown in table 3. The result of this

analysis allows the construction of relevance maps for

each classification model such as those displayed in
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Fig. 10. Right: Output score map of the combination of six binary classifiers in a one vs. one classification scheme using
GM-based features. Right: Confusion matrix of the region-wise classification scheme.
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Fig. 11. Confusion matrix of the majority voting multiclass classification scheme corresponding to the output score map
in figure 10. Observe how the overall classification result outperforms the region-wise approach, due to the presence of
outliers in the four-class problem (patients containing a high ratio of misclassified regions).

the figure 12, where, as an example, we illustrate the

prediction of sex based on VBM features using the

sex classifier for G2.

Table 3. Testing for significance the clas-
sification models on GM features (95%
significance level). Accepted regions in %
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out of the 116 analyzed BAs for the bi-
nary classifiers at the training stage.

% MC MA FC FA

G1 95.69 83.62 - -

G
M

G2 89.66 - 96.55 -
G3 90.52 - - 98.28
G4 - 82.76 98.28
G5 - 80.17 - 98.28
G6 - - 91.38 94.83

5. Discussion

From the perspective of this machine learning-based

approach, the neuroanatomy of autism in males and

females is comprised of separate distinguishing pat-

terns. A distinguishing pattern similarly identifies

a male and female controls. These group-differences

are observed even with a small sample set, although

some theoretical bounds and suitable methodologies

must be imposed to highlight such differences. The

interactions between sex and diagnosis observed in

this paper extend those previously found in prior

work35, 38 that also showed sex×diagnosis group dif-

ferences on GM and WM tissues. In particular,

greater accuracy rates were obtained with the classi-

fication apparatus described herein.

In addition, based on this multivariate method-

ology, we also found that there was a significant over-

lap between the neuroanatomical features of autism

in males and females, unlike the previous approaches,

aligning with the predictions of the EMB theory

in terms of the directionality of effect, and with

the “gender incoherence” hypothesis79). These ef-

fects were observed by the use of a region-wise PLS-

based activation map transformed into the same pa-

rameters as those used in the one-tailed t maps de-

rived from the group differences. In fact, the ap-

proach proposed in this paper considers not only the

EMB theory76 directionality but also its inverse; that

is, predicting that males with autism are feminized

in terms of neuroanatomy.79 This effect was clearly

observed on GM and WM VBM comparisons and

agrees with the results obtained by testing how the

effect of autism overlaps with the effect of “femeniza-

tion” using one-tailed contrasts.35 Thus, on balance,

these results may be a demonstration of gender inco-

herence of males with autism rather than “masculin-

ization”.

The heterogeneity of autism was detected by

the assessment of the output score maps derived

from the machine learning theory. The use of cross-

validation groups further reduced the limited sam-

ple size and degraded the performance of the CAD

system. Although some considerations and preven-

tive measures regarding the curse of dimensionality

were carried out to be conservative, the observed ef-

fects and group-differences could be partially sample-

specific and the current analysis requires replication

on larger datasets. These difficulties are detected in

terms of the presence of outliers, that is, participants

that are misclassified by resubstitution in almost all

the analyzed regions. Those are participants that are

located in the “wrong’ feature subspace present an

heterogeneous pattern that affects the performance

of the SVM when they are considered in any valida-

tion/training fold. The output score maps revealed

this misclassified sex/condition-specific neuropheno-

type on GM and WM tissues across regions and par-

ticipants.

6. Conclusions

In summary, the research developed here is a first at-

tempt to describe both sex-typical multivariate neu-

robiological phenotypes by the use of machine learn-

ing and a MRI sample of equal-sized high-functioning

male and female adults with and without autism. Al-

though the main limitation of the current equal-sized

gender datasets is the samples sizes, we avoided this

difficulty by imposing some restrictions on the learn-

ing parameters of the system by the use of a novel up-

per bound in the resubstitution estimate, obtaining

a good trade-off between empirical risk and the vari-

ance of the actual risk estimation (upper bound). In

addition, the system used a set of features extracted

from PLS activation maps that are demonstrated to

be statistically significant and in accordance with

two theories of the neurobiology of autism. The com-

plete classification system in a one vs. one configu-

ration achieves, under these theoretical conditions,

high classification results (up to 86%) in a four-label

classification problem, thus outperforming the clas-

sification rate of previous published works on this

field.35, 80–82
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(a) MC relevant regions corrected by the permutation test (b) FC relevant regions corrected by the permutation test

(c) MA relevant regions corrected by the permutation test (d) FA relevant regions corrected by the permutation test

Fig. 12. Accuracy maps for G2: Training MC-FC comparison and test on MA, FA groups with GM features. The colorbar
indicates the precision of each region in the binary classification problem of detecting sexual dimorphism in the training
and test subsets.
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7. Appendix 1

7.1. On the upper bound of the actual
risk

In terms of the one-sided uniform convergence of the

means we are interested in assessing for a given sig-

nificance level η:

P{sup
i
(P (αi)− Pemp(αi)) > ǫ} < η (11)

where P (αi) = P (F (x, αi)). Of course, with a sam-

ple size l → ∞ the law of large numbers expressed

in terms of the third Hoeffding inequality63 for any

functional αi establishes that:

lim
l→∞

P{sup
i
(P (αi)− Pemp(αi)) > ǫ} = 0 (12)

and the uniform convergence in equation 11 is

achieved. In other cases l < ∞, the aforementioned

inequality can be used to establish the bound of the

actual risk as:61

P{Γi > ǫ} ≤
N∑

i=1

P{γi > ǫ} < η = N exp(−2ǫ2l)

(13)

where Γi = supi(γi) and γi = P (αi)− Pemp(αi) and

N is the finite number of functional dependencies.

Since the inequality is valid for all decision functions

F (x, αi), the actual risk obtained by αemp is bounded

with probability 1− η by:

γemp ≤
√

1

2l
ln

(
N

η

)

that is equivalent to equation 3. In general, these

bounds could be further improved by considering the

relative deviations61, 64 under scenarios where P (αi)

tends to the extremes 0, 1, but that is far from our

problem.

Definition: A set of l vectors is in general po-

sition in d-space if every subset of d or fewer vectors

is linearly independent.

Consider that the training sample {xi, yi} is dis-

tributed randomly in general position, then the num-

ber of linearly separable dichotomies of the set of in-

put patterns is equal to N , that is, the number of

decision functions F (x, α) when the training sample

is not a root of the set (F (xi, α) 6= 0). As shown

in59 for linear decision functions and based on the

Function Counting Theorem this is equal to:

N(l, d) = 2

d−1∑

k=0

(
l − 1

k

)
(14)

Thus, the bound in equation 3 could be rewritten as

shown in equation 4. As an example, if d ≃ l then

N(l, d) ≃ 2l, thus the number of functions is such

that it separates the sample size in all possible ways

(non-falsifiable learning machine), the minimum of

the empirical risk is zero and the upper bound of

P (αemp) is trivial (> 0.5) independently of the sam-

ple size l. On the contrary, if d << l the actual

risk reaches its maximum value close to the empirical

risk, i.e. for d = {1, 2, 3} and l = 120, the maximum

deviation of the frequencies (∆P = P − Pemp) are

obtained with probability 1− η(= 0.95) as:

∆P ≤ {0.1398, 0.1879, 0.2286} (15)

8. Appendix 2

The Medical Research Council Autism Imaging Mul-

ticentre Study Consortium (MRC AIMS Consor-

tium) is a UK collaboration between the Institute

of Psychiatry, Psychology and Neuroscience (IoPPN)

at King’s College, London, the Autism Research

Centre, University of Cambridge, and the Autism

Research Group, University of Oxford. The Con-

sortium members are in alphabetical order: An-

thony J. Bailey (Oxford), Simon Baron-Cohen (Cam-

bridge), Patrick F. Bolton (IoPPN), Edward T.

Bullmore (Cambridge), Sarah Carrington (Oxford),

Marco Catani (IoPPN), Bhismadev Chakrabarti

(Cambridge), Michael C. Craig (IoPPN), Eileen M.

Daly (IoPPN), Sean C. L. Deoni (IoPPN), Chris-

tine Ecker (IoPPN), Francesca Happé (IoPPN), Ju-

lian Henty (Cambridge), Peter Jezzard (Oxford),

Patrick Johnston (IoPPN), Derek K. Jones (IoPPN),

Meng-Chuan Lai (Cambridge), Michael V. Lom-

bardo (Cambridge), Anya Madden (IoPPN), Diane

Mullins (IoPPN), Clodagh M. Murphy (IoPPN), De-

clan G. M. Murphy (IoPPN), Greg Pasco (Cam-

bridge), Amber N. V. Ruigrok (Cambridge), Su-

san A. Sadek (Cambridge), Debbie Spain (IoPPN),

Rose Stewart (Oxford), John Suckling (Cambridge),

Sally J. Wheelwright (Cambridge), and Steven C.

Williams (IoPPN).
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