38 research outputs found

    Analytical Solutions of the Navier-Stokes Model by He’s Polynomials

    Get PDF
    Navier-Stokes models are of great usefulness in physics and applied sciences. In this paper, He’s polynomials approach is implemented for obtaining approximate and exact solutions of the Navier-Stokes model. These solutions are calculated in the form of series with easily computable components. This technique is showed to be very effective, efficient and reliable because it gives the exact solution of the solved problems with less computational work, without neglecting the level of accuracy. We therefore, recommend the extension and application of this novel method for solving problems arising in other aspect of applied sciences. Numerical computations, and graphics done in this work, are through Maple 18

    A Convenient Adomian-Pade Technique for the Nonlinear Oscillator Equation

    Get PDF
    Very recently, the convenient way to calculate the Adomian series was suggested. This paper combines this technique and the Pade approximation to develop some new iteration schemes. Then, the combined method is applied to nonlinear models and the residual functions illustrate the accuracies and conveniences

    A generalized differential transform method for linear partial differential equations of fractional order

    Get PDF
    In this letter we develop a new generalization of the two-dimensional differential transform method that will extend the application of the method to linear partial differential equations with space- and time-fractional derivatives. The new generalization is based on the two-dimensional differential transform method, generalized Taylor’s formula and Caputo fractional derivative. Several illustrative examples are given to demonstrate the effectiveness of the present method. The results reveal that the technique introduced here is very effective and convenient for solving linear partial differential equations of fractional order

    Local Fractional Variational Iteration Method for Solving Nonlinear Partial Differential Equations within Local Fractional Operators

    Get PDF
    In this article, the local fractional variational iteration method is proposed to solve nonlinear partial differential equations within local fractional derivative operators. To illustrate the ability and reliability of the method, some examples are illustrated. A comparison between local fractional variational iteration method with the other numerical methods is given, revealing that the proposed method is capable of solving effectively a large number of nonlinear differential equations with high accuracy. In addition, we show that local fractional variational iteration method is able to solve a large class of nonlinear problems involving local fractional operators effectively, more easily and accurately, and thus it has been widely applicable in engineering and physics
    corecore