
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 10 Issue 2 Article 29 

12-2015 

Local Fractional Variational Iteration Method for Solving Nonlinear Local Fractional Variational Iteration Method for Solving Nonlinear 

Partial Differential Equations within Local Fractional Operators Partial Differential Equations within Local Fractional Operators 

Hossein Jafari 
University of Mazandaran 

Hassan K. Jassim 
University of Thi-Qar 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Analysis Commons, Ordinary Differential Equations and Applied Dynamics Commons, and 

the Partial Differential Equations Commons 

Recommended Citation Recommended Citation 
Jafari, Hossein and Jassim, Hassan K. (2015). Local Fractional Variational Iteration Method for Solving 
Nonlinear Partial Differential Equations within Local Fractional Operators, Applications and Applied 
Mathematics: An International Journal (AAM), Vol. 10, Iss. 2, Article 29. 
Available at: https://digitalcommons.pvamu.edu/aam/vol10/iss2/29 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol10
https://digitalcommons.pvamu.edu/aam/vol10/iss2
https://digitalcommons.pvamu.edu/aam/vol10/iss2/29
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol10%2Fiss2%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol10%2Fiss2%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol10%2Fiss2%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol10%2Fiss2%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol10/iss2/29?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol10%2Fiss2%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


1055 

 

Available at 

http://pvamu.edu/aam 
Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 10, Issue 2 (December  2015),  pp. 1055-1065 

Applications and 

Applied Mathematics:  

An International Journal 

(AAM) 

 

 

Local Fractional Variational Iteration Method for Solving  

Nonlinear Partial Differential Equations within  

Local Fractional Operators 
 

 

Hossein Jafari
  

 
Department of Mathematics 

 University of Mazandaran, Babolsar, Iran 

Jafari@umz.ac.ir 

 

Hassan Kamil Jassim 

Department of Mathematics 

University of Thi-Qar, Nasiriyah, Iraq 

hassan.kamil@yahoo.com 

 

Received: November 8, 2014;    Accepted: November 15, 2015 

 

Abstract 
 

In this article, the local fractional variational iteration method  is proposed to solve nonlinear 

partial differential equations within local fractional derivative operators. To illustrate the 

ability and reliability of the method, some examples are illustrated. A comparison between 

local fractional variational iteration method with the other numerical methods is given, 

revealing that the proposed method is capable of solving effectively a large number of 

nonlinear differential equations with high accuracy. In addition, we show that local fractional 

variational iteration method is able to solve a large class of nonlinear problems involving 

local fractional operators effectively, more easily and accurately, and thus it has been widely 

applicable in engineering and physics. 

 

Keywords: Nonlinear partial differentia equation; local fractional variational iteration  

  method; local fractional derivative operators 

 

MSC (2010) No.: 26A33; 34A12; 34A34; 35R11 

 

 

1. Introduction 
  

The local fractional calculus has attracted a lot of interest for scientists and engineers. Several 

sections of local fractional derivative had been introduced, i.e. the local fractional derivative 

structured by Kolwankar and Gangal (1997), Kolwankar and Gangal (1998), and Yang 
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(2012), the  modified Riemann- Liouville derivative given by Yang (2011), and Jumarie 

(2006), the fractal derivative suggested by Yang (2011), Jumarie (2011), and Parvate (2005), 

the fractal derivative considered by Yang (2011), Chen (2006), and Chen et al. (2010), the 

generalized fractal derivative proposed Chen et al. (2010), the local fractional derivative 

presented by Yang (2012), Adda and Cresson (2001), the local fractional derivative 

structured by He (2011), Fan and He (2012), and Yang (2012). As a result, the local 

fractional calculus theory becomes important for modeling problems for fractal mathematics 

and engineering on Cantor sets and it plays a key role in many applications in several fields 

such as theorical physics in Kolwankar (1998), and Yang (2012), the heat conduction theory 

in Yang (2012), He (2011), Baleanu and Yang (2013), the fracture and elasticity mechanics 

in Yang (2012), the fluid mechanics in Yang (2012) and Balankin and Elizarraraz (2012). 

 

Several analytical and numerical techniques were successfully applied to deal with 

differential equations, fractional differential equations, and local fractional differential 

equations Wazwaz (2002), Schneider and Wyss (1989), Zhao and Li (2012), Momani and 

Odibat (2008), Laskin (2002), Zhou and Jiao (2010) Momani and Odibat (2006), Tarasov 

(2008), Golmankhaneh and Baleanu (2011), and Li et al. (2012), Hristov (2010). The 

techniques include the heat-balance integral Hristov (2010), the fractional Laplace transform 

Baleanu et al. (2012), the harmonic wavelet Cattani (2005, 2008), local fractional variational 

iteration Yang and Baleanu (2013), and Su et al. (2013), the local fractional decomposition 

Yang et al. (2013), Jafari and Jassim (2014), the local fractional series expansion Jafari and 

Jassim (2014), and the generalized local fractional Fourier transform Yang et al. (2013) 

methods. 

 

In this paper, we investigate the application of local fractional variational iteration method for 

solving nonlinear local fractional partial differential equations. The structure of the paper is 

as follows. In Section 2, we give the concept of local fractional calculus. In Section 3, we 

give analysis of the method used. In Section 4, we consider some illustrative examples. 

Finally, in Section 5, we present our conclusions. 

 

2. Basic Definitions of Local Fractional Calculus 

 

In this section, we give some basic definitions and properties of fractional calculus theory 

which will be used in this paper. 

 

Definition 1.  

 

We say that a function )(xf  is local fractional continuous at 0xx  , Yang (2012) if   

 

      10,)()( 0  xfxf   ,                                                                                         (2.1) 
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with  0xx , for 0,   and R , . For ),( bax , it is so called local fractional 

continuous on ),( ba , denoted by ),()( baCxf  . 

 

Definition 2.  

 

Setting ),()( baCxf  , local fractional derivative of )(xf  at 0xx   is defined as Yang 

(2012), Wang et al. (2014), and Yan et al. (2014) 

 

      ,
)(

))()((
lim)()()(

0

0)(
0

)(
0

0





xx

xfxf
xfxfLxfD

xx
xx







                                                  (2.2) 

 

where )).()(()1())()(( 00 xfxfxfxf     

 

Note that local fractional derivative of high order is written in the form 

         ,)(...)()( )( xfDDDxfxfD

timesk

xxx
kk

x


                                                                       (2.3) 

 

and local fractional partial derivative of high order  

         ).,(
),(

yxf
xxxx

yxf

timesk

k

k

  


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
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
                                                                          (2.4) 

 

Definition 3.  

 

Let us denote a partition of the interval ],[ ba  as ,),( 1jj tt  ,1,...,0  Nj and btN   with 

jjj ttt  1  and ...}.,,max{ 10 ttt   Local fractional integral of )(xf  in the interval ],[ ba  

is given by Yang (2012), Wang et al. (2014), and Yan et al. (2014) 

 

          .)()(lim
)1(

1
)()(
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1
)(

1

00

)(
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                                  (2.5) 

 

Definition 4. 

 

In fractal space, the Mittage Leffler function, sine function and cosine function are defined as 

Yang (2012), Wang et al. (2014), and Yan et al. (2014) 

 

      10,
)1(

)(
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

 
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





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k

k
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x
xE                                                                                     (2.6)  
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      10,
])12(1[

)1()(sin
0

)12(
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
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


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      10,
]21[

)1()(cos
0

2
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
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x                                                                         (2.8) 

 

The following results are valid: 

 

      
 
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





 )1(

)1(1

)1( 
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,                                                                                       (2.9) 
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 ,                                                                                                    (2.10) 
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dx
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b
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      )(cos)(cos)()(sin
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1 
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
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3. Analysis of the Local Fractional Variational Iteration Method 

 

We consider a general nonlinear local fractional partial differential equation: 

 

      10,,0,),(),(),(),(   RxttxftxuNtxuRtxuL ,                                      (3.1) 

 

where L denotes linear local fractional derivative operator of order 2 , R denotes linear 

local fractional derivative operator of order less than L , N  denotes nonlinear local 

fractional operator, and ),( txf  is the nondifferentiable source term. 

 

According to the rule of local fractional variational iteration method, the correction local 

fractional functional for (3.1) is constructed as Yang and Baleanu (2013): 

 

       









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 fuNuRuLIxuxu nnnxnn ,                            (3.2) 

where 
)1(

)(



 


 is a fractal Lagrange multiplier. 

 

Making the local fractional variation of (3.2), we have 

        
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




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The extremum condition of 1nu is given by Yang (2012)  

       0)(1  xun
 .                                                                                                                (3.4)  

In view of (3.4), we have the following stationary conditions: 
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So, from (3.5), we get 

      .
)1(

)(

)1(

)(







 


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
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                                                                                                         (3.6) 

The initial value )(0 xu is given by  

      ).0(
)1(

)0()( )(
0





u

x
uxu


                                                                                           (3.7) 

In view of (3.6), we have 

       .)()()()(
)1(

)(
)()( )(

01 












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x
Ixuxu nnnxnn                             (3.8) 

Finally, from (3.8), we obtain the solution of (3.1) as follows: 

      .),(lim),( txutxu n
n 

                                                                                                          (3.9)                                                     

 

4. Some Illustrative Examples 

 

In this section, we gave some illustrative examples for solving the nonlinear partial 

differential equations involving local fractional derivative operators by using local fractional 

variational iteration method. 

 

Example 1.  

 

Let us consider the nonlinear local fractional partial differential equation 

      ,
)1(

),(
),(),(),(

2

2

2

2
















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










 x
yxu

y

yxu

x

yxu

x

yxu
                                                    (4.1) 

and subject to the fractal value conditions 

      .1
),0(

,)(sin),0( 











x

yu
yyu                                                                                    (4.2)  

From (4.2) we take the initial value, which reads 
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)1(

)(sin),(0









x

yyxu                                                                                            (4.3)  

By using (3.8) we structure a local fractional iteration procedure as 
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  (4.4) 

Hence, we can derive the first approximation term  
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The second approximation can be calculated in the similar way, which is  
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Proceeding in this manner, we get the third approximation as 
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and so on. Thus, we have the local fractional series solution 
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

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x

yyxun .                                                                                          (4.8) 

As a result, the final solution reads 

       ),(lim),( yxuyxu n
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                                  
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Example 2.  
 

Consider the nonlinear local fractional partial differential equation 
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and subject to the fractal value conditions 
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From (4.11) we take the initial value, which reads 
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By using (3.8) we structure a local fractional iteration procedure as 
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Hence, we can derive the first approximation term  
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The second approximation can be calculated in the similar way, which is  
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Proceeding in this manner, we get the third approximation as 
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and so on. Thus, we have the local fractional series solution 
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As a result, the final solution reads 
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Example 3.  

 

Consider the nonlinear local fractional partial differential equation 
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and subject to the fractal value conditions 
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From (4.19) we take the initial value, which reads 
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By using (3.8) we structure a local fractional iteration procedure as 
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Hence, we can derive the first approximation term  

      

























































 ),(

),(),(

)1(

)(
),(),( 2

0

2

2
0

2

2
0

2
)(

001 yu
y

yuyux
Iyxuyxu x 

















  

                  .)(
)1(







ycox

x


                                                                                           (4.23) 

The second approximation can be calculated in the similar way, which is  
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Proceeding in this manner, we get the third approximation as 
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and so on. Thus, we have the local fractional series solution 
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As a result, the final solution reads 
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5.  Conclusions 

 

In this paper, we have studied nonlinear partial differential equations involving local 

fractional operator with the local fractional variational iteration method (LFVIM). The exact 

solution of the nonlinear partial differential equations is obtained by the local fractional 

variational iteration method. The results showed that the variational iteration method is 

remarkably effective. Comparison with the local fractional decomposition method (LFDM) 

shows that the local fractional variational iteration method is a powerful method for nonlinear 

equations. The advantage of the LFVIM over the LFDM is that there is no need for the 

evaluations of the Adomian polynomials. 
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