13,573 research outputs found

    Pressurization and expulsion of cryogenic liquids: Generic requirements for a low gravity experiment

    Get PDF
    Requirements are presented for an experiment designed to obtain data for the pressurization and expulsion of a cryogenic supply tank in a low gravity environment. These requirements are of a generic nature and applicable to any cryogenic fluid of interest, condensible or non-condensible pressurants, and various low gravity test platforms such as the Space Shuttle or a free-flyer. Background information, the thermophysical process, preliminary analytical modeling, and experimental requirements are discussed. Key parameters, measurements, hardware requirements, procedures, a test matrix, and data analysis are outlined

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement

    Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster

    Get PDF
    Each year, crowd disasters happen in different areas of the world. How and why do such disasters happen? Are the fatalities caused by relentless behavior of people or a psychological state of panic that makes the crowd 'go mad'? Or are they a tragic consequence of a breakdown of coordination? These and other questions are addressed, based on a qualitative analysis of publicly available videos and materials, which document the planning and organization of the Love Parade in Duisburg, Germany, and the crowd disaster on July 24, 2010. Our analysis reveals a number of misunderstandings that have widely spread. We also provide a new perspective on concepts such as 'intentional pushing', 'mass panic', 'stampede', and 'crowd crushs'. The focus of our analysis is on the contributing causal factors and their mutual interdependencies, not on legal issues or the judgment of personal or institutional responsibilities. Video recordings show that, in Duisburg, people stumbled and piled up due to a 'domino effect', resulting from a phenomenon called 'crowd turbulence' or 'crowd quake'. Crowd quakes are a typical reason for crowd disasters, to be distinguished from crowd disasters resulting from 'panic stampedes' or 'crowd crushes'. In Duisburg, crowd turbulence was the consequence of amplifying feedback and cascading effects, which are typical for systemic instabilities. Accordingly, things can go terribly wrong in spite of no bad intentions from anyone. Comparing the incident in Duisburg with others, we give recommendations to help prevent future crowd disasters. In particular, we introduce a new scale to assess the criticality of conditions in the crowd. This may allow preventative measures to be taken earlier on. Furthermore, we discuss the merits and limitations of citizen science for public investigation, considering that today, almost every event is recorded and reflected in the World Wide Web.Comment: For a collection of links to complementary video materials see http://loveparadevideos.heroku.com/ For related work see http://www.soms.ethz.c

    Pressurization of cryogens: A review of current technology and its applicability to low-gravity conditions

    Get PDF
    A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance
    • …
    corecore