58 research outputs found

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis

    A family of C1C^1 quadrilateral finite elements

    Full text link
    We present a novel family of C1C^1 quadrilateral finite elements, which define global C1C^1 spaces over a general quadrilateral mesh with vertices of arbitrary valency. The elements extend the construction by (Brenner and Sung, J. Sci. Comput., 2005), which is based on polynomial elements of tensor-product degree p6p\geq 6, to all degrees p3p \geq 3. Thus, we call the family of C1C^1 finite elements Brenner-Sung quadrilaterals. The proposed C1C^1 quadrilateral can be seen as a special case of the Argyris isogeometric element of (Kapl, Sangalli and Takacs, CAGD, 2019). The quadrilateral elements possess similar degrees of freedom as the classical Argyris triangles. Just as for the Argyris triangle, we additionally impose C2C^2 continuity at the vertices. In this paper we focus on the lower degree cases, that may be desirable for their lower computational cost and better conditioning of the basis: We consider indeed the polynomial quadrilateral of (bi-)degree~55, and the polynomial degrees p=3p=3 and p=4p=4 by employing a splitting into 3×33\times3 or 2×22\times2 polynomial pieces, respectively. The proposed elements reproduce polynomials of total degree pp. We show that the space provides optimal approximation order. Due to the interpolation properties, the error bounds are local on each element. In addition, we describe the construction of a simple, local basis and give for p{3,4,5}p\in\{3,4,5\} explicit formulas for the B\'{e}zier or B-spline coefficients of the basis functions. Numerical experiments by solving the biharmonic equation demonstrate the potential of the proposed C1C^1 quadrilateral finite element for the numerical analysis of fourth order problems, also indicating that (for p=5p=5) the proposed element performs comparable or in general even better than the Argyris triangle with respect to the number of degrees of freedom

    Scaled boundary isogeometric analysis with C1 coupling for Kirchhoff plate theory

    Full text link
    Although isogeometric analysis exploits smooth B-spline and NURBS basis functions for the definition of discrete function spaces as well as for the geometry representation, the global smoothness in so-called multipatch parametrizations is an issue. Especially, if strong C1 regularity is required, the introduction of function spaces with good convergence properties is not straightforward. However, in 2D there is the special class of analysis-suitable G1 (AS-G1) parametrizations that are suitable for patch coupling. In this contribution we show that the concept of scaled boundary isogeometric analysis fits to the AS-G1 idea and the former is appropriate to define C1-smooth basis functions. The proposed method is applied to Kirchhoff plates and its capability is demonstrated utilizing several numerical examples. Its applicability to non-trivial and trimmed shapes is demonstrated

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    The INTERNODES method for the treatment of non-conforming multipatch geometries in Isogeometric Analysis

    Full text link
    In this paper we apply the INTERNODES method to solve second order elliptic problems discretized by Isogeometric Analysis methods on non-conforming multiple patches in 2D and 3D geometries. INTERNODES is an interpolation-based method that, on each interface of the configuration, exploits two independent interpolation operators to enforce the continuity of the traces and of the normal derivatives. INTERNODES supports non-conformity on NURBS spaces as well as on geometries. We specify how to set up the interpolation matrices on non-conforming interfaces, how to enforce the continuity of the normal derivatives and we give special attention to implementation aspects. The numerical results show that INTERNODES exhibits optimal convergence rate with respect to the mesh size of the NURBS spaces an that it is robust with respect to jumping coefficients.Comment: Accepted for publication in Computer Methods in Applied Mechanics and Engineerin

    Isogeometric continuity constraints for multi-patch shells governed by fourth-order deformation and phase field models

    Full text link
    This work presents numerical techniques to enforce continuity constraints on multi-patch surfaces for three distinct problem classes. The first involves structural analysis of thin shells that are described by general Kirchhoff-Love kinematics. Their governing equation is a vector-valued, fourth-order, nonlinear, partial differential equation (PDE) that requires at least C1C^1-continuity within a displacement-based finite element formulation. The second class are surface phase separations modeled by a phase field. Their governing equation is the Cahn-Hilliard equation - a scalar, fourth-order, nonlinear PDE - that can be coupled to the thin shell PDE. The third class are brittle fracture processes modeled by a phase field approach. In this work, these are described by a scalar, fourth-order, nonlinear PDE that is similar to the Cahn-Hilliard equation and is also coupled to the thin shell PDE. Using a direct finite element discretization, the two phase field equations also require at least a C1C^1-continuous formulation. Isogeometric surface discretizations - often composed of multiple patches - thus require constraints that enforce the C1C^1-continuity of displacement and phase field. For this, two numerical strategies are presented: For this, two numerical strategies are presented: A Lagrange multiplier formulation and a penalty method. The curvilinear shell model including the geometrical constraints is taken from Duong et al. (2017) and it is extended to model the coupled phase field problems on thin shells of Zimmermann et al. (2019) and Paul et al. (2020) on multi-patches. Their accuracy and convergence are illustrated by several numerical examples considering deforming shells, phase separations on evolving surfaces, and dynamic brittle fracture of thin shells.Comment: In this version, typos were fixed, Chapter 6.4 is added, Table 1 is updated, and clarifying explanations and remarks are added at several place
    corecore