204,480 research outputs found

    Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI

    Full text link
    We demonstrate a unified approach to rigorous design of safety-critical autonomous systems using the VerifAI toolkit for formal analysis of AI-based systems. VerifAI provides an integrated toolchain for tasks spanning the design process, including modeling, falsification, debugging, and ML component retraining. We evaluate all of these applications in an industrial case study on an experimental autonomous aircraft taxiing system developed by Boeing, which uses a neural network to track the centerline of a runway. We define runway scenarios using the Scenic probabilistic programming language, and use them to drive tests in the X-Plane flight simulator. We first perform falsification, automatically finding environment conditions causing the system to violate its specification by deviating significantly from the centerline (or even leaving the runway entirely). Next, we use counterexample analysis to identify distinct failure cases, and confirm their root causes with specialized testing. Finally, we use the results of falsification and debugging to retrain the network, eliminating several failure cases and improving the overall performance of the closed-loop system.Comment: Full version of a CAV 2020 pape

    SRAT-Distribution Voltage Sags and Reliability Assessment Tool

    Get PDF
    Interruptions to supply and sags of distribution system voltage are the main aspects causing customer complaints. There is a need for analysis of supply reliability and voltage sag to relate system performance with network structure and equipment design parameters. This analysis can also give prediction of voltage dips, as well as relating traditional reliability and momentary outage measures to the properties of protection systems and to network impedances. Existing reliability analysis software often requires substantial training, lacks automated facilities, and suffers from data availability. Thus it requires time-consuming manual intervention for the study of large networks. A user-friendly sag and reliability assessment tool (SRAT) has been developed based on existing impedance data, protection characteristics, and a model of failure probability. The new features included in SRAT are a) efficient reliability and sag assessments for a radial network with limited loops, b) reliability evaluation associated with realistic protection and restoration schemes, c) inclusion of momentary outages in the same model as permanent outage evaluation, d) evaluation of the sag transfer through meshed subtransmission network, and e) simplified probability distribution model determined from available faults records. Examples of the application of the tools to an Australian distribution network are used to illustrate the application of this model

    Failure Localization in Power Systems via Tree Partitions

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion

    Multihop Routing in Ad Hoc Networks

    Full text link
    This paper presents a dual method of closed-form analysis and lightweight simulation that enables an evaluation of the performance of mobile ad hoc networks that is more realistic, efficient, and accurate than those found in existing publications. Some features accommodated by the new analysis are shadowing, exclusion and guard zones, and distance-dependent fading. Three routing protocols are examined: least-delay, nearest-neighbor, and maximum-progress routing. The tradeoffs among the path reliabilities, average conditional delays, average conditional number of hops, and area spectral efficiencies are examined.Comment: 6 pages, 6 figures, to appear in IEEE Military Commun. Conf. (MILCOM), 201

    Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters

    Get PDF
    Costs and losses have been calculated for several different network topologies, which centralise the turbine power electronic converters, in order to improve access for maintenance. These are divided into star topologies, where each turbine is connected individually to its own converter on a platform housing many converters, and cluster topologies, where multiple turbines are connected through a single large converter. Both AC and DC topologies were considered, along with standard string topologies for comparison. Star and cluster topologies were both found to have higher costs and losses than the string topology. In the case of the star topology, this is due to the longer cable length and higher component count. In the case of the cluster topology, this is due to the reduced energy capture from controlling turbine speeds in clusters rather than individually. DC topologies were generally found to have a lower cost and loss than AC, but the fact that the converters are not commercially available makes this advantage less certain
    • 

    corecore