4 research outputs found

    Analysis on tailed distributed arithmetic codes for uniform binary sources

    Get PDF
    Distributed Arithmetic Coding (DAC) is a variant of Arithmetic Coding (AC) that can realise Slepian-Wolf Coding (SWC) in a nonlinear way. In the previous work, we defined Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS) for DAC. In this paper, we make use of CCS and HDS to analyze tailed DAC, a form of DAC mapping the last few symbols of each source block onto non-overlapped intervals as traditional AC. We first derive the exact HDS formula for tailless DAC, a form of DAC mapping all symbols of each source block onto overlapped intervals, and show that the HDS formula previously given is actually an approximate version. Then the HDS formula is extended to tailed DAC. We also deduce the average codebook cardinality, which is closely related to decoding complexity, and rate loss of tailed DAC with the help of CCS. The effects of tail length are extensively analyzed. It is revealed that by increasing tail length to a value not close to the bitstream length, closely-spaced codewords within the same codebook can be removed at the cost of a higher decoding complexity and a larger rate loss. Finally, theoretical analyses are verified by experiments

    PAPR Reduction Using Huffman and Arithmetic Coding Techniques in F-OFDM System

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) was introduced to overcome the high side lobes in the OFDM system. Filtering is implemented in the system to reduce the out-of-band emission (OOBE) for the spectrum utilization and to meet the diversified expectation of the upcoming 5G networks. The main drawback in the system is the high peak to average ratio (PAPR). This paper investigates the method used in reducing the PAPR in the F-OFDM system. The proposed method using the block coding technique to overcome the problem of high PAPR are the Arithmetic coding and Huffman coding. This research evaluates the performance of F-OFDM system based on the PAPR values. From the simulation results, the PAPR reduction of the Arithmetic coding is 8.9% lower, while the Huffman Coding is 6.7% lower in the F-OFDM system. The results prove that the Arithmetic Coding will out-perform the Huffman coding in the F-OFDM system

    Protograph LDPC Based Distributed Joint Source Channel Coding

    Get PDF
    该文提出一种基于原模图低密度奇偶校验(P-LDPC)码的分布式联合信源信道编译码系统方案。该方案编码端,分布式信源发送部分信息位及校验位以同时实; 现压缩及纠错功能;译码端,联合迭代信源信道译码的运用进一步发掘信源的相关性以获得额外的编码增益。此外,论文研究了所提方案在译码端未知相关性系数的; 译码算法。仿真结果表明,所提出的基于P-LDPC码的分布式联合信源信道编译码方案在外部迭代次数不大的情况可以获得较大的性能增益,并且相关性系数在; 译码端已知和未知系统性能基本相当。This paper proposes a Distributed Joint Source-Channel Coding (DJSCC); scheme using Protograph Low Density Parity Check (P-LDPC) code. In the; proposed scheme, the distributed source encoder sends some information; bits together with the parity bits to simultaneously achieve both; distributed compression and channel error correction. Iterative joint; decoding is introduced to further exploit the source correlation.; Moreover, the proposed scheme is investigated when the correlation; between sources is not known at the decoder. Simulation results indicate; that the proposed DJSCC scheme can obtain relatively large additional; coding gains at a relatively small number of global iterations, and the; performance for unknown correlated sources is almost the same as that; for known correlated sources since correlation can be estimated jointly; with the iterative decoding process.福建省自然科学基金; 国家自然科学基

    Bridging Hamming Distance Spectrum with Coset Cardinality Spectrum for Overlapped Arithmetic Codes

    Full text link
    Overlapped arithmetic codes, featured by overlapped intervals, are a variant of arithmetic codes that can be used to implement Slepian-Wolf coding. To analyze overlapped arithmetic codes, we have proposed two theoretical tools: Coset Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS). The former describes how source space is partitioned into cosets (equally or unequally), and the latter describes how codewords are structured within each coset (densely or sparsely). However, until now, these two tools are almost parallel to each other, and it seems that there is no intersection between them. The main contribution of this paper is bridging HDS with CCS through a rigorous mathematical proof. Specifically, HDS can be quickly and accurately calculated with CCS in some cases. All theoretical analyses are perfectly verified by simulation results
    corecore