55 research outputs found

    Investigation of open resolvers in DNS reflection DDoS attacks

    Get PDF
    Les serveurs du système de noms de domaine (DNS) représentent des éléments clés des réseaux Internet. Récemment, les attaquants ont profité de ce service pour lancer des attaques massives de déni de service distribué (DDoS) contre de nombreuses organisations [1, 2, 3]. Ceci est rendu possible grâce aux différentes vulnérabilités liées à la conception, implantation ou une mauvaise configuration du protocole DNS. Les attaques DDoS amplifiées par DNS sont des menaces dangereuses pour les utilisateurs d’Internet. L’objectif de cette étude est d’acquérir une meilleure compréhension des attaques DDoS amplifiées par DNS par l’investigation des résolveurs DNS ouverts à travers le monde. Dans ce contexte, il est nécessaire d’adopter une approche en phase précoce pour détecter les résolveurs DNS ouverts. Cela devient cruciale dans le processus d’enquête. Dans cette thèse, nous nous intéresserons à l’utilisation de résolveurs DNS ouverts dans les attaques DDoS amplifiées par DNS. Plus précisément, la principale contribution de notre recherche est la suivante : (i) Nous profilons les résolveurs DNS ouverts, ce qui implique : détecter les résolveurs ouverts, les localiser, détecter leur système d’exploitation et le type de leur connectivité, et étudier le but de leur vivacité. (ii) Nous effectuons une évaluation de la sécurité des résolveurs DNS ouverts et leurs vulnérabilités. De plus, nous discutons les fonctions de sécurité des résolveurs DNS, qui fournissent, par inadvertence, les attaquants par la capacité d’effectuer des attaques DDoS amplifiées par DNS. (iii) Nous présentons une analyse pour démontrer l’association des résolveurs DNS ouverts avec les menaces de logiciels malveillants.Domain Name System (DNS) servers represent key components of Internet networks. Recently, attackers have taken advantage of this service to launch massive Distributed Denial of Service (DDoS) attacks against numerous organizations [1, 2, 3]. This is made possible due to the various vulnerabilities linked to the design, implementation or misconfiguration of the DNS protocol. DNS reflection DDoS attacks are harmful threats for internet users. The goal of this study is to gain a better understanding of DNS reflection DDoS attacks through the investigation of DNS open resolvers around the world. In this context, there is a need for an early phase approach to detect and fingerprint DNS open resolvers. This becomes crucial in the process of investigation. In this thesis, we elaborate on the usage of DNS open resolvers in DNS reflection DDoS attacks. More precisely, the main contribution of our research is as follows : (i) We profile DNS open resolvers, which involves : detecting open resolvers, locating them, fingerprinting their operating system, fingerprinting the type of their connectivity, studying the purpose of their liveness. (ii) We conduct an assessment with respect to DNS open resolvers security and their vulnerabilities. Moreover, we discuss the security features that DNS open resolvers are equipped with, which inadvertently provide the capability to the attackers in order to carry out DNS reflection DDoS attacks. (iii) We present an analysis to demonstrate the association of DNS open resolvers with malware threats

    Addressing the challenges of modern DNS:a comprehensive tutorial

    Get PDF
    The Domain Name System (DNS) plays a crucial role in connecting services and users on the Internet. Since its first specification, DNS has been extended in numerous documents to keep it fit for today’s challenges and demands. And these challenges are many. Revelations of snooping on DNS traffic led to changes to guarantee confidentiality of DNS queries. Attacks to forge DNS traffic led to changes to shore up the integrity of the DNS. Finally, denial-of-service attack on DNS operations have led to new DNS operations architectures. All of these developments make DNS a highly interesting, but also highly challenging research topic. This tutorial – aimed at graduate students and early-career researchers – provides a overview of the modern DNS, its ongoing development and its open challenges. This tutorial has four major contributions. We first provide a comprehensive overview of the DNS protocol. Then, we explain how DNS is deployed in practice. This lays the foundation for the third contribution: a review of the biggest challenges the modern DNS faces today and how they can be addressed. These challenges are (i) protecting the confidentiality and (ii) guaranteeing the integrity of the information provided in the DNS, (iii) ensuring the availability of the DNS infrastructure, and (iv) detecting and preventing attacks that make use of the DNS. Last, we discuss which challenges remain open, pointing the reader towards new research areas

    Malicious Payload Distribution Channels in Domain Name System

    Get PDF
    Botmasters are known to use different protocols to hide their activities under the radar. Throughout the past years, several protocols have been abused and recently Domain Name System (DNS) also became a target of such malicious activities. In this dissertation, we analyze the use of DNS as a malicious payload distribution channel. To the best of our knowledge, this is the first comprehensive analysis of these payload distribution channels via DNS. We present a system to characterize such channels in the passive DNS (pDNS) traffic by modelling DNS query and response patterns. Then, we analyze the Resource Record (RR) activities of these channels to build their DNS zone profiles. Finally, we detect and assign levels of intensity for payload distribution channels by using a fuzzy logic theory. Our work is based on an extensive analysis of malware datasets for one year, and a near real-time feed of pDNS traffic. The experimental results reveal few long-running hidden domains used by Morto worm to distribute malicious payloads. We also found that some of these payloads are in cleartext, without any encoding or encryption. Our experiments on pDNS traffic indicate that our system can detect these channels regardless of the payload format. Passive DNS is a useful data source for DNS based research, and it requires to be stored in a database for historical data analysis, such as the work we present in this dissertation. Once this database is established, it can be used for any sort of threat analysis that requires DNS oriented intelligence. Our aim is to create a scalable pDNS database, that contains potentially valuable security intelligence data. We present our pDNS database by discussing the database design, implementation challenges, and the evaluation of the system

    An analysis of the use of DNS for malicious payload distribution

    Get PDF
    The Domain Name System (DNS) protocol is a fundamental part of Internet activities that can be abused by cybercriminals to conduct malicious activities. Previous research has shown that cybercriminals use different methods, including the DNS protocol, to distribute malicious content, remain hidden and avoid detection from various technologies that are put in place to detect anomalies. This allows botnets and certain malware families to establish covert communication channels that can be used to send or receive data and also distribute malicious payloads using the DNS queries and responses. Cybercriminals use the DNS to breach highly protected networks, distribute malicious content, and exfiltrate sensitive information without being detected by security controls put in place by embedding certain strings in DNS packets. This research undertaking broadens this research field and fills in the existing research gap by extending the analysis of DNS being used as a payload distribution channel to detection of domains that are used to distribute different malicious payloads. This research undertaking analysed the use of the DNS in detecting domains and channels that are used for distributing malicious payloads. Passive DNS data which replicate DNS queries on name servers to detect anomalies in DNS queries was evaluated and analysed in order to detect malicious payloads. The research characterises the malicious payload distribution channels by analysing passive DNS traffic and modelling the DNS query and response patterns. The research found that it is possible to detect malicious payload distribution channels through the analysis of DNS TXT resource records

    Analysis of Malware and Domain Name System Traffic

    Get PDF
    Malicious domains host Command and Control servers that are used to instruct infected machines to perpetuate malicious activities such as sending spam, stealing credentials, and launching denial of service attacks. Both static and dynamic analysis of malware as well as monitoring Domain Name System (DNS) traffic provide valuable insight into such malicious activities and help security experts detect and protect against many cyber attacks. Advanced crimeware toolkits were responsible for many recent cyber attacks. In order to understand the inner workings of such toolkits, we present a detailed reverse engineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture and enable its mitigation. Our analysis allows us to provide a breakdown for the structure of the Zeus botnet network messages. In the second part of this work, we develop a framework for analyzing dynamic analysis reports of malware samples. This framework can be used to extract valuable cyber intelligence from the analyzed malware. The obtained intelligence helps reveal more insight into different cyber attacks and uncovers abused domains as well as malicious infrastructure networks. Based on this framework, we develop a severity ranking system for domain names. The system leverages the interaction between domain names and malware samples to extract indicators for malicious behaviors or abuse actions. The system utilizes these behavioral features on a daily basis to produce severity or abuse scores for domain names. Since our system assigns maliciousness scores that describe the level of abuse for each analyzed domain name, it can be considered as a complementary component to existing (binary) reputation systems, which produce long lists with no priorities. We also developed a severity system for name servers based on passive DNS traffic. The system leverages the domain names that reside under the authority of name servers to extract indicators for malicious behaviors or abuse actions. It also utilizes these behavioral features on a daily basis to dynamically produce severity or abuse scores for name servers. Finally, we present a system to characterize and detect the payload distribution channels within passive DNS traffic. Our system observes the DNS zone activities of access counts of each resource record type and determines payload distribution channels. Our experiments on near real-time passive DNS traffic demonstrate that our system can detect several resilient malicious payload distribution channels

    Scalable Techniques for Anomaly Detection

    Get PDF
    Computer networks are constantly being attacked by malicious entities for various reasons. Network based attacks include but are not limited to, Distributed Denial of Service (DDoS), DNS based attacks, Cross-site Scripting (XSS) etc. Such attacks have exploited either the network protocol or the end-host software vulnerabilities for perpetration. Current network traffic analysis techniques employed for detection and/or prevention of these anomalies suffer from significant delay or have only limited scalability because of their huge resource requirements. This dissertation proposes more scalable techniques for network anomaly detection. We propose using DNS analysis for detecting a wide variety of network anomalies. The use of DNS is motivated by the fact that DNS traffic comprises only 2-3% of total network traffic reducing the burden on anomaly detection resources. Our motivation additionally follows from the observation that almost any Internet activity (legitimate or otherwise) is marked by the use of DNS. We propose several techniques for DNS traffic analysis to distinguish anomalous DNS traffic patterns which in turn identify different categories of network attacks. First, we present MiND, a system to detect misdirected DNS packets arising due to poisoned name server records or due to local infections such as caused by worms like DNSChanger. MiND validates misdirected DNS packets using an externally collected database of authoritative name servers for second or third-level domains. We deploy this tool at the edge of a university campus network for evaluation. Secondly, we focus on domain-fluxing botnet detection by exploiting the high entropy inherent in the set of domains used for locating the Command and Control (C&C) server. We apply three metrics namely the Kullback-Leibler divergence, the Jaccard Index, and the Edit distance, to different groups of domain names present in Tier-1 ISP DNS traces obtained from South Asia and South America. Our evaluation successfully detects existing domain-fluxing botnets such as Conficker and also recognizes new botnets. We extend this approach by utilizing DNS failures to improve the latency of detection. Alternatively, we propose a system which uses temporal and entropy-based correlation between successful and failed DNS queries, for fluxing botnet detection. We also present an approach which computes the reputation of domains in a bipartite graph of hosts within a network, and the domains accessed by them. The inference technique utilizes belief propagation, an approximation algorithm for marginal probability estimation. The computation of reputation scores is seeded through a small fraction of domains found in black and white lists. An application of this technique, on an HTTP-proxy dataset from a large enterprise, shows a high detection rate with low false positive rates

    Addressing Insider Threats from Smart Devices

    Get PDF
    Smart devices have unique security challenges and are becoming increasingly common. They have been used in the past to launch cyber attacks such as the Mirai attack. This work is focused on solving the threats posed to and by smart devices inside a network. The size of the problem is quantified; the initial compromise is prevented where possible, and compromised devices are identified. To gain insight into the size of the problem, campus Domain Name System (DNS) measurements were taken that allow for wireless traffic to be separated from wired traffic. Two-thirds of the DNS traffic measured came from wireless hosts, implying that mobile devices are playing a bigger role in networks. Also, port scans and service discovery protocols were used to identify Internet of Things (IoT) devices on the campus network and follow-up work was done to assess the state of the IoT devices. Motivated by these findings, three solutions were developed. To handle the scenario when compromised mobile devices are connected to the network, a new strategy for steppingstone detection was developed with both an application layer and a transport layer solution. The proposed solution is effective even when the mobile device cellular connection is used. Also, malicious or vulnerable applications make it through the mobile app store vetting process. A user space tool was developed that identifies apps contacting malicious domains in real time and collects data for research purposes. Malicious app behavior can then be identified on the user’s device, catching malicious apps that were overlooked by software vetting. Last, the variety of IoT device types and manufacturers makes the job of keeping them secure difficult. A generic framework was developed to lighten the management burden of securing IoT devices, serve as a middle box to secure legacy devices, and also use DNS queries as a way to identify misbehaving devices
    • …
    corecore