
Analysis of Malware and Domain Name System Traffic

Hamad Mohammed Binsalleeh

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

July 2014

c© Hamad Mohammed Binsalleeh, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211517488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Hamad Mohammed Binsalleeh

Entitled: Analysis of Malware and Domain Name System Traffic

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Christian Moreau

External Examiner
Dr. Nadia Tawbi

Examiner to Program
Dr. Lingyu Wang

Examiner
Dr. Peter Grogono

Examiner
Dr. Olga Ormandjieva

Thesis Co-Supervisor
Dr. Mourad Debbabi

Thesis Co-Supervisor
Dr. Amr Youssef

Approved by
Chair of the CSE Department

2014
Dean of Engineering



ABSTRACT

Analysis of Malware and Domain Name System Traffic

Hamad Mohammed Binsalleeh

Concordia University, 2014

Malicious domains host Command and Control servers that are used to instruct in-

fected machines to perpetuate malicious activities such as sending spam, stealing creden-

tials, and launching denial of service attacks. Both static and dynamic analysis of malware

as well as monitoring Domain Name System (DNS) traffic provide valuable insight into

such malicious activities and help security experts detect and protect against many cyber

attacks.

Advanced crimeware toolkits were responsible for many recent cyber attacks. In

order to understand the inner workings of such toolkits, we present a detailed reverse en-

gineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture and

enable its mitigation. Our analysis allows us to provide a breakdown for the structure of the

Zeus botnet network messages.

In the second part of this work, we develop a framework for analyzing dynamic anal-

ysis reports of malware samples. This framework can be used to extract valuable cyber in-

telligence from the analyzed malware. The obtained intelligence helps reveal more insight

into different cyber attacks and uncovers abused domains as well as malicious infrastruc-

ture networks. Based on this framework, we develop a severity ranking system for domain

names. The system leverages the interaction between domain names and malware samples

to extract indicators for malicious behaviors or abuse actions. The system utilizes these

behavioral features on a daily basis to produce severity or abuse scores for domain names.

iii



Since our system assigns maliciousness scores that describe the level of abuse for each

analyzed domain name, it can be considered as a complementary component to existing

(binary) reputation systems, which produce long lists with no priorities.

We also developed a severity system for name servers based on passive DNS traffic.

The system leverages the domain names that reside under the authority of name servers to

extract indicators for malicious behaviors or abuse actions. It also utilizes these behavioral

features on a daily basis to dynamically produce severity or abuse scores for name servers.

Finally, we present a system to characterize and detect the payload distribution chan-

nels within passive DNS traffic. Our system observes the DNS zone activities of access

counts of each resource record type and determines payload distribution channels. Our

experiments on near real-time passive DNS traffic demonstrate that our system can detect

several resilient malicious payload distribution channels.

iv



DEDICATION

To my deceased mother who taught me invaluable lessons in life,

To my father who emphasized the importance of education,

To my wife for all of her incredible support, patient, inspiration, and love,

To my kids who have been giving me the strength through their sweet smiles,

To my brothers, and sisters who have been very supportive.

v



ACKNOWLEDGEMENTS

First and foremost, all praises to Allah for blessing, protecting and guiding me through-

out this period. I could never have accomplished this without the faith I have in Allah.

I would like to thank my supervisors Prof. Mourad Debbabi and Prof. Amr Youssef

for their indispensable and incredible guidance. Our research objectives would not have

been achieved without the professional and experienced guidance and support of my su-

pervisors. My gratefulness extends to members of the examining committee including Dr.

Olga Ormandjieva, Dr. Peter Grogono, Dr. Lingyu Wang, and Dr. Nadia Tawbi for criti-

cally evaluating my thesis and giving me valuable feedback.

My special thanks go to my fellow labmates Amine Boukhtouta, Mert Kara, Son

Dinh, Taher Azab, Elias Bou-Harb, Claude Fachkha, and Nour-Eddine Lakhdari for the

stimulating discussions, for the good moments we spent during my studies.

I would like to acknowledge the financial support from the Government of Saudi

Arabia under the scholarship of Imam Mohammed Bin Saud University, which enabled me

to undertake my PhD studies.

Last but not the least, I take this opportunity to express my profound gratitude to my

beloved parents, my wife and my two lovely daughters for their moral support and patience

during my studies. Also not forgetting my brothers and sisters for their endless love, prayers

and encouragement.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Intelligence Extraction . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 DNS Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Payload Distribution Channels . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Botnet Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 The Domain Name System . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Reputation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Botnet Reverse Engineering . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Malicious Infrastructure Analysis . . . . . . . . . . . . . . . . . . 23

2.2.3 DNS Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Payload Distribution via DNS . . . . . . . . . . . . . . . . . . . . 27

vii



3 On the Analysis of the Zeus Botnet Crimeware Toolkit 30

3.1 Description of the Zeus Crimeware Toolkit . . . . . . . . . . . . . . . . . . . . 31

3.2 Zeus Botnet Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Reverse Engineering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The Zeus Builder Program Analysis . . . . . . . . . . . . . . . . . 36

3.3.2 Zeus Bot Binary Analysis . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Packet Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Cyber Security Intelligence Extraction from Malware Analysis 51

4.1 Framework Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Malicious Networks Analysis . . . . . . . . . . . . . . . . . . . . . 56

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Statistical Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Malicious Networks Analysis . . . . . . . . . . . . . . . . . . . . . 63

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Ranking the Severity of Domain Names based on Malware Behavior 72

5.1 Severity Ranking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.2 Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Rating Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.4 Severity Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



5.3 Domain Name Severity System Evaluation . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Effectiveness of Domain Name Severity . . . . . . . . . . . . . . . 85

5.4 Ranking the Severity of Name Servers from Passive DNS . . . . . . . . . . . . 91

5.4.1 Name Server Statistical Features . . . . . . . . . . . . . . . . . . . 93

5.5 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Detection of DNS-based Malicious Payload Distribution Channels 99

6.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Query and Response Patterns . . . . . . . . . . . . . . . . . . . . . 101

6.1.2 Detection of Payload Distribution Channels . . . . . . . . . . . . . 106

6.2 Datasets Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusion and Future Work 119

7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ix



LIST OF TABLES

2.1 Examples of DNS resource records investigated throughout the thesis. . . . 16

3.1 Description of the files that are created during the bot infection. . . . . . . . 38

3.2 List of the Zeus malware commands. . . . . . . . . . . . . . . . . . . . . . 46

4.1 Example of extracted information from malware dynamic analysis reports. . 54

4.2 Statistics of the dataset used to evaluate the framework. . . . . . . . . . . . 61

4.3 Abused domains and malicious infrastructure network statistics. . . . . . . 65

4.4 Value of k at which the largest subgraph in each network of GDM represent

50%, 25%, and 10%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Group centrality for different abused domains network GDM. . . . . . . . . 67

4.6 Value of k at which the largest subgraph in each network of GDIP represent

50%, 25%, and 10%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Group centrality for different malicious infrastructure networks GDIP. . . . 68

5.1 Running example of ranking the severity of domain names: first day. . . . . 82

5.2 Running example of ranking the severity of domain names: second day. . . 82

5.3 Fast-Flux and DGA features. . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Statistics of the dataset used to evaluate the proposed approach. . . . . . . . 108

6.2 Statistics of detected domains within 30 days. . . . . . . . . . . . . . . . . 113

6.3 Detected payload distribution domains. . . . . . . . . . . . . . . . . . . . . 115

x



LIST OF FIGURES

1.1 Overview of the thesis components. . . . . . . . . . . . . . . . . . . . . . 3

1.2 Domain abuse monitoring based on major blacklists and security services

from November 2013 to February 2014 [1]. . . . . . . . . . . . . . . . . . 4

2.1 Botnet life cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 The Zeus crimeware toolkit components. . . . . . . . . . . . . . . . . . . . 32

3.2 Communication pattern of Zeus. . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Segments of the bot.exe binary file. . . . . . . . . . . . . . . . . . . . . . 39

3.4 De-obfuscated code in the virtual memory. . . . . . . . . . . . . . . . . . . 40

3.5 The 8-byte key. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 The virtual memory used by the second de-obfuscation routine. . . . . . . . 42

3.7 The result from the second de-obfuscation routine. . . . . . . . . . . . . . . 43

3.8 A decrypted sample message. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Intelligence framework overview. . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Geo-locating malicious networks. . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Example of cyber intelligence extracted using the developed framework. . . 63

4.4 Top 20 observed malware families. . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Example of KNC-plot for the abused domains network DM4. . . . . . . . . 66

4.6 Example of KNC-plot for the abused domains network DM5. . . . . . . . . 66

4.7 The nDCG@k evaluation measure values for degree and betweenness cen-

trality measures for abused domains networks GDM. . . . . . . . . . . . . . 69

4.8 The nDCG@k evaluation measure values for degree and betweenness cen-

trality measures for malicious infrastructure networks GDIP. . . . . . . . . . 70

xi



5.1 Overview of the proposed severity ranking system. . . . . . . . . . . . . . 74

5.2 Rating center functionalities. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Number of analyzed malware samples. . . . . . . . . . . . . . . . . . . . . 83

5.4 Number of observed and new domain names. . . . . . . . . . . . . . . . . 84

5.5 Distribution of the number of observed domains according to the number of

active days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 The average distribution of the extracted features. . . . . . . . . . . . . . . 86

5.7 The nDCG@10 across the dataset. . . . . . . . . . . . . . . . . . . . . . . 86

5.8 The average nDCG@k for the analyzed dataset. . . . . . . . . . . . . . . . 87

5.9 The nDCG@10 with different combinations of rating centers. . . . . . . . . 87

5.10 Effect of missing judgments on the nDCG@30. . . . . . . . . . . . . . . . 88

5.11 Distribution of behavioral features for domains with no maliciousness judg-

ments in WOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 Variation of nDCG@10 with λ . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 Base rate selection and nDCG@10. . . . . . . . . . . . . . . . . . . . . . 90

5.14 Severity score distribution for blacklisted and non-blacklisted domains. . . . 90

5.15 Abuse of the malware community in popular domains lists. . . . . . . . . . 91

6.1 Overview of proposed approach. . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Examples of query and response exchange patterns. . . . . . . . . . . . . . 102

6.3 Average number of query and response messages within a one-day window. 111

6.4 Query and response pattern distribution for observed malware families. . . . 112

6.5 Distribution of rating values of the 2707 detected domains. . . . . . . . . . 113

6.6 Access counts of Alexa and malware domain DNS records. . . . . . . . . . 114

xii



LIST OF ACRONYMS

A Address record

AAAA Internet Protocol v6 Address Record

API Application Programming Interface

AS Autonomous System

AV Anti-Virus

C&C Command and Control

CNAME Canonical NAME

DCG Discounted Cumulative Gain

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DKIM Domain Keys Identified Mail

DLL Dynamic Link Library

DNS Domain Name System

DNSBL DNS Black List

EDNS Extension mechanisms for DNS

EP Entry Point

FFSN Fast-Flux Service Network

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IDS Intrusion Detection System

IKE Internet Key Exchange

IP Internet Protocol

xiii



IRC Internet Relay Chat

ISP Internet Service Provider

IV Initialization Vector

KNC-plot K-Neighborhood Connectivity plot

LMS Longest Meaningful String

MAC Media Access Control

MAC times Modification, Access, and Creation times

MX Mail eXchange record

NAT Network Address Translation

nDCG normalized Discounted Cumulative Gain

NS Name Server

NXDOMAIN Non-existent Internet Domain Name

P2P Peer-to-Peer

PDF Probability Density Functions

PE Portable Executable

PTR Pointer record

RCE Reverse Code Engineering

RR Resource Record

RDP Remote Desktop Protocol

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SPF Sender Policy Framework

TTL Time-To-Live

TXT Text record

URL Uniform Resource Locator

xiv



WOT Web Of Trust

XML Extensible Markup Language

XOR Exclusive-OR

xv



Chapter 1

Introduction

Malicious networks are increasingly abusing Internet infrastructure to perform illicit activ-

ities. Recent studies [2] indicate that botnets are the primary platform through which cyber

criminals create global cooperative networks that are instrumental in most cyber criminal

attacks. A bot is a software robot or a malware instance that runs automatically on a com-

promised machine without being noticed by the victim user. The bot code is often written

by skilled programmers and usually supports several kinds of malicious functionalities [3]

that are instrumental in a variety of attacks and malicious activities. The term botnet, de-

rived from the word bot, is a network of bots that are controlled by an attacker called a

botmaster or botherder. A botnet is generally considered as a generic platform for online

criminal attacks which affect the Internet economy [4].

The alarming increase in the power of botnets and their infectious effects have turned

botnets into one of the biggest threats to Internet security [5]. Currently, botnets are con-

sidered as the main cause of most Internet attacks and malicious activities. Although the

existence of botnets has been noticed for a long time, it is the recent growth of cyber crimes,

which are mediated by botnets, that has attracted the attention of IT security researchers.

Botnets are normally used to distribute malware and other harmful software. According

1



to a recent report [6], one botnet illegally installed adware on hundreds of thousands of

computers in the U.S., including some belonging to the military.

Most of the botnets are designed to steal sensitive information (e.g., identities, credit

card numbers, passwords, or product keys) from a victim’s local machine. This can be

achieved by employing keyloggers and screen capturing utilities. In 2013, the FBI reported

that 10 members of an international cyber crime ring were arrested for using botnets to steal

more than $850 million after obtaining personal financial information from compromised

computers [7].

Advanced crimeware toolkits were responsible for many recent cyber attacks. These

crimeware toolkits were behind more than 60% of the malicious domains as reported by

Symantec [8]. In order to understand the inner workings of such toolkits, we present a

detailed reverse engineering analysis of the Zeus crimeware toolkit to unveil its underlying

architecture and enable its mitigation. Our analysis allows us to provide a breakdown for

the structure of the Zeus botnet network messages.

In addition to analyzing malware samples, monitoring the Domain Name System

(DNS) traffic also provides valuable insight into such malicious activities and helps security

experts detect and protect against many cyber attacks. Since the DNS is a core component

of Internet activities, it has been increasingly abused by malicious networks to operate

different activities. For instance, malicious domains host Command and Control (C&C)

servers that are used to instruct infected machines to perpetrate malicious activities, such

as sending spam, stealing credentials, and launching Distributed Denial of Service (DDoS)

attacks. Moreover, malicious domains may serve as repositories of stolen credentials [9],

hacked software [10], and attack payloads [11].

In this thesis, we study the problem of DNS abuse by utilizing malware analysis and

monitoring the DNS traffic. The proposed solutions can be employed to investigate different

2



Malware Dynamic 
Analysis Reports

Domain Name Name Server

Reputation

Passive DNS 
Traffic

Malicious Cyber 
Infrastructures

Reverse 
Engineering

Analysis

Invistigation

Payload Distribution Channels

Cy
be

r T
hr

ea
t I

nt
el

lig
en

ce

Figure 1.1: Overview of the thesis components.

cyber crime attacks and provide insightful intelligence, recommendations, and malicious-

ness indicators. As depicted in Figure 1.1, the analysis of DNS abuse starts by building a

framework that extracts insights into malicious networks from the dynamic malware analy-

sis reports. This framework can help investigators to collect preliminary information about

different cyber attack incidents and then guide them in shaping the investigation process.

A typical investigation starts by collecting simple statistics such as active malware families

and most abused Internet Service Providers (ISPs). In addition, an investigator may be in-

terested in discovering the structure of the suspicious networks, which can be achieved by

our framework by applying network analysis techniques. Furthermore, our framework pro-

vides geolocation information about compromised machines in order to gain deeper insight

into targeted attacks.

DNS abuse incidents are increasing dramatically as reported by Architelos (see Fig-

ure 1.2) [1]. Security professionals adopt domain name blacklisting, which is regarded as

one of the basic defense lines against DNS abuses. However, domain blacklists are growing

3



progressively limited and ineffective in fighting the ever increasing number of malicious do-

main names appearing every day. To overcome this problem, blacklisting approaches must

provide more information about each blacklisted domain in order to facilitate and prioritize

the investigation process. Blacklisting can be extended to include detailed maliciousness

indicators to focus on specific types of attacks while dealing with cyber attacks. To achieve

this in our thesis, we apply a statistical reputation system to generate severity scores for

domain names.

Figure 1.2: Domain abuse monitoring based on major blacklists and security services from
November 2013 to February 2014 [1].

Name servers play an important role in the DNS infrastructure to provide the neces-

sary information about domain names. In recent times, authoritative name servers have been

abused to amplify DDoS attacks toward different victims [12]. Moreover, cyber criminals

host their malicious domains on bulletproof name servers equipped with various techniques,

which impede takedown operations [13]. In fact, the abuse of name servers has increased

by advanced techniques requiring the control over name servers. To tackle this problem,

reputation systems can be built around name servers to fight the root cause of malicious

domains and minimize their hosting power. On the other hand, name servers have been

abused to distribute malicious payload to compromised machines. Malware families such

4



as Morto [14], Katusha [15], and Feederbot [16] have been identified as using the DNS pro-

tocol to hide their communications. As a countermeasure, we propose a solution to identify

the malicious name servers that serve payload distribution domains.

The rest of the chapter is organized as follows: Section 1.1 presents the motivation

and problem statement. Section 1.2 lists the contributions of the thesis. The structure of the

thesis is given in Section 1.3.

1.1 Motivation and Problem Description

In this section, we briefly discuss the motivations of the current study and identify the

challenges faced by the security community in analyzing malicious networks.

1.1.1 Intelligence Extraction

One of the basic defense lines against cyber attacks is analyzing malware binary samples

statically and/or dynamically to understand their behavior and thence develop detection

mechanisms. However, the tremendous number of malware variants for the same malware

family is severely affecting the utilization of the extracted information from the analysis.

For example, Mcafee reported more than 100,000 new malware samples every day in the

year of 2012 [17]. Since the number of malware samples is rapidly growing, the dynamic

analysis reports produce huge amounts of valuable information that need to be utilized

effectively for further analysis.

1.1.2 DNS Reputation

Domain name blacklisting is one of the basic defense lines against DNS abuses. Throughout

past years, several improvements were introduced to blacklisting in order to overcome some

5



of the weaknesses in responsiveness and completeness [18]. Blacklists suffer from high

false negative rates and false positive rates [19]. Furthermore, cyber criminals are utilizing

the power of their zombie machines to operate short-lived domains, which dramatically

increase the size of blacklists. For instance, the Confiker.C malware family used about

50,000 domains per day [20]. This behavior overwhelms takedown operations with a large

number of malicious domain names.

In addition, DNS has been abused by cyber criminals with techniques that require

more control over name servers to be implemented effectively. Cyber criminals have begun

to use agile behaviors that result in a tremendous number of short-lived domains, which

are used for malicious purposes for a certain period and then disposed. For example, some

botnets (e.g., Torbig [21], Karken [22]) employed Domain Generation Algorithms (DGA)

to periodically create and register domain names that point to the botnet infrastructure.

On the other hand, malicious networks usually operate on compromised machines, which

suffer from availability problems. Consequently, botmasters adopted the load balancing

technique, known as Fast-Flux [23], in utilizing these compromised machines for malicious

activities. Such behaviors usually rely upon frequent updates on the authoritative name

servers, which are responsible for managing the malicious domains. Despite the fact that

DNS abuse has been known for a long time, it remains as one of the greatest challenges in

fighting cyber crime.

1.1.3 Payload Distribution Channels

A common approach to bypass network defense borders involves tunneling the communica-

tion through existing protocols. Such tunneling can effectively defeat traditional firewalls

and Intrusion Detection Systems (IDS). Malicious network operators (botmasters) often

6



prefer tunneling to keep their communications under the radar. In the early stages of bot-

nets, botmasters mostly used Internet Relay Chat (IRC) channels (e.g., Agobot) to operate

and control their activities. The advancement of newer protocols such as Session Initiation

Protocol (SIP), Peer-to-Peer (P2P), and Hyper Text Transfer Protocol (HTTP) has rendered

the use of IRC channels obsolete [15]; see e.g., Zeus [24] (HTTP-based), Storm [25] (P2P-

based). As a natural extension to exploiting common protocols for tunneling, DNS comes

into play due to its wide availability. DNS is a query-response protocol, which responds

to each query with the corresponding pre-defined resource record. The simple but robust

architecture of DNS at times attracts botnets to abuse the system for different malicious ac-

tivities [26, 27, 28, 16]. Botmasters take advantage of DNS tunneling to conduct malicious

activities such as C&C or payload distribution. For example, in payload distribution chan-

nels, botmasters use DNS query and response packets to carry out malicious instructions

and payload updates to individual bots. Malware families such as Morto [14], Katusha [15],

and Feederbot [16] have recently been identified as using the DNS protocol to hide their

communications.

Compared to other protocols, the inherent nature of DNS renders the protocol quite

inefficient as a payload distribution channel [29]. On the other hand, DNS is widely avail-

able, which explains the recent exploitation of DNS as an attack channel despite the narrow

transmission bandwidth. However, in comparison to P2P botnets [25], DNS abuse by mal-

ware has not been comprehensively studied thus far, and previous work on DNS abuse

mainly focused on specific malware families (e.g., [16]).

1.1.4 Objectives

Our main objective is to generate timely, relevant and actionable cyber threat intelligence.

This can be achieved by:

7



• Understanding most prominent threats to extend the knowledge about malware inner

workings, behaviors and enabling techniques and technologies.

• Deriving cyber threat intelligence from malware analysis to reveal more insights

about different cyber attacks.

• Analyzing the severity of domain names and name servers to overcome problems as-

sociated with traditional blacklisting approaches, one must provide more information

about each blacklisted domain in order to facilitate and prioritize the investigation

process.

• Investigating the malicious use of DNS to transport payload.

1.2 Contributions

We have developed a set of methods to address the objectives mentioned above. Our con-

tributions can be summarized as follows:

Reverse engineering of one of the most prominent crimeware toolkits: We analyze one

of the famous crimeware toolkits by reverse engineering techniques. More precisely, we

present a detailed reverse engineering analysis of the Zeus crimeware toolkit to unveil its

secrets and enable its mitigation.

Design and implementation of a framework to investigate abused domains and mali-

cious infrastructure networks: We propose a framework that extracts intelligence from

the dynamic malware analysis reports. We design and implement our framework based on

a live daily feed of dynamic malware analysis reports, which contains an average of 6000

reports per day. Our framework has been used to investigate the abused domains as well as

the malicious infrastructure network [30].

8



Design and implementation of a dynamic severity system that ranks domain names:

We propose a dynamic severity system that ranks domain names by observing malware

behavioral features in a controlled environment, which reveals the level of abuse of the

observed domains by malware samples. The obtained behavioral features help to uncover

malicious domains and assign dynamic severity scores to them. We design and implement

a proof-of-concept for our system and evaluate it using a 10-month malware dataset, where

we analyzed more than 14 million malware reports. This extensive real-world evaluation

confirms that our system can assign a high severity score to malicious domain names.

Design and implementation of a dynamic severity system that ranks name servers:

In general, malicious networks tend to reuse their resources, such as source code [31] and

network infrastructure [32], to launch different attacks. When an important element of a

malicious network, such as name server, has been taken down, the activities of that specific

network is negatively affected. We propose a dynamic reputation system that ranks the

severity of name servers. Some statistical features help to uncover malicious domains and

then assign dynamic reputation scores for the observed name servers. We extend the domain

name reputation system to observe domain features from DNS traffic that reveal various

types of abuse.

Investigation of payload distribution channels in DNS traffic: In order to investigate the

abuse of DNS for payload distribution, we present a comprehensive analysis of malicious

payload distribution channels using a 1-year malware dataset covering Jan.-Dec. 2012.

Our study reveals the effectiveness of distributing payload over DNS by malware instances.

In addition, we also introduce a detection solution for payload distribution channels using

passive DNS traffic by utilizing the access counts of resource records. The evaluation of

the proposed method was conducted on near real-time passive DNS traffic over a 30-day

period provided by Farsight Security Inc. [33].

9



The work in this thesis was published in [34, 35, 36]. In addition, other work, which

was executed during this PhD, but not included in the thesis, appeared in [37, 38, 39, 40, 30].

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of the

necessary knowledge required throughout our work. In addition, it provides a discussion

on the current literature about the subjects that are related to the problems addressed in

this thesis. Chapter 3 describes a detailed reverse engineering analysis of the Zeus crime-

ware toolkit. Chapter 4 proposes the intelligence extraction framework built based on the

dynamic malware reports. Chapter 5 introduces a new severity system for domain names

that produce domain ranking scores. Chapter 6 defines the payload distribution detection

mechanism. Chapter 7 concludes the thesis and identifies directions for future research.

10



Chapter 2

Background and Related Work

2.1 Background

In this section, we review some of the required concepts that are used throughout our thesis.

This section is organized as follows. Section 2.1.1 reviews the basic information about

botnets, while Section 2.1.2 provides the required knowledge about DNS. Section 2.1.3

presents details about reputation systems.

2.1.1 Botnet Overview

A bot typically uses a combination of existing advanced malware victimizing. For example,

a bot can use keylogger and rootkit techniques. Analogous to worms, a bot has the potential

capability of increasing its size and propagating over the Internet. It can also spread by

employing existing social engineering techniques and systems, such as instant messaging

and email communication systems. Bots have recently adopted phishing techniques to trick

victims into downloading specified malware [41]. As a result of these multiple propagation

vectors, the attacker obtains control over many victim machines within a short time span.

The regular size of most botnets currently ranges from tens to hundreds of thousands of bots,

11



including exceptionally large botnets comprised of several millions of bots [42]. Compared

to other intrusion systems, botnets are distinct in two ways: first, bots are goal-directed,

with the purpose of most attacks (such as spamming and DDoS attacks) focusing on the

gain of financial profits [43]; second, the botmaster (the owner of botnet) can interact with

his/her bots via C&C servers.

Botnet Life Cycle

As depicted in Figure 2.1, the life cycle of a typical botnet begins with an ordinary per-

sonal computer that is initially infected by certain propagation vectors. The infected system

first launches malicious activities locally, followed by attempts to communicate with the

botnet infrastructure. From the botnet infrastructure, the infected machine will have an op-

portunity to update itself with the latest malware binaries. The acquired binaries instruct

the infected system to communicate with the rest of the botnet infrastructure in addition to

other modules. In general, the infected system is directed to download the updates through

a variety of protocols used for file transfer such as File Transfer Protocol (FTP) and HTTP.

At a specific point in time, the botmaster tries to instruct its botnet infrastructure (C&C)

with all the necessary information to launch an attack. After a successful attack, the botnet

may lose some of its systems due to the presence of detection and mitigation systems inside

the networks. To fill the gap, the botnet attempts to recruit more systems to be used in future

attacks.

Bot Propagation and Infection Techniques

To avoid being detected by various deployed detection systems, bots are designed in a

specific way that enables them to change their propagation mechanisms over time. For

instance, an infected bot may apply scanning to all possible ranges of IP space for computers

12



Updated

Exploited

Became a
member of the

botnet

Quit

Execute
commands

Get payload
module

Listen to C&C /
Peer

Report results

Vulnerable  Host 

Command

Figure 2.1: Botnet life cycle.

running exploitable services. These exploitable services allow the previous infected hosts

to inject a small amount of shellcode into the victim machine. Unlike worms, botnets are

difficult to be classified on the mere basis of their scanning techniques. Botnets are adopting

such behaviors, and the existence of a human controller (botmaster) allows them to cause

more targeted attacks while maintaining a high level of stealth.

With the development of more sophisticated protection and detection techniques, the

method of botnet attacks is now more similar to that of a Trojan horse. Trojans trick victims

into installing malware under the false belief that the malware is useful and beneficial soft-

ware. Similarly, bot infection spreads by transmitting binaries as email attachments. Once

received, the naive user may open malware executables and thus become infected. These

infection scenarios are comparatively less alarming, as they require some action on the part

of a user for the completion of the infection cycle. Another effective infection technique,

13



known as web drive-by downloads, involves the user visiting a web site that can exploit

targeted web browsers and thus infect the user’s system. In addition, P2P file sharing tech-

nologies are successfully exploited by botmasters to distribute malware binaries.

Botnet C&C Architecture

Every new generation of bots introduces itself by exploring different C&C techniques

through which bots can be updated and directed by the botmaster, who can use different

kinds of C&C mechanisms in terms of communication protocols and network structures. A

good choice for attackers would be to employ the IRC protocol, which is now widely used.

HTTP would be another good choice, as it hinders the detection process since HTTP traffic

is for the most part allowed in network policies. More advanced botnets do not rely on

centralized C&C mechanisms and are instead using distributed control techniques to avoid

the single point of failure problem, such as the usage of peer-to-peer networks to organize

and control botnets more consistently [44, 25, 45, 46].

Botnet Reverse Engineering

Reverse Code Engineering (RCE) is the process of analyzing the disassembly of an exe-

cutable with the purpose of recreating the actual source code, or a pseudo-code represen-

tation of the executable’s behavior. The RCE can disclose every decision taken as well as

every algorithm used in a program, but the process can be very time consuming. Com-

pilation of an executable will strip most of the meaningful information from comments,

variable names, and so forth. Furthermore, the use of optimization by compilers will also

diffuse the structure of the disassembly compared to the source code. For this reason, RCE

is often used as an addition to the behavioral analysis by investigating only the interesting

sections of the disassembly. These sections can be found, for example, by looking for the

14



use of strings appearing in the bot’s network communication or by finding sections where

Application Programming Interface (API) calls are made behind some interesting behavior.

Debugging software is the process of running the code with a debugger attached, per-

mitting the use of breakpoints and variable inspection at any point in the code. Debugging

is a very helpful addition to inspect the disassembly. It provides good clues to implementa-

tions of functions, if the actual input and output to the functions are traced.

2.1.2 The Domain Name System

The DNS protocol is designed to play as a translation service for the Internet infrastructure.

The protocol receives a query for a specific Resource Record (RR), which describes the

characteristics of a domain, and then responds with the corresponding answer based on a

zone file. A zone file defines the services running under a particular domain. A domain

name usually has multiple resource records dedicated for different purposes. These records

consist of five main components: name, class, type, time-to-live (TTL), and data. The

resource record name is a Fully Qualified Domain Name (FQDN) that consists of several

labels. The right-most label is the top-level domain, and each label represents a level within

the DNS hierarchy. The label that comes after the top-level domain represents the second-

level domain, unless it is used as a sub-zone of a top-level domain, e.g., co.uk. Any label

that comes after the second-level domain is considered as a sub-domain of the second-level

domain. These sub-domains are defined and mapped to the corresponding resource record

in the zone file. In some cases, a wildcard can be used to return the same resource record

for any sub-domain [47]. A sub-domain can be set up to have its own zone file with a

dedicated name server. In this case, the name server of the second-level domain delegates

queries to the name server of the sub-domain. This technique is called zone delegation

and is often used for easing the management of different sub-zones under a domain [48].

15



The length of a resource record name cannot exceed 256 bytes and each label length is

limited to 63 bytes [49]. The resource record class defines name spaces that are used for

different purposes within the DNS protocol. The resource record type indicates the type

of information carried by the DNS message. In Table 2.1, we list some of the resource

record types used in our work. The TTL value is a time period used by DNS servers to

determine how long to cache the response before discarding it. The resource record data is

the response information assigned to a resource record name.

The main actors within the DNS system architecture are the Name Servers (NSs).

These servers are authorized to provide information about a set of domain names. Each

server is aware of other name servers according to the hierarchy of DNS. The right-most

label of any query corresponds to the top-level domain within the hierarchy. Therefore,

when a query is made, the first query goes to one of the root name servers, which returns

the address of the name server of the top-level domain. The query traverses the hierarchy

until it reaches the name server of the second-level domain to receive the requested resource

record.

Resource Record (RR) type Description
Address record (A)/ IPv6 address record (AAAA) IPv4/IPv6 address
Name Server (NS) record Authoritative name server
Mail Exchange (MX) record Mail server
Text (TXT) record Text information associated with a

name
Canonical Name (CNAME) record Canonical name or an alias name

Table 2.1: Examples of DNS resource records investigated throughout the thesis.

Passive DNS

Passive DNS is a technique that replicates DNS activities in order to investigate the DNS

traffic in near real-time. The inconsistency between Address record (A) and Pointer record

16



(PTR) [50], which is caused by dynamic IP addresses, requires a technique to track changes

to resource records. Therefore, passive DNS is introduced to establish a real-time replica-

tion mechanism [50]. It is designed to be deployed on a local DNS resolver to observe the

DNS traffic. For instance, this historical database is used to retrieve reversed queries about

domain names to gain intelligence information.

Payload Distribution via DNS Hierarchy

In this section, we outline key differences between DNS tunneling and payload distribution

channels. We then discuss the use of these channels both for legitimate and malicious

purposes.

Recently, DNS became a target to distribute malicious payloads for two main reasons.

First, DNS traffic is often allowed to pass through corporate networks without inspection, as

it is considered to be a core element of Internet activities. Second, DNS protocol contains

certain fields that are defined to be more flexible, which opens the doors for other unin-

tended uses. Malicious payload can be stored in different resource records (e.g., NULL,

TXT, or CNAME). Distributed data can be managed by TTL record for caching purposes.

In addition, the labels within the resource record name can be used to store Base32 en-

coded data. RFC 1464 paved the way for payload distribution by opening the possibility

of storing arbitrary information within DNS messages [51]. However, it recommends stor-

ing key-value pairs to pass only some operational data between servers. The feasibility of

using DNS resource records to distribute payload has been proven by the DNS tunneling

technique, which shows that DNS can be used for transmitting any type of information af-

ter simple encoding operations. However, attackers face some limitations due to the low

data transmission rate through resource records. In general, payload distribution channels

operate similarly to the DNS tunneling technique [29].

17



Payload distribution through DNS is a relatively new concept and has a very limited

number of legitimate uses. Some organizations have been inspired by the evolution of DNS

tunneling, and have begun to use DNS as a means to channel part of their operational data

to enhance their systems.

Legitimate Use Cases: In 2007, Trend-Micro Inc. proposed a method to distribute mali-

cious code signature updates through the DNS protocol [52]. The intention of this technique

is to feed Anti-Virus (AV) software clients with signature updates through DNS as an al-

ternative update mechanism. The signature updates are divided into several chunks, which

can be identified by an identifier number. These pieces are encoded with Base64 and as-

signed to the zone file as TXT resource records of a specific domain name. When the client

requires an update of a malicious code signature, it sends a query with an identifier num-

ber of the signature as the FQDN label. The server then responds with the corresponding

AV signature in TXT records. In general, each signature update can span over many TXT

records, which makes the client generate many queries to retrieve all the pieces necessary

to complete the whole update. Finally, the client combines all TXT records and then forms

the actual update of the malicious code signature.

In 2009, Devicescape Software Inc. introduced a methodology of a public hotspot

authentication system for mobile devices [53]. In their model, there are sets of public

WiFi hotspots placed across various locations, such as coffee shops and restaurants. The

authentication system for these hotspots is managed through a centralized scheme. The

DNS protocol is used as a channel to transfer authentication parameters between mobile

devices and a credential server. The client prepares a DNS query, which consists of six sub-

domain labels to carry different parameters, e.g., the Media Access Control (MAC) address

of the client’s machine. When the name server receives the query, it forwards the parameters

embedded in these labels to the back-end credential server. Based on the parameters, the

18



credential server prepares the corresponding credentials to be transported back to the client.

Finally, the client verifies the response and then submits it to the authentication server in

the local hotspot network.

Malicious Use Cases: The crucial component of any malicious network is the control and

communication method within the network. DNS has been used by malicious networks for

updating clients with recent payload data (i.e., module updates, command instruction). In

2011, Dietrich et al. [16] reverse engineered the Feederbot botnet that uses DNS as a C&C

channel. Another example of abuse of the DNS protocol is the Morto worm [14] that uses

DNS TXT records to transmit a single piece of information that can fit in one packet to the

client bot. The embedded information is a Uniform Resource Locator (URL) that points to

the real attack payload as explained by Symantec [14].

2.1.3 Reputation Systems

In information retrieval, reputation is a type of collective measure for satisfaction based on

member ratings in a given community. Reputation is considered a soft security mechanism

that has been integrated successfully in many applications [54]. There are many reputation

models proposed in the literature to address issues such as trust, quality of service, and se-

curity [55]. The main components of any reputation system are participants, rating centers,

and reputation engine. Since ratings are the basic input for reputation systems, the col-

lection of ratings from participants depends on the nature of the application. For instance,

centralized applications require dedicated rating centers to collect ratings to be used by the

reputation engine. On the other hand, distributed applications require the ratings to be kept

by participants and each individual responsible for deriving any reputation score.

Reputation engines are the main component of integrating the rating values to reflect

the participants’ opinions. Based on the format of rating values, reputation engines can

19



vary from one to another. For example, a user’s preference can be represented in either

binary or multinomial format. The binary format reflects the amount of negative and pos-

itive opinions, while the multinomial format provides more descriptive information about

the opinions. There are many models proposed in the literature to address different require-

ments as discussed in [55]. The model used throughout our work is based on the Bayesian

system, which computes the reputation scores by statistical update of Dirichlet multinomial

probability density functions (PDF) [56]. The Dirichlet system adopts flexible multinomial

rating possibilities, which enable the participant to reflect detailed subjective opinions.

Reputation System Evaluation

In order to measure the effectiveness of any reputation system, we must evaluate the result-

ing scores against known judgments from public or third party knowledge. Effectiveness

measures differ based on the results of the evaluated reputation system, which can be or-

dered or unordered sets. In our case, there is a ranked set of objects which are ordered

based on the opinions of the participants. Another parameter to choose the right measure is

the nature of the public judgments used in the evaluation. Public knowledge can be repre-

sented as binary (e.g., Good or Bad) or graded notion. The graded notion is normally used

to quantify the level of importance among the other rated objects. In general, one proper

evaluation measure that can be used to measure the effectiveness of graded notion is the

Discounted Cumulative Gain (DCG) [57]. The DCG accumulates the gain starting at the

top of a ranked list of length n and then discounts the gain at lower ranks. More precisely,

DCG is defined as:

DCG = rank1 +
n

∑
j=2

rank j

log2 j
(2.1)

where rank j is the graded ranking level of an object at rank j, and log2 j is a reduction

20



factor for the gain. The DCG is normalized (nDCG) by the ideal DCG value, which reflects

the perfect ranking [57]. The normalized form of DCG is defined as:

nDCG =
DCGs

DCGr
(2.2)

where DCGs and DCGr denote the DCG values for the evaluated system and the

reference knowledge, respectively. When there is a large number of objects to evaluate, it

is more practical to evaluate the quality of the top ranked list, which holds the important

objects among the others. The nDCG truncated at kth position is denoted as nDCG@k.

2.2 Related Work

In this section, we present a review of state-of-the-art techniques developed in the areas of

detection and mitigation of different types of DNS abuse.

This section is organized as follows. In Section 2.2.1, we discuss some previous

works in the area of reverse engineering. Section 2.2.2 reviews the latest works that explore

malicious infrastructures. Section 2.2.3 presents the efforts to fight different DNS abuses. In

Section 2.2.4, we give an overview of the related works in analyzing the payload distribution

through DNS.

2.2.1 Botnet Reverse Engineering

Bot reverse engineering can be considered as one of the primary factors that feed the learn-

ing curve about the underground community. Valuable information can be obtained by

analyzing malware binaries, network traces, and infected system behavior. In the botnet

literature, researchers provided case studies of famous botnet variants. Their studies aimed

to gain knowledge about botnet behaviors and develop some methods to evade them. There

21



are three main categories of botnets based on their C&C architecture: IRC, HTTP, and P2P.

For IRC botnets, [3] evaluated four different instances of IRC botnets. This comprehen-

sive study reveals a great deal of knowledge about botnet capabilities in controlling the

infected system, C&C, propagation, attacks, updates delivery, obfuscation, and deception

mechanisms. Throughout their work, they determine possible infection interactions of IRC

botnets and their command strings.

With the rise of HTTP botnets, researchers studied a few instances to understand

the inner details of these new botnet behaviors. Nazario [58] introduced one of the first

HTTP botnet analysis studies about BlackEnergy, which is known as a web-based bot tool.

This analysis provided the research community with complete information about the bot-

net architecture, commands, and communication patterns. Like any web-based bot tool,

there was a PHP based C&C which collects statistics about the botnet, and the bot binaries

were built by a customizable malware builder program. The main threat behind this botnet

was DDoS, but no significant attacks have been noticed. Another analysis was presented

by Chiang and Lloyd [59] for Rustock rootkit, which contains a spam bot module. They no-

ticed from the network traces that the communication was encrypted by the RC4 algorithm,

which makes it difficult to be detected by detection systems. Moreover, the rootkits and

the multiple levels of obfuscation further complicated the detection process by traditional

AV systems. Generally, this rootkit was used mainly for spamming purposes, which can

be updated through C&C servers. In their analysis, they were able to extract the encryp-

tion key of the C&C communication patterns. HTTP-based botnets were recently involved

in many click frauds. One of the famous botnets responsible for click fraud attacks is the

Clickbot.A. Daswani and Stoppelman [60] presented a detailed case study about clickbot.A

which reveals new techniques for click fraud activities. Their analysis uncovered the main

components of this botnet and their management techniques, commands, and configuration.

22



Botnet herders clearly realized the challenges to hide their existence with centralized

control approaches. As a consequence, they shifted to decentralized techniques, P2P com-

munication protocol, which provided them with huge scalability and led them to become

more resilient against traditional detection and tracking techniques. Recent contributions

aim to understand and analyze the existing P2P based botnet instances. For example, Porras

et al. [61] reverse engineered the Storm botnet variant to uncover its capabilities to control

bots and hide binary distribution as well as its obfuscation techniques. From their analysis,

the Storm botnet manages its C&C communication by the Overnet protocol with various

customized communication patterns. Generally, the Storm botnet is used for sending spam

and has capabilities for DDoS attacks. From another perspective, Holz et al. [25] and Griz-

zard et al. [44] reported on the Storm botnet by exploring the encryption key generation

algorithm that is used by each Storm variant to establish secure communication with other

peers in the botnet.

Another example of P2P-based botnets is Nugache [62], which controls its army by

a customized P2P protocol architecture. Dittrich and Dietrich [63] reported information

about their analysis for the Nugache instance. They analyzed the communication patterns,

which involved the key exchange process (Rijndael algorithm) to encrypt the C&C com-

munications. Using an encrypted P2P network, the botherder instructs the botnet to listen

to a specific IRC channel for DDoS commands. Nugache was later updated to use P2P net-

works for all its communications. Again, Dittrich and Dietrich [64] addressed extra aspects

of analysis and investigated the size estimation of the Nugache botnet using a customized

bot client crawler.

23



2.2.2 Malicious Infrastructure Analysis

Within an interactive community, there are many relationships that can be leveraged to

gain insightful knowledge about the nature of the community. Malicious network com-

munities have been explored from different perspectives. For instance, criminal network

infrastructures can be discovered by monitoring the DNS traffic, spam emails, or URLs. Re-

cently, Konte et al. [65] investigated the use of dynamic changes for Fast-Flux networks and

their role to characterize the hosting infrastructure for different online scam campaigns. Na-

garaja et al. [66] extracted P2P botnet communities from network traces by modeling the

interaction information between peers as a communication graph. Invernizzi et al. [67] pro-

posed an approach to identify malicious download attempts in large-scale networks. The

suspicious downloads that exhibit similar behavior aggregated to construct different mali-

cious neighborhood graphs, which can be used to recognize various malware distribution

infrastructures. Nadji et al. [68] constructed criminal networks by correlating the passive

DNS and several indicators for malicious activities. Using a graph-based approach, they

identify criminal communities and study their structural properties. They identified the

critical nodes to take down the network by utilizing the eigenvector centrality.

In addition to exploring the relation between domain names and IP addresses to un-

cover malicious infrastructures, our work differs from previous works by investigating the

interaction between malware samples and domain names to understand the level of mali-

cious abuse.

2.2.3 DNS Reputation

Domain name blacklisting is one of the oldest and most effective techniques to fight cyber

criminal activities and track the abuse of DNS. Most of the current blacklisting services

are based on two approaches to collect malicious IP addresses or domain names. The first

24



approach is based on collecting IP addresses and domain names from complaints or abuse

reports by victims [69]. The other approach utilizes the behavioral analysis of DNS traffic

based on finding evidence of malicious activities [70, 71, 72].

Dietrich and Rossow [73] studied the effectiveness of various IP blacklists and re-

ported the need for dynamic blacklisting for optimization purposes. Zhang et al. [74] in-

troduced dynamic domain blacklisting by cross-correlating DShield [75] attack log files

from different providers. They build relevant IP blacklists for each data provider as well as

attack severity scores based on frequencies of accessing pre-defined ports. The relevance

concept has been improved by Soldo et al. [76] using recommendation systems to predict

attack sources. As a proactive solution, Felegyhazi et al. [77] use domain name registra-

tions to infer sets of malicious, not-yet-blacklisted domains based on initial seed domain

names. Similarly, Sato et al. [78] extended blacklists by studying the co-occurrence of

DNS queries with known blacklisted domains. Recently, Antonakakis et al. [79] presented

Notos, a dynamic reputation system for domain names using behavioral features from pas-

sive DNS traffic. Similarly, Bilge et al. [80] introduced EXPOSURE, a system to detect

malicious domain names involved in malicious activities. Both Notos and EXPOSURE

extract their evidence from passive DNS datasets and then apply data mining algorithms

to calculate domain reputation. In order to keep up with the fast growing number of mali-

cious domains, KOPIS [81] has been proposed to extend and detect new related malicious

domains by observing DNS patterns from the upper DNS hierarchy. Recently, GZA [82]

used game theory during the dynamic analysis of malware instances to reveal its alternative

domains. These studies focused on the construction or the extension of blacklists. How-

ever, there is no work on dynamically evaluating the level of maliciousness of the abused

domains included in these blacklists. Certain works use the knowledge of blacklists to con-

struct group reputations. For instance, Stone-Gross et al. [83] address the identification

25



of rogue networks by checking the presence of a large number of long-lived, misbehaving

hosts within three different sources of malicious activities. Similarly, Kalafut et al. [84]

show the possibility to derive the reputation of ISP networks by combining different exist-

ing public blacklists. Collins et al. [85] use the fact that malicious networks tend to abuse

weakly protected networks. Based on this observation, they defined a network based qual-

ity uncleanliness indicator to quantify the existence of malicious hosts. Roveta et al. [86]

presented a visualization tool to explore the behavioral pattern inside rogue AS in order to

facilitate the identification of malicious events.

The Fast-Flux technique has captured the attention of many researchers to study and

analyze botnets that are using this mechanism. For example, Holz et al. [87] introduced a

complete study and analysis of Fast-Flux Service Networks (FFSNs) that are used by spam-

ming botnets. They presented different metrics, which can be used to identify malicious

fast-flux activities. Furthermore, they studied the characteristics of FFSNs and developed

detection algorithms that first extract URL links inside spam emails and then, using a linear

classifier, identify FFSNs based on the number of unique IP addresses in DNS queries, the

number of unique Autonomous System (AS) [88] numbers of those IP addresses, and the

number of NS records in a single lookup. In another work, Nazario and Holz [89] continued

the analysis with live network traces, which reveal botnet memberships and domain names.

They extended the heuristic features of FFSNs that are used by botnets. Passerini et al. [90]

introduced a set of features to characterize FFSNs. Their approach, called FluXOR, collects

suspected domain names from different sources, monitors their DNS response messages

over specific periods of time, and then uses a trained naïve Bayesian classifier to classify

these domain names as either benign or malicious FFSNs. Similarly, Caglayan et al. [91]

presented a distributed architecture of web services to detect FFSNs activities using active

and passive monitoring of DNS properties.

26



DGA was recently introduced by botnets to add another layer of DNS abuse. In-

fected machines use DGA to periodically generate domain name lists and then reach the

botnet infrastructure. Stone-Gross et al. [21] reported the experience of such botnets by

over-controlling the Torbig botnet by reverse engineering the DGA algorithm. Bilge et al.

[80] captured DGA domains by observing some behavioral features from the passive DNS

traffic. Domains that are generated by DGA may not always be registered by the botmasters

for different reasons. Pleiades [26] has been proposed to utilize this behavior by observing

Non-existent Internet Domain Name (NXDOMAIN) DNS response messages. Domains

with NXDOMAIN responses were inspected against certain statistical features to detect

C&C servers and cluster botnets.

Unlike previous works on reputation systems, we do not only detect malicious domain

names; rather, we are proposing a dynamic scoring mechanism for evaluating the severity

and the maliciousness of each domain and name server.

2.2.4 Payload Distribution via DNS

The use of DNS as a communication medium for payload distribution is relatively new and

research activities on this topic are limited. Although these studies are scattered, they can

be roughly grouped under four categories: the malicious channels in DNS protocol, the

feasibility of using DNS in malicious activities, the detection of DNS tunnels, and using

DNS traffic for detecting other malicious activities.

Malicious Channels in DNS Protocol: Dietrich et al. [16] are the first to discuss the ex-

istence of botnets that tunnel the C&C channels through DNS. They discovered a malware

family Feederbot that exfiltrates data within DNS query sub-domain labels and infiltrates

the attack payloads in DNS response packets. Their detection method introduces the ex-

traction of several features from the response data. While their work showed promising

27



results, it is limited to the detection of aggressive DNS tunnels for C&C channels. Malware

families are using more resilient methods for receiving the attack payloads through DNS

rather than DNS tunneling [14]. Furthermore, their work focused on the assumption that

there will be a certain degree of traffic, while our analysis showed that some families use

the DNS to receive a very limited amount of payload, such as the Morto family. Moreover,

we found that malware might not receive Base32 or Base64 encoded payload, but rather

clear text in TXT records.

Feasibility of using DNS for Malicious Activities: Xu et al. [92] introduced a resilient

mechanism for bots to create covert channels through DNS for C&C communications. They

designed a stealthy C&C that supports two different modes. The Codeword mode creates

a uni-directional communication channel that pulls the attack payload. The tunneled mode

creates a bi-directional communication channel between bots and the C&C server. They

also mentioned techniques to increase the stealth of these channels to make these queries

virtually undetectable from the host perspective. In fact, during our analysis in passive

DNS and malware datasets, we found that their proposed methods are already used by some

malware families, such as Feederbot [16] and Morto [14]. While their technique can easily

defeat host-based detection mechanisms, we are able to detect these malicious channels in

passive DNS traffic. We also discovered that malware families using bi-directional channels

are often easily detected due to extensive traffic. Similarly, Raman et al. [93] proposed

a network penetration technique that uses DNS tunneling to infiltrate the attack payload.

Their technique is based on establishing a tunnel via an exploit code. Our system can detect

the payload distribution channel in passive DNS regardless of the format of the payload,

as we do not inspect the content of DNS messages. There are several studies on building

a covert channel using DNS query and response packets [94, 95, 96, 97, 29]. They discuss

the possibility of sending and receiving data through DNS query response packets as well

28



as the performance analysis of existing DNS tunneling tools.

Detection of DNS Tunnels: There are some proposed methods for detecting DNS tunneling

within a network by using the n-gram analysis [98, 99]. Promising results were presented

in terms of detecting the tunnels; however, malicious payload distribution channels often

do not have extensive upstream data, and thus do not show this characteristic feature of

DNS tunneling tools. Therefore, any string based analysis on the queries might not reveal

significant differences between regular and malicious queries to detect these channels. Our

system also detects the payload distribution channels regardless of the syntax by using DNS

zone activities.

Detecting other Malicious Activities in DNS: Choi et al. [100] proposed an algorithm to

detect the botnet activities based on DNS queries. They targeted the similarity of queries

of bots from the same botnet. Although they are focusing on query similarities, we focus

on query and response patterns as well as the DNS zone activities. Finally, there is also

some work on detection of malicious activities in passive DNS [79, 26, 80, 101]. These

proposed methods focused on analyzing other abuses of the DNS protocol, such as the

domain reputation problem and DGA-generated domain names.

29



Chapter 3

On the Analysis of the Zeus Botnet

Crimeware Toolkit

In this chapter, we present a case study on the reverse engineering steps necessary to under-

stand the inner working of the Zeus crimeware toolkit and its components.

The Zeus crimeware toolkit has become one of the favorite tools for hackers because

of its user-friendly interface and its competitive price in the underground communities. This

crimeware allows attackers to configure and create malicious binaries, which are mainly

used to steal users’ Internet banking accounts, credit cards, and other sensitive informa-

tion that can be sold on the black market [102]. It also has the ability to administrate the

collected stolen information through the use of a control panel, which is used to monitor,

control, and manage the infected systems. In fact, this prediction was confirmed in July

2009 when a security publication from Damballa positioned Zeus as the number one botnet

threat with 3.6 million infections in the US alone (roughly 19% of the installed base of

PCs in the US [103]). It was also estimated that Zeus is guilty in 44% of banking malware

infections [104]. Symantec Corporation referred to this crimeware toolkit as the “King of

the Underground Crimeware Toolkits” [105]. To the best of our knowledge, there has been

30



no reverse engineering attempt to de-obfuscate and analyze Zeus before the publication of

our work [34].

The remainder of this chapter is organized as follows. Section 3.1 is dedicated to the

description of the Zeus crimeware toolkit components and how they are integrated. Section

3.2 details the network behavior analysis that is inferred from observing the network traffic

between a bot instance and the associated C&C server. In Section 3.3, we detail the four

obfuscation levels and explain how they have been uncovered. This step led to the actual un-

obfuscated code of the bot and to later revealing the infection/installation process, as well

as the encryption key that makes it possible to decrypt the C&C communications between

the infected machine and the botnet infrastructure. We also present a sample decrypted

communication session between an infected machine and a C&C server. Our conclusion is

given in Section 3.4.

3.1 Description of the Zeus Crimeware Toolkit

The Zeus crimeware toolkit is a set of programs that have been designed to set up a bot-

net over a high-scaled networked infrastructure. Generally, the Zeus botnet aims to make

machines behave as spying agents with the intent of obtaining financial benefits. The Zeus

malware has the ability to log inputs that are entered by the user as well as to capture and

alter data that are displayed into web-pages [102]. Stolen data can contain email addresses,

passwords, online banking accounts, credit card numbers, and transaction authentication

numbers. In our analysis, we examine the Zeus crimeware toolkit v.1.2.4.2, which is the

latest stable publicly available version in the underground community. As depicted in Fig-

ure 3.1, the overall structure of the Zeus crimeware toolkit consists of five components:

1. A control panel containing a set of PHP scripts that are used to monitor the botnet

31



Figure 3.1: The Zeus crimeware toolkit components.

and collect the stolen information into a MySQL database and then display it to the

botmaster. It also allows the botmaster to monitor, control, and manage bots that are

registered within the botnet.

2. Configuration files that are used to customize the botnet parameters. It involves two

files: the configuration file config.txt that lists the basic information, and the web

injects file webinjects.txt that identifies the targeted websites and defines the con-

tent injection rules.

3. A generated encrypted configuration file config.bin. This holds an encrypted ver-

sion of the configuration parameters of the botnet.

4. A generated malware binary file bot.exe. This is the bot binary file that infects the

victims’ machines.

5. A builder program that generates two files: the encrypted configuration file con-

fig.bin and the malware (actual bot) binary file bot.exe.

32



On the C&C side, the crimeware toolkit can easily set up the C&C server through an in-

stallation script that configures the database and the control panel. The database is used to

store information related to the botnet and any updated reports from the bots. These updates

contain stolen information gathered by the bots from the infected machines. The control

panel provides a user-friendly interface to display the content of the database as well as to

communicate with the rest of the botnet using PHP scripts. The botnet configuration infor-

mation is composed of two parts: a static part and a dynamic part. In addition, each Zeus

instance retains a set of targeted URLs that are fed by the web injects file webinject.txt.

Instantly, Zeus targets these URLs to steal information and to modify the content of specific

web pages before they get displayed on the user’s screen. The attacker can define rules that

are used to harvest data from web forms. When a victim visits a targeted site, the bot steals

the credentials that are entered by the victim. Afterward, it posts the encrypted informa-

tion to a drop location used to store the bot update reports. This server decrypts the stolen

information and stores it into a database.

3.2 Zeus Botnet Network Analysis

In this section, we explain the network communication that occurs between the C&C server

(the server containing the control panel) and an infected machine. Such an analysis can be

used to write IDS rules and AV detection routines. In order to perform the network analysis,

we built a sandbox environment to collect and analyze the network traces generated from

the communication between the C&C server and one of the bot instances. We configured

a web server, which acts as the C&C server and the drop location. This server hosts all

resources that are required to operate the botnet (config.bin file, PHP scripts and the

MySQL database). To customize the malware, we used the builder program to generate

the malware binary file, which is configured to communicate with the C&C server. Within

33



our environment, fake websites are generated to reflect real scenarios of botnet attacks. All

necessary entries of the configuration file as well as the web injects scripts are modified to

target the fake website. After infecting and running a machine manually with the bot binary

file, we collected network traces for one day. During this session, the user of the infected

machine visited the targeted website and used login credentials, personal information, and

credit card information for testing purposes.

By analyzing the bot network communications, we can learn the overall behavior

of the Zeus botnet. The network behavior of the Zeus botnet constitutes a starting point

where we can dig into the crimeware toolkit functionalities. Since the Zeus botnet is based

on the HTTP protocol, it uses a pull-method to synchronize the botnet communications.

From the collected network traces between a bot and a C&C server, we observe that the bot

periodically checks a specific server for an up-to-date configuration and bot binary files.

The HTTP communication messages between the two entities are encrypted. By observing

the network trace, we managed to determine the following communication pattern between

the C&C server and the infected machine:

1. The infected client starts the communication by sending a request message GET /con-

fig.bin to the C&C server. This message is a request to fetch the configuration file

for the botnet.

2. The C&C server replies with the encrypted configuration file config.bin.

3. The client receives the encrypted configuration file and decrypts its contents using an

encryption key, which is embedded inside the bot binary file.

4. In a situation where the botmaster wants to involve the infected machine to manage

the botnet, the infected machine has to provide its external IP address and report any

use of Network Address Translation (NAT). In order to know the external IP address

34



that is seen by the botnet servers, the infected machine makes a request to a specific

server. Subsequently, this server informs the infected machine about their externally

facing IP address. The server’s URL is provided in the static configuration file.

5. The bot posts the stolen information and its updated status reports to the C&C server

POST/gate.php.

GET / config.bin 

<encrypted> config.bin 

Zeus Bot Client Zeus C&C Infrastructure 

GET / ip.php (sent to any server)

OK (HTTP 200)

IP address

OK (HTTP 200)

OK (HTTP 200)

POST / gate.php 

Figure 3.2: Communication pattern of Zeus.

Figure 3.2 illustrates the communication pattern between the C&C server and the

infected machine. The communication pattern is repeated frequently depending on a timing

variable, which is defined in the botnet configuration file.

35



3.3 Reverse Engineering Analysis

The increasing use of malicious software has pushed security experts to try to find the

secrets related to the development of malware design. A common technique to detect the

existence of a given malware is to track system modifications. The changes include what an

operating system runs at startup, default web pages, generated traffic, infection of processes,

packing/unpacking of binaries, and changes to the registry keys. One way to look for these

changes is to reverse engineer the malware and try to reveal what is hidden behind the

assembled code. In our case, this kind of analysis provides invaluable insight into the inner

working of the crimeware toolkit in general and the malware binary in particular. In this

line of thought, we investigate the builder program and malware binary file. To this end, we

mainly employ “IDA Pro” [106] to disassemble the binaries and debug them to understand

their business logic. The analysis is two-fold: first, an analysis that is related to the builder

program; second, an analysis that is linked to the malware binary file.

3.3.1 The Zeus Builder Program Analysis

The builder is one of the components of the Zeus crimeware toolkit. It uses the configu-

ration files as an input to generate the bot binary file and the encrypted configuration file.

The builder component resides in the hands of the botmasters to customize and create new

malware samples to be delivered to the victims.

We first analyze the builder program, as it uses a known obfuscation technique that

can be easily removed. In addition, the GUI allows us to categorize different subroutines,

which make up the builder program functionalities. Using the “PaiMei” reverse engineering

framework [107] (a reverse engineering framework that provides many reverse engineering

tasks, such as fuzzer assistance, code coverage tracking, and data flow tracking), we were

able to see exactly which functions of the builder program are invoked by a specific action.

36



This significantly aids in simplifying the reverse engineering efforts as it allows us to focus

on a few key subroutines at a time. In what follows, we summarize the reverse engineering

analysis of the functionalities of the builder program.

Building the Configuration File Functionality: This function is responsible for encod-

ing the clear text of the configuration files of the botnet into a specific structure. It

subsequently encrypts the whole structure with the RC4 encryption algorithm using

the configured encryption key.

Building the Malware Binary File Functionality: The main function of the builder pro-

gram resides within this functionality, which is responsible for building the cus-

tomized malware binary files. In general, it builds the malware executable file into a

portable executable (PE) standard format. It also sets some parameters according to

the current configuration file and then produces the malware binary file.

Malware Infection Removal Functionality: The builder has a functionality that ascer-

tains the presence of the Zeus bot and removes it. When this functionality runs, it

performs a detection routine by checking the existence of special registry keys that

are inserted during the bot infection process. It also detects the presence of some files

in the system. If these files are detected, the builder program cleans some registry

keys and instructs the bot to shut itself down and then deletes the stored Zeus binary

file from the system. Upon reception of the shutdown command, the expected behav-

ior of the bot is to disinfect itself from the currently running processes. The analysis

reveals the names of files whose presence in the system is checked by the builder.

Table 3.1 represents these file names with their descriptions.

37



File Description

C:/WINDOWS/system32/sdra64.exe A copy of a bot, which has infected
“system32” folder.

C:/WINDOWS/system32/lowsec/local.ds A data storage file, used to store
the configuration file that is used
locally by a given bot in the sys-
tem.

C:/WINDOWS/system32/lowsec/user.ds A data storage file, used to log
the users’ activities that have been
recorded by the bot.

Table 3.1: Description of the files that are created during the bot infection.

3.3.2 Zeus Bot Binary Analysis

As depicted in Figure 3.3, the bot binary file contains four segments: a “text/code” segment,

an “imports” segment, a “resources” segment, and a “data” segment. We begin our analysis

at the malware Entry Point (EP) that resides in the “text/code” segment. The initial analysis

of the disassembly reveals that only a small part of the “text/code” block is a set of valid

computer instructions. The remainder of the binary is highly obfuscated, preventing the

computer from using these segments directly unless they are de-obfuscated at some stages.

De-obfuscation Process

Using the “IDA Pro” debugger, we were able to debug the malware and walk through

the instructions to analyze and understand the logic of the de-obfuscation routines. Each

routine reveals specific information used by the other routines until all obfuscation layers

are removed. The first de-obfuscation routine contains a 4-byte long decryption key and a

one-byte long seed value. These two values are used to decrypt a block of data from the

“text/code” segment and then write the decrypted data in the virtual memory. The result of

the first de-obfuscation routine revealed some new code segments. These segments contain

three de-obfuscation routines as shown in Figure 3.4. During our analysis, the initial offset

38



EP

Resources

Imports

Code

Text

Text

Data

401000

409A11

409AD7

410000

4100E4

411000

4160CA

bot.exe

Figure 3.3: Segments of the bot.exe binary file.

address of the memory for the code segments was 0x390000. After the address space of

the second de-obfuscation routine, there was an 8-byte key that the “IDA Pro” incorrectly

identified as code instructions. Figure 3.5 illustrates the location of the 8-byte key. In what

follows, we explain the main logic of the second de-obfuscation routine.

1. First, the routine copies two binary blocks from the “text/code” segment, concate-

nates them, and writes them into the virtual memory. The first text block contains

data with many zero value bytes that will be filled by the next text block as shown in

Figure 3.6.

2. Second, the routine scans every byte in the first text block and when it encounters

a “hole” (zero byte), it overwrites the zero byte with the next available byte in the

39



De-obfuscation 2

De-obfuscation 3 & 4

8-byte key

Other functions

390000

39007A

39013C

3901F5

Virtual Memory

390082

Figure 3.4: De-obfuscated code in the virtual memory.

“filler” text block. This is repeated until all “holes” are filled (See Figure 3.7).

The filled text segment turns out to be the main outcome of the second de-obfuscation

routine. However, this text segment is still not readable and is not considered as computer

instructions. By utilizing the 8-byte key, the third de-obfuscation routine starts by decrypt-

ing the output of the second de-obfuscation. Similar to the first de-obfuscation routine,

this routine utilizes the 8-byte key and performs an Exclusive-OR (XOR) operation instead

of an addition operation. Finally, the fourth de-obfuscation layer contains heavy compu-

tations to initialize and prepare parameters for the rest of the malware operations. It uses

the decrypted bytes revealed by the previous routines to modify the rest of the “text/code”

segment. After this routine is completed, we can observe the real starting point of the Zeus

malware. Although the “text/code” segment is now valid, the Zeus bot binary employs two

additional layers of obfuscation. These two layers are de-obfuscated during the installa-

tion procedure. They consist of logical loops that transform arbitrarily long strings into

a readable text. The first layer is performed on a set of strings that the malware uses to

40



Figure 3.5: The 8-byte key.

load the Dynamic Link Library (DLL), retrieve function names, and for other purposes dur-

ing the installation process as described in Algorithm 3.3.1. Similarly, the second layer is

used to decrypt URLs in the static configuration of the configuration file as summarized in

Algorithm 3.3.2.

Algorithm 3.3.1: DECRYPT_STRING(enc_string)

seed = 0xBA;

String new_string = new String(enc_string.length());

for i = 0 to enc_string.length()

do

⎧⎪⎨
⎪⎩

new_string[i] = (enc_string[i] + seed) %256;

seed = (seed + 2);

return (new_string)

41



Text with missing data

Filler text

3901F5

39C276

39E9C3

Virtual Memory

Figure 3.6: The virtual memory used by the second de-obfuscation routine.

Algorithm 3.3.2: DECRYPT_URL(enc_url)

String new_url = new String(enc_url.length());

for i = 0 to enc_url.length()

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (i%2 == 0)

then

new_url[i] = (enc_url[i] + 0xF6 - i * 2) %256;

else

new_url[i] = (enc_url[i] + 0x7 + i * 2)%256;

return (new_url)

Bot Installation Process

Following execution of the first four de-obfuscation routines, the malware begins the in-

stallation process, which aims to prepare and then launch the malicious activities of the

42



De-obfuscation 2

De-obfuscation 3

8-byte key

De-obfuscation 4

Virtual Memory

Filled text

Filler text

00 42 E1 C1

50 00 B3 C1

12 2D 00 BD

00 F2 6C BB

7E 62 82 A4

7E 42 E1 C1 

50 62 B3 C1 

12 2D 82 BD 

A4 F2 6C BB 

Text with missing data

Filler text

Filled text

Figure 3.7: The result from the second de-obfuscation routine.

malware. In what follows, we explain the main procedure of the installation process.

1. The Zeus malware dynamically loads the LoadLibrary and the GetProcAddress

methods from Kernel32.dll library.

2. The Zeus malware decrypts the set of strings, which become DLL methods names,

into the virtual memory according to Algorithm 3.3.1.

3. The LoadLibrary and the GetProcAddress methods are used to load further meth-

ods, as decrypted in step 2, from the Windows DLLs.

4. The Zeus malware enumerates the current process table searching for targeted pro-

cesses, such as the main process name for the Outpost personal firewall application

from Agnitum Security [108] outpost.exe and the main process name for the per-

sonal firewall of the ZoneLabs Internet security [109] zlclient.exe. If any of these

43



processes are found, the Zeus malware aborts the installation process.

5. The Zeus malware appends the path C:/Windows/System32/sdra64.exe to the

HKEY_

LOCAL_MACHINE/SOFTWARE/Microsoft/WindowsNT/CurrentVersion/Winlogo

n/Userinit registry key. This entry enables the Zeus malware to initiate its installa-

tion process again during Windows startup.

6. Finally, the Zeus malware injects its entire binary file from the memory address

0x400000 to 0x417000 into the virtual memory of the winlogon.exe process. Fol-

lowing this, Zeus passes control to this process by creating a new user thread, which

is immediately executed.

Similarly, the bot uses these steps when the infected machine is restarted. However, certain

steps are performed only during the initial Zeus installation process. These steps involve

the creation of a local copy of the malware and storing it on the infected system for fur-

ther activities. In what follows, we list the main processes of creating a local copy of the

malware.

(a) The Zeus malware searches for any existing copies of previous Zeus infection files

sdra64.exe and erases it from the infected machine. This behavior occurs when the

Zeus binary file is being updated with a newer version of the malware.

(b) The bot makes an exact copy of itself and saves it to C:/Windows/System32/sdra64.exe.

To evade signature-based detection systems, it appends some randomly generated bytes

to the end of the file.

(c) In order to hide itself, the bot duplicates the Modification, Access, and Creation times

(MAC times) information from the Ntdll.dll library, and applies them to the sdra64.exe.

44



The purpose is to make sdra64.exe appear as a system file that has been present since

Windows was first installed.

(d) In another level of hiding the created file, the bot sets the sdra64.exe file attributes to

system and hidden, so that the user cannot see the file using the standard file explorer.

At this stage, the malware is already injected within the winlogon.exe running pro-

cess. The currently running bot exits and leaves the control to the injected process. How-

ever, the installation procedure is continued by the user thread that was started in the win-

logon.exe process as described in step 6. From the injection process, we infer that the

entire Zeus binary file is copied into the winlogon.exe process. Therefore, the injected

Zeus instance starts by removing the remaining two layers of the obfuscation by applying

Algorithm 3.3.1 and Algorithm 3.3.2 as described in Section 3.3.2. When the injected mal-

ware decrypts all the strings, the Zeus instance employs the piggyback thread technique (to

control the infected system through a legitimate process) within the winlogon.exe pro-

cess. However, Zeus instances only perform a few tasks before they create another thread

and exit themselves. This is yet another attempt made by the designers of the Zeus malware

to evade detection. Subsequently, the Zeus instance starts injecting itself into another pro-

cess, namely the svchost.exe process. This injected process initiates a communication

channel with the C&C server to download the latest updates for the configuration file and

the malware itself. The targeted processes later get injected with the latest malware pay-

load and then activate the process of stealing information through API hooking techniques.

During the malware update process, the following changes were observed in the file system:

1. A new folder is created at the path C:/Windows/System32/lowsec. Hiding tech-

niques similar to those applied to the sdra64.exe are also applied to the newly cre-

ated folder.

45



Command Purpose Return Value

1 Retrieve Zeus version number 4 bytes in a buffer
2 Retrieve name of the botnet Ascii string in buffer
3 Uninstall Bot n/a
4 Open the local.ds file or create it if

it does not exist
n/a

5 Close the local.ds file n/a
6 Open the user.ds or create it if it

does not exist
n/a

7 Close the user.ds n/a
8 Close the sdra64.exe n/a
9 Open the sdra64.exe n/a
10 Retrieve loader file path Wide character string
11 Retrieve configuration file path Wide character string
12 Retrieve log file path Wide character string
13 Crash the winlogon process inten-

tionally
n/a

Table 3.2: List of the Zeus malware commands.

2. Two new files, local.ds and user.ds, are created and placed in the new folder.

The user.ds stores the dynamic configuration file, and the local.ds logs the stolen

information until the Zeus malware is ready to send it to the drop location.

The malware that resides in the winlogon.exe process acts as the brain for the Zeus

malware activities. It communicates and coordinates all the infected processes using the

named pipe _AVIRA_2109. Table 3.2 shows the list of numerical commands that are sup-

ported by the Zeus malware.

Key Extraction

As mentioned in Section 3.1, the Zeus botnet uses a configuration file that contains static

information. This part of the configuration is stored inside the malware binary file in a spe-

cific structure. During the de-obfuscation processes, this structure is recovered and placed

46



in the virtual memory (in our analysis, starting at 0x416000). All information in the struc-

ture is completely de-obfuscated, except for two URLs: url_compip and url_config.

These URLs can be de-obfuscated using Algorithm 3.3.2. The url_compip is the web

location to determine the IP address of the infected host, and the url_config is the web

location to download the configuration file for the botnet. The static configuration structure

also contains an RC4 substitution table that is generated by the encryption key specified

in the configuration file. Throughout our analysis, we noticed that the substitution table

was generated by the RC4’s key-scheduling algorithm, and we verified that the encryption

employed by Zeus is done by the RC4 algorithm. The recovered static configuration can

be used in different ways to gain partial control over the botnet. The most valuable piece

of information is the substitution table, which can be used to decrypt all communication of

the Zeus botnet. Moreover, it can be used to decrypt the configuration file as well as the

stolen information. In order to recover the static configuration structure described above,

we must go through all of the de-obfuscation phases discussed in Section 3.3.2. This re-

quires executing the malware until it completes all of the de-obfuscation layers. Emulation

techniques are considered as safe and fast procedures to achieve our goals. Using Python

scripting language along with the “IDAPython” plugin [110], we were able to emulate all of

the de-obfuscation routines and extract the substitution table from the static configuration

structure. These extracted keys allow for decryption of the botnet communication traffic

and all of the encrypted files. Similarly, they allow us to extract any information from the

static configuration structure, such as the URLs for any future updates, which point to the

C&C servers. Our experimental results demonstrate that any subversion of Zeus (v.1.2.x.x)

can be fully analyzed using our methodology as it holds the same logical blocks.

47



3.3.3 Packet Decryption

After extracting the RC4 encryption key as described in Section 3.3.2, we used it to decrypt

the botnet communications. By decrypting the transmitted HTTP payload, we were able to

uncover the structure of the messages between the bot and the C&C server. We analyzed

the structure of the HTTP POST messages (POST /gate.php), which carry all the updates

and reports from the bots to the C&C server. Each bot posts a variable number of encrypted

bytes based on the data sent to the C&C server in a specific structure. The payload is

encrypted using only an RC4 encryption algorithm. As depicted in Figure 3.8, we restore

the structure of the messages as follows:

1. Each message starts with a header that consists of 28-bytes. This header contains an

MD5 hash value for the rest of the message.

2. As shown in Figure 3.8, the rest of the message follows in the form of repeated data

blocks, where each block consists of the following:

(a) An entry header of 16-bytes that contains information about the current data

entry. The first 4-bytes serve as the type of the reported information, which can

be recognized by the bot and the control panel. The third 4-bytes determine the

length of the carried information.

(b) A variable number of bytes that is specified in the entry header. These bytes

represent one piece of the information that is transmitted within this packet.

It should be noted that the encrypted communication of the Zeus botnet is vulnerable

to the RC4 keystream reuse attack because there is no Initialization Vector (IV) setup in

every session, i.e., the same RC4 keystream is reused to encrypt all messages.

48



8E020000 0000000000000000 0C0000005B626D42FC682051D56D72A4

20270000 00000000 0D010000 0D010000 

Message length Unknown Md5 hash value 

Data type Unknown Data length Data length 

http://192.168.252.132/catalog/checkout_process.php
Referer:
http://192.168.252.132/catalog/checkout_confirmation.php
Keys: user@email.com123456 4408041234567893 Data:
cc_owner=Name cc_number_nh-dns=4408041234567893
cc_expires_month=01
cc_expires_year=10x=47y=3

Message Header

Message Entry

Entry  Header

Data

4-bytes 4-bytes 4-bytes 4-bytes

4-bytes 8-bytes 16-bytes

Figure 3.8: A decrypted sample message.

3.4 Conclusion

The Zeus crimeware toolkit is an advanced tool used to generate very effective malware

that facilitates criminal activities. The integrated toolkit technology impedes the detection

of the malware at the host level. The use of encrypted HTTP messages for C&C makes

it difficult to detect any clear behavior at the network level. Moreover, the multiple levels

of malware obfuscation represent a burden to the analysts to find information about the

C&C servers or to generate binary signatures. In this work, we presented a detailed reverse

engineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture and

enable its mitigation. Furthermore, we provided a breakdown for the structure of the Zeus

botnet network messages.

Our analysis of the C&C communications indicates that the RC4 algorithm is used in

49



a poor way to encrypt these communications (keystream reuse). In addition to the knowl-

edge of the network messages structure, we can launch active countermeasures by interact-

ing with the botnet servers using the extracted encryption key. For example, we can inject

falsified information into the botnet communication for various purposes, such as defaming

the botnet business model by reducing the effectiveness of their services [111, 112]. A use-

ful extension to our work is to use the extracted encryption key mechanism to analyze and

track down the Zeus C&C servers or to defame the toolkit, e.g., by returning fake (invalid)

credit card numbers.

50



Chapter 4

Cyber Security Intelligence Extraction

from Malware Analysis

Dynamic analysis of malware samples can be used to generate useful cyber security intel-

ligence. The reports produced during the dynamic analysis process represent an immediate

source for collecting preliminary information about a given malicious threat. Since mali-

cious networks tend to reuse their resources such as source codes, domain names and IP

addresses for different purposes, the network analysis enables us to capture relations be-

tween the shared resources. For instance, cyber criminals abuse IP addresses and domain

names and adopt techniques such as Fast-Flux and DGA; these leave traces, which can

be backtracked by simply correlating their activities. Moreover, the structure of malicious

networks manifests information about the abused resources behavior and the importance

of each individual resource. In this chapter, we present a framework for extracting cyber

threat intelligence from the reports that are generated during the dynamic analysis of mal-

ware samples. Our framework utilizes the extracted information from the malware dynamic

analysis reports to explore the infrastructure properties of malicious networks.

51



The rest of this chapter is organized as follows. Our framework is described in Sec-

tion 4.1. Section 4.2 explains our dataset and presents the insights produced from our

framework via an experiment on real-world malware dynamic analysis reports. Finally,

Section 4.3 provides concluding remarks.

4.1 Framework Description

The process of dynamic analysis monitors the analyzed malware samples and records a de-

tailed behavioral report about various observed activities. The monitored activities include,

but are not limited to, system changes, file records, registry entries, and network activities.

Our framework utilizes dynamic analysis reports that are produced by analyzing malware

samples in a controlled environment. The framework accepts as input these reports for

each analyzed malware and produces insights that can be used in various cyber attack in-

vestigations. The main components of our framework are shown in Figure 4.1. Once the

reports are generated by the dynamic analysis, the pre-processing module is responsible

for extracting information from the reports and storing it in a graph database. The graph

database enables us to keep track of relations between the analyzed malware samples, do-

main names, and IP addresses in order to conduct various network structure analyses. The

database is also supported by external information that helps in localizing resources and tag

activities to possible malware families. Given any cyber attack investigation, the statistical

analysis provides valuable insights. The network structure analysis investigates the rela-

tions between abused resources and evaluates the importance of each individual resource to

understand the key components in the malicious infrastructure. In what follows, we provide

a detailed description of each component of our framework.

52



Malware Dynamic 
Analysis Reports

Pre-Processing

Malware 
Intelligence 

Database

Network Structure 
Analysis Statistical Analysis

Insights

Figure 4.1: Intelligence framework overview.

4.1.1 Pre-Processing

Our framework processes malware dynamic analysis reports, which are generated in a con-

trolled environment. Each report contains detailed information about the activities con-

ducted by the analyzed malware sample in Extensible Markup Language (XML) format.

The reported activities cover the local system activities and the network interactions. Sys-

tem information records any observable changes to the file system, registry keys, memory

operations, and loaded libraries. The network information captures the interaction between

the observed malware sample and any remote or local network resource. The sandbox sys-

tem used in the dynamic analysis process decodes various network protocols, such as DNS,

53



HTTP, FTP, Simple Mail Transfer Protocol (SMTP), and IRC. It also stores the raw network

packets for further inspection. In our framework, we focus only on the network activities;

we do not evaluate local system events.

The parsing engine begins by creating a unique profile for each report using the hash

value of the malware binary. The parser then extracts any possible communication activities

to external resources and records all observed IP addresses and domain names. These IP

addresses and domain names are used to conduct various activities by different network

protocols as summarized in Table 4.1.

Category Extracted Information

FTP User name, password, FTP command, ports
HTTP Method, URL, ports
IRC User name, password, host name, server name,

real name, nick, channel name, channel pass-
word, private message, notice message

DNS Name server, query name, query type, query
class, answer name, answer type, answer
class, answer TTL, answer length, NS name,
CNAME, TXT, PTR, ports

Plain connection 1 Data sent, data received
SMTP User name, password, mail from, recipients,

ports
Downloaded files Download URL, local file name, local file hash

Table 4.1: Example of extracted information from malware dynamic analysis reports.

Our framework utilizes additional external resources to complement the information

extracted from the dynamic analysis reports. Since we are dealing with malware samples,

knowledge of the malware family of each analyzed malware sample is required in order to

enrich the cyber investigation process. Security experts and AV companies have long faced

the challenging task of consistently naming malware families. With the number of new

malware samples growing by the day, the problem of classifying malware by a common

1In plain connection, the underlying protocol cannot be decoded by the sandbox system.

54



name is becoming more and more difficult. Many attempts have been made by researchers

and AV vendors [113, 114] to solve this issue; however, very little success has been shown.

To overcome this problem, we propose a solution that takes into consideration all of the

reported family names from AV companies, and extracts the commonly used family name

accordingly. For each observed malware sample, we retrieve the family names from a public

web service called VirusTotal [115], which collects different AV companies (43 vendors)

scanning reports for a specific malware sample. We then extract the most frequent string

from all of the reports. In the following, we summarize the process of naming a given

malware sample:

1. We retrieve the naming reports from different AV companies for a given malware

hash value.

2. Malware names contain strings that indicate more information about a given mal-

ware sample, such as the targeted platform (e.g., Win32), the malware version (e.g.,

Zeus.B), or some classification (e.g., Trojan or Adware). These strings are consid-

ered as extra information, which can be ignored while extracting the malware family

name.

3. Finally, we calculate the frequencies of the remaining strings inside all of the retrieved

reports from AV companies. The most common string is selected as the possible

malware family name.

4.1.2 Statistical Analysis

Statistical analysis of the extracted information from malware dynamic analysis reports pro-

vides important insights, especially in the early stages of cyber investigations. Information

about targeted countries, targeted organizations, suspected malware families, and possible

55



cyber criminals support and guide the process of taking the right steps towards a successful

investigation. For instance, monitoring the daily behavior of malware samples while com-

municating Internet resources (e.g., domain names and IP addresses) gives an overview of

the level of abuse of such resources.

Occasionally, botnets exploit or take advantage of specific network protocols. The

monitoring of malware communication with remote resources helps uncover possible ma-

licious activities. Network protocols contain detailed information that can be digested to

measure the level of abuse for any protocol or service. As an example, some malicious ac-

tivities can be distinguished by using special protocol configurations, which help recognize

them, such as payload distribution through DNS [14] and port0 activities [30].

Cyber criminals have many targeted objectives and they operate different campaigns

to increase their profit. The functionality of malicious networks can therefore differ from

one to another. For example, the Waledac botnet mainly operates spam activities [116],

while the Sality botnet is responsible for many scanning incidents [117]. By observing the

daily activities of malware samples that belong to different malware families, we can infer

the nature of the malware activities and their evolution with time. Additionally, malware

families can be correlated with the abused resources, such as domains and IP addresses, to

guide cyber crime investigation.

4.1.3 Malicious Networks Analysis

The malware dynamic analysis reports include many relations between different Internet

resources that can be mapped to a graph. For instance, malware samples are contacting

domain names that resolve to IP addresses and are used to conduct specific activities. The

relation between malware samples, domain names, and IP addresses can be abstracted as a

directed graph that consists of a tuple Gmulti = 〈M∪D∪ IP,E〉, where:

56



• M = {m1,m2, · · · ,mn} is a finite set of malware sample nodes

• D = {d1,d2, · · · ,dl} is a finite set of domain name nodes

• IP = {ip1, ip2, · · · , ipk} is a finite set of IP address nodes

• E ⊆ (M×D)∪ (D× IP) is a finite set of pairs of distinct nodes, called edges.

Gmulti is a 3-mode network composed of three different types of actors. Multi-mode

networks tend to form communities by utilizing shared properties. The overlapping proper-

ties are also used to simplify the network and focus on one actor in the network. In general,

multi-mode networks can be transformed into many one-mode networks in order to apply

most of the network analysis notions and compare networks. For example, a network of

domain names can be formed by considering the shared IP addresses or by considering the

malware instances, which access the domains. The transformation of a multi-mode net-

work to many one-mode networks is called projection [118], which produces weighted net-

works by defining the weights as the number of common neighbors in Gmulti. The produced

weighted networks contain all of the structural information from the original network [119].

From Gmulti, we can derive different one-mode networks that represent many aspects

of the network. To limit the scope of our analysis, we focus on the following two graphs

that have domain names as the main actor.

Abused domains: GDM = 〈D,EDM〉, where EDM ⊆ (D×D). The graph GDM represents

the graph of domain names connected by a number of shared malware samples. A

domain di is connected to another domain d j when there is at least one malware

sample that accessed both di and d j. The graph GDM can be used to quantify the

abuse of domain names by malicious networks and also to group the domains that are

abused by the same malicious networks.

57



Malicious infrastructure: GDIP = 〈D,EDIP〉, where EDIP ⊆ (D×D). The graph GDIP

models the relation between domain names that are resolved to a number of shared

IP addresses. A domain di is connected to another domain d j when there is at least

one malware sample that mapped both di and d j to the same IP address. The graph

GDIP reports the structure of malicious infrastructure and their robustness.

Given the above two networks, we can introduce a set of metrics that help us assess

the overall network structure and measure the importance of individual nodes.

Network Structure and Centrality Measures

There are several basic metrics that can be used to reveal the configuration of any given

network and to quantify the relative importance of individual nodes. In what follows, we

study the k-neighborhood connectivity plot, degree centrality and betweenness centrality

metrics. The graph k-neighborhood connectivity plot characterizes graphs to identify the

strength of relationships between nodes. The degree and betweenness centrality are used to

identify the critical vertices in the graph. These metrics guide the cyber crime investigation

to understand the properties and the structure of malicious networks.

K-Neighborhood Connectivity plot (KNC-plot): Given a weighted graph G, where the

weights k represent the number of sharing neighbors, KNC-plot is an algorithm that

measures the connectivity of Gk as a function of k [120]. More precisely, the KNC-

plot is defined as a function of k that shows the decreasing size of the largest compo-

nent and the increasing number of components. The connectivity of a graph provides

a global understanding of the captured network and a means to study the robustness

of the network. Given a weighted graph G, two nodes are k-neighbors if they share an

edge with the weight of at least k. As an example, the graph G1 contains all the nodes

that share edges with weights greater than or equal to one. This graph is considered

58



to be a very highly connected graph. Similarly, G2 is defined on the same nodes, but

it might be less connected. When increasing the degree of connectivity k, the graph

will become increasingly sparse and less connected until it becomes completely dis-

connected. The analysis of different Gk graphs enables us to understand the structure

of sharing resources within malicious networks.

Degree Centrality: Node degree is defined as the number of edges that are shared with

neighboring nodes [121]. In a weighted graph, where edges have weights, nodes

have an important metric that measure their strength; this is computed for each node

by accumulating all the weights for all the direct neighboring nodes. The degree

centrality represents the connectivity of a node i in the network, which can be defined

by utilizing the node degree and strength as follows [122]:

CD(i) =
( n

∑
j=1

ai j

)1−α
×
( n

∑
j=1

wi j

)α
(4.1)

where ai j = 1 when node i and node j are direct neighbors and ai j = 0 otherwise.

The term wi j denotes the weight between the two adjacent nodes i and j. The term α

is a positive parameter that can be used to balance the importance between the node

degree and the strength, while calculating the degree centrality.

Betweenness Centrality: Betweenness centrality measures the importance of a node i be-

ing in the shortest path between two other nodes. When a node is included in many

shortest paths between other nodes, it has more control over the network by serving

as a bridge between nodes. This node can be considered as an intermediate node be-

tween different communities. The betweenness is defined as the ratio of all shortest

59



paths passing through node i as follows:

CB(i) = ∑
k �=i�= j∈N

σk j(i)
σk j

(4.2)

where σk j is the sum of all shortest paths between node k and node j, and σk j(i) is

the number of shortest paths that pass through node i to connect node k and node j.

The calculation of the shortest paths between nodes in weighted graphs is achieved via

Dijkstra’s algorithm [123] by considering the inverse of the weights between nodes as the

cost of including each edge [122].

The centrality measures discussed above, defined at the node level, can be extended

to reflect the graph centrality as follows:

CG =
n

∑
i=1

(C(n∗)−C(ni)) (4.3)

where n is the number of nodes within the graph, C(ni) is the centrality value of node

i, and C(n∗) is the largest centrality value in the graph. The group centrality enables us to

compare different communities. To compare the group centrality of different graphs, the

CG value of each graph must be normalized with the maximum possible sum of differences

of node centralities calculated by Equation 4.3. The normalization values for degree and

betweenness are given by (n−1)(n−2) and (n−1), respectively [121].

4.2 Experimental Results

In this section, we present some of the intelligence that we extracted from the malware

dynamic analysis reports. We discuss some of the insights that are utilized from the statis-

tical analysis and the malicious network analysis. During our analysis, we use a dataset of

60



dynamic analysis reports provided by ThreatTrack Security Inc [124] that spans from the

1st of January 2014 to the 4th of March 2014. In Table 4.2, we show some facts about the

dataset. Our framework utilizes the Neo4j graph database [125] to store the extracted in-

formation. We choose a graph database because it supports most of the functionalities and

algorithms of graph theories while maintaining flexible and scalable storage capabilities.

Number of reports 1,573,214
Number of domains 49,375
Number of IP addresses 44,746
IRC connection 288,346
DNS connection 96,265
Plain connection 1,541,949
SMTP connection 458
HTTP connection 1,165,904
Downloaded files 25,585

Table 4.2: Statistics of the dataset used to evaluate the framework.

4.2.1 Statistical Insights

The first step in investigating any cyber crime attack is to collect statistics about the inci-

dent. Our framework analyzes the malware dynamic analysis reports on a daily basis and

populates the Neo4j graph database with the extracted information. While populating the

database, we also include some external information to support the knowledge about ma-

licious activities. For instance, each observed IP address is correlated with the Maxmind

databases [126] to retrieve the geographic location and the ISP responsible for each IP

address. In addition, the framework also provides information about domain name registra-

tion, such as owner information, by correlating the observed domain names with the public

WHOIS records [127]. Figure 4.2 shows an example of the geolocation of some malicious

networks resources, while Figure 4.3 illustrates an example of statistics that are produced

by our framework.

61



Figure 4.2: Geo-locating malicious networks.

Our framework provides complete information about connections conducted by IP

addresses. For example, FTP connections may point to drop or deposit locations that may

contain stolen credentials. On the other hand, IRC connections reveal the plain C&C com-

munication between bots and C&C servers. In addition, the protocol information helps us

investigate other abuses such as those involving the DNS protocol, which will be addressed

in Chapter 6.

Using the observed malware samples, we detect their corresponding families from

VirusTotal [115] by leveraging our proposed approach for naming the malware families as

discussed in Section 4.1.1. We recognize more than 3500 malware families, which corre-

sponds to 40% of the observed malware samples. The remaining malware samples were

either not recognized by VirusTotal, or no common name exists. In Figure 4.4, we show the

top 20 active malware families that are recognized during analysis. Such insight can help

us estimate the spread of different malware families. Certain malware families are special-

ized in conducting specific activities such as spamming (e.g., Virut), scanning (e.g., Sality),

or fake software downloaders (e.g., LoadMoney). Through analyzing the distribution of

malware families, we can learn the current trend of malware activities.

62



0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r o

f I
P 

ad
dr

es
se

s 

Countries 

(a) Top 10 targeted countries by malware
samples.

0

50000

100000

150000

200000

1 2 3 4 5 6 7 8 9 10

M
al

w
ar

e 
in

st
an

ce
s 

IP addresses 

(b) Top 10 IP addresses that received connections
from malware samples.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

IP
 a

dd
re

ss
es

 

Domains 

(c) Top 10 domain names that mapped to different
IP addresses.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

M
al

w
ar

e 
in

st
an

ce
s 

Domains 

(d) Top 10 domains contacted by different mal-
ware samples.

Figure 4.3: Example of cyber intelligence extracted using the developed framework.

4.2.2 Malicious Networks Analysis

Studying the structure and properties of malicious network resources provides important

insights for a cyber crime investigation. In our analysis, we consider two different graphs:

abused domains GDM, and malicious infrastructure GDIP. Given these two graphs, we ana-

lyze their structural properties, investigate the importance of individual network resources,

and compare the networks centrality. In Table 4.3, we illustrate some of the general prop-

erties of the two graphs.

Abused Domains Networks

In this section, we explore domains abused by observed malware samples. During our ex-

periments, we extracted 1,402 different networks composed from 19,572 domain names.

63



loadmoney 
12% 

expiro 
9% 

virut 
6% 

sality 
4% 

symmi 
4% 

vobfus 
3% 

smshoax 
3% graftor 

2% parite 
2% 

strictor 
2% 

almanahe 
2% 

kazy 
2% 

artemis 
2% 

lineage 
2% 

kryptik 
2% 

jadtre 
1% 

vjadtre 
1% 

startpage 
1% 

kolabc 
1% 

otwycal 
1% 

Others 
38% 

Figure 4.4: Top 20 observed malware families.

Within these networks, two domain names are connected with each other when at least

one malware sample has visited both domain names, and the strength of their relation is

weighted by the number of such malware samples. Studying the connectivity of the abused

domains by the KNC-plot enables us to analyze the strength of networks and understand

their level of involvement in malicious activities. In Table 4.4, we show some network

examples with the value of k for which the size of the largest subgraph in the network is

50%, 25%, 10% of the original network. Some networks may contain many domains (e.g.,

ID = DM1), but are weakly connected. This kind of network consists of domains that are

not largely abused by the malware community, or are part of domains randomly probed

by malware samples. In contrast, small networks can be very heavily abused in malicious

64



Abused domains Malicious infrastructure
Number of domains 19,572 13,986
Number of networks 1,402 2,500
Average network size 13.9 5.6
Largest network size 14,671 3,148
Average degree 23.3 44.3
Average strength 242.1 105.7

Table 4.3: Abused domains and malicious infrastructure network statistics.

activities (e.g., network ID = DM2, DM3, DM4). Networks might contain a small number

of domains and be equally abused by groups of malware samples (e.g., ID = DM5, DM6).

These networks hold domains that are essential for operating the malicious network. For

instance, malware samples are normally configured to visit certain domain names to reach

the malicious infrastructure. An increase in the number of malware samples visiting a spe-

cific network indicates that the associated domains are correlated (i.e., targeted) by malware

community. In the KNC-plot, the domains that remain in the last connected component of

the network as k increases are considered as the most abused domains in their network.

ID Network size 50% 25% 10% Largest k value
DM1 14,671 2 5 15 21810
DM2 23 1,755 2,200 2,208 2246
DM3 24 6 28 31 45
DM4 49 4 12 24 44
DM5 28 50 51 0 52
DM6 10 145 0 0 165

Table 4.4: Value of k at which the largest subgraph in each network of GDM represent 50%,
25%, and 10%.

In Figure 4.5, we demonstrate an example of the KNC-plot of an abused network

DM4. As indicated in Table 4.4, 10% of the domain names in the network have at least

24 malware samples in common. These domains hold larger connectivity (more abused)

compared with the other domains in the network. On the other hand, Figure 4.6 illustrates

an example of a network where the underlying domains are equally important in preserving

65



its connectivity.

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Si
ze

 o
f t

he
 la

rg
es

t s
ub

gr
ap

h 

k 

Largest subgraph No. of subgraphs

Figure 4.5: Example of KNC-plot for the abused domains network DM4.

0

5

10

15

20

25

30

0 10 20 30 40 50

Si
ze

 o
f t

he
 la

rg
es

t s
ub

gr
ap

h 

k 

Largest subgraph No. of subgraphs

Figure 4.6: Example of KNC-plot for the abused domains network DM5.

After studying the structure of abused domains networks, we investigate different

metrics to evaluate the importance of each domain in the network. In Table 4.5, we present

the group centrality values (calculated using Equation 4.3) for some of the abused networks.

In general, the group centrality of a network reflects the centrality of its nodes. The degree

centrality is an indicator of the existence of domains that are heavily abused by the malware

66



community. The two networks DM2 and DM6 have a high degree centrality, which supports

the KNC-plot statistics previously discussed. Some networks might contain sub networks

that are connected by intermediate nodes that can be captured by the betweenness centrality

measure. For disturbing any network, good candidates to start with would be the domains

that have high betweenness centrality. The group betweenness centrality is used to capture

the existence of intermediate nodes in any network such as DM1, DM3, DM4, and DM6.

Network ID Network size Degree Betweenness
DM1 1,4671 0.0029 0.57
DM2 23 0.52 0.000069
DM3 24 0.083 0.4
DM4 49 0.048 0.43
DM5 28 0.076 0.098
DM6 10 0.70 0.54

Table 4.5: Group centrality for different abused domains network GDM.

Malicious Infrastructure Networks

In this section, we explore malicious infrastructures that consist of domain names connected

by shared IP addresses. Our analysis reveals 2,500 different networks that contain 13,986

domain names. Two domain names are connected with each other when there is at least one

shared IP address between both of them, and the strength of their relation is weighted by

the number of such shared IP addresses.

The connectivity of malicious infrastructures helps in understanding the nature of

the relationship between domains. Malicious networks tend to replicate their resources

in order to increase their availability, which strengthens their resiliency against take down

operations. This behavior is achieved by a technique called Fast-Flux, which simply assigns

multiple IP addresses for domain names. Using the KNC-plot, we can analyze the strength

of the relationship between domains and investigate the level of being a Fast-Flux network.

67



Table 4.6 shows some network examples with the value of k for which the size of the largest

subgraph in the network is 50%, 25%, 10% of the original network. A weak network is one

that requires less k values to disturb the connections between its domains, such as DIP1 and

DIP4. On the contrary, heavy networks that share many IP addresses between their domains,

such as network DIP2 and DIP3, are more resilient to IP address take down operations. On

occasion, malicious networks secure all of the used domains with the same IP address to

operate the network (e.g., DIP5, DIP6). Other networks maintain strong ties between all of

the abused domains, such as DIP7. In general, the core domains are the ones that remain in

the last connected component of the network as k increases. The larger the k value required

to dissolve the network, the more difficult it becomes to take down the network.

ID Network size 50% 25% 10% Largest k value
DIP1 3,148 2 3 5 480
DIP2 233 20 65 161 951
DIP3 39 29 40 80 85
DIP4 116 4 7 12 20
DIP5 12 8 148 0 148
DIP6 16 11 45 0 48
DIP7 11 27 0 0 32

Table 4.6: Value of k at which the largest subgraph in each network of GDIP represent 50%,
25%, and 10%.

ID Network size Degree Betweenness
DIP1 3,148 0.00075 0.49
DIP2 233 0.0279 0.40
DIP3 39 0.037 0.049
DIP4 116 0.0065 0.34
DIP5 12 0.46 0.74
DIP6 16 0.079 0.061
DIP7 10 0.083 0.2

Table 4.7: Group centrality for different malicious infrastructure networks GDIP.

68



After studying the structure of malicious infrastructure networks, we investigate dif-

ferent measures to evaluate the importance of each domain in the network. In Table 4.7, we

present the group centrality values (calculated using Equation 4.3) for some of the malicious

infrastructure networks.

The degree centrality is considered as an estimator of the level of existence of Fast-

Flux domains in the network. For instance, the network DIP5 has a high degree centrality,

which confirms the network structure properties indicating that this network is easy to be

disturbed by taking down the domains with high degree centrality .

Periodically, different malicious networks connect with each other and with some

domains to share information (e.g. exploits or infection modules). Betweenness centrality

helps uncover the domains that play a role in connecting different malicious networks. In

order to take down any network, good candidates to start with would be the domains that

have high betweenness centrality. An example of networks that contain more intermediate

domains are the networks DIP5 and DIP2.

0

0.1

0.2

0.3

0.4

Betweennes Degree

nD
CG

@
k 

Centrality measures 

Top 10 Top 20 Top 30 Top 40 Top 50

Figure 4.7: The nDCG@k evaluation measure values for degree and betweenness centrality
measures for abused domains networks GDM.

69



0

0.1

0.2

0.3

0.4

0.5

0.6

Betweennes Degree

nD
CG

@
k 

Centrality measures 

Top 10 Top 20 Top 30 Top 40 Top 50

Figure 4.8: The nDCG@k evaluation measure values for degree and betweenness centrality
measures for malicious infrastructure networks GDIP.

Since the centrality metrics quantifies the importance of domains based on their rela-

tionships, we evaluate how these measures confirm public knowledge about the malicious-

ness of these domains. Since these measures order the importance of domains, we correlate

them with graded maliciousness scores from the WOT reputation system [128]. The eval-

uation is judged by the nDCG measure explained in Section 2.1.3. In Figure 4.7, we show

the evaluation of all centrality measures to rank the top domains in the abused networks. On

a similar note, Figure 4.8 illustrates the evaluation of centrality for the malicious infrastruc-

ture networks. In both graphs, the degree centrality outperforms the betweenness centrality

because it relies on the frequencies of being used by malware communities or the level of

Fast-Flux activity. However, the betweenness centrality quantifies only the importance of

the position of the domains in the network and does not determine the maliciousness of the

domains. From this observation, we learn that malware interaction with domains and IP

addresses shows promising indicators of domain involvement in malicious activities.

70



4.3 Conclusion

In this chapter, we developed a framework to extract and build intelligence from malware

dynamic analysis reports. The framework produces statistical insights that can be used in

the early stages of cyber crime investigations. Moreover, it analyzes the configuration of

abused networks and quantifies the relative importance of domain names. Our framework is

evaluated on two months’ feed of malware dynamic analysis reports, which contains an av-

erage of 6000 reports per day. Our evaluation reveals that studying the malware interaction

with domain names can lead to deeper insight into malicious activities.

71



Chapter 5

Ranking the Severity of Domain Names

based on Malware Behavior

In this chapter, we study the problem of assigning severity scores to malicious domains,

i.e., domains that are abused by the malware underground community. Our main goal is to

automatically assign a high severity score to domains that are involved in severe malicious

activities, such as C&C servers and drop locations. The severity scores enable dynamic

domain name blacklists to be more efficient in prioritizing how to deal with cyber crimes.

For example, with existing blacklists, it is unclear, which domain names have been involved

in more malicious activities compared to others. With dynamic severity scoring, our goal is

to determine the level of maliciousness for each domain name. We formulate the problem

using a system inspired by the emerging field of reputation systems.

Our work is based on the observation that behaviors of malicious networks are re-

flected in their interactions with domain names. In short, malware behavioral features have

distinct characteristics that reveal the nature of their malicious interaction with domain

names. By identifying and observing these features, our system can assign appropriate

severity scores to malicious domains with, which these malware interact. Our system uses

72



dynamic malware analysis reports generated in a controlled environment from malware

samples provided by ThreatTrack Security Inc [124]. Through analysis of such reports, our

system assigns severity scores to existing and new domain names, thereby enriching the

blacklists with more information about malicious domain names and their behaviors.

Previous works, discussed in Section 2.2.3, mainly focus on (binary) reputations and

blacklisting of domain names. We can distinguish our proposed system from other repu-

tation studies [79, 80, 81] by the following key points: first, our work proposes a novel

approach to evaluate the reputation score of a given domain name based on the malware

behavior analysis by quantifying and measuring the level of abuse. Second, our severity

system updates the severity scores based on observed malware behavior and requires no

training period. Third, our system benefits from the flexibility of generating customized

severity scores by adjusting the weights of the features based on the investigator’s priori-

ties. Finally, our system provides a behavioral pattern for domain names that can be used

to recognize domain name abuse activities.

The remainder of this chapter is organized as follows. Our system is described in Sec-

tion 5.1. Section 5.2 explains our dataset and Section 5.3 demonstrates the effectiveness of

our proposed system via an experiment involving real-world malware dynamic analysis re-

ports. We discuss the results and limitations of our work in Section 5.5. Finally, Section 5.6

provides our concluding remarks.

5.1 Severity Ranking System

The goal of our system is to assign severity scores to abused domain names. For any

given domain name, a high severity score is assigned if the domain is involved in extensive

malicious activities, such as C&C servers and drop locations.

Our system uses malware dynamic analysis reports as a main source of information.

73



These reports contain detailed information about domain names and their resolved IPs. For

each domain name, behavioral reports provide information concerning all communication

between a malware instance and domains through different protocols, such as HTTP, FTP,

IRC, and SMTP. Our dynamic malware analysis report database is updated on a daily basis

using a live feed of malware samples obtained from ThreatTrack Security Inc [124].

Malware Dynamic 
Analysis Reports

f1 f2 f3 f4

f5 f6

f7 f8

f9

Connections

Downloads

Uploads

C&C

Features 
Extraction

Connections

Downloads

C&C

Uploads

Rating 
Centers

Features 
Vector

Rating 
Values

Severity Engine

Domains 
Severity 
Scores

Rating Weights

Pre-Processing
A(d), I(d)

Figure 5.1: Overview of the proposed severity ranking system.

5.1.1 System Overview

In reputation systems, the main goal is to collect and combine feedback about participants’

behavior. The participants convey their opinions according to a specific rating model that

results in an integrated rating vector for each participant. Given a set of domain names,

a rating value is associated with each domain name based on a set of malware behavioral

features over a given time period. The severity system differs from traditional reputation

systems in the collection of feedback. In contrast to the traditional reputation system based

on subjective opinions, the rating values in our approach are implicit values inferred from

74



the interactions between domain names and malware samples.

Prior to discussing our proposed domain name severity system, we first introduce

some basic notation. A malware sample m contacts a domain name d, represented by a set

of labels separated by dots.

Let D = {d1,d2, . . . ,dn} be a set of domain names, and M = {m1,m2, . . . ,mp} be the

set of analyzed malware samples. Given a domain name d, we define A(d) ⊂ M to be the

set of all malware samples that contacted d. We denote I(d) as the set of all IP addresses

resolved from d ∈ D.

Definition 5.1. A domain name d is a severe domain when there is evidence that d or I(d)

are associated with known malicious activities. The evidence of maliciousness is recog-

nized by the malware interaction with the domain d. The more evidence observed toward

d, the higher the severity considered.

As shown in Figure 5.1, the severity of a domain name d is determined by the fol-

lowing steps. First, we observe the most recent set A(d) of malware samples that contacted

d. Then, we aggregate the set I(d) for all IP addresses resolved from all possible domain

name labels. Subsequently, we measure four different groups of features for each domain d.

The first group contains connection-based features, which quantify the number of connec-

tions that are made by the set A(d). The second group consists of download-based features,

which measure the level of download activities conducted by the set A(d). The third group

includes upload-based features to capture any information leakage conducted by A(d). The

last group contains C&C-based features to quantify the level of C&C activities.

Once the above sets of features are extracted, we feed them to the rating centers,

where they are transformed into a set of rating values for each domain name d. The severity

engine then takes the rating values for each domain name and assigns the severity score

accordingly. We now explain the details of features extraction and how the rating centers

75



convert them to rating values, followed by how the severity engine computes the severity

score of domain names.

5.1.2 Features Extraction

Domain names are considered as pointers to various Internet services that can be abused by

malicious networks to operate various activities. Our features are inspired by the life cycle

of a typical botnet that begins with an ordinary infected machine. Normally, the infected

system first launches malicious activities locally, followed by attempts to communicate with

the botnet infrastructure. The infected machine then updates itself with the latest malware

binaries. The acquired binaries instruct the infected system to communicate with the rest of

the botnet infrastructure. The infected system is typically directed to download the updates

through a variety of file transfer protocols FTP and HTTP. By utilizing the life cycle of

malicious networks, we can extract some useful features that measure the level of abuse

for the involved domains. In what follows, we explain the set of features extracted by our

system.

Connection-based Features

The initial phase of botnet infection involves calling home infrastructure. The connection-

based features describe the frequency of accessing a domain d by different malware sam-

ples. A large number of connections established by malware samples to a domain d implies

high involvement of the domain d in malicious activities. In order to measure the number

of visits to a domain d, we observe features that capture successful connections to different

services on the set I(d). During our feature extraction, we evaluated the number of FTP,

HTTP, IRC, and other connections to non-standard ports (denoted by f1, f2, f3, and f4

respectively).

76



Download-based Features

A crucial stage in every malicious network involves updating the modules or the functional-

ities of the malware. We use the download-based features to measure the process of updat-

ing information for the infected systems. A domain name is considered as a data provider

when it serves as a direct or an intermediate step to host data downloaded by a malware

sample. This set of features thus reflects the severity of being a data provider in malicious

networks. Given a domain name d, we extract the number of conducted downloads using

HTTP GET ( f5) and FTP RETR ( f6) operations.

Upload-based Features

Certain malicious networks collect information from victims for different purposes. Upload-

based features capture the existence of information leakage from infected hosts to domain

names. A domain name that receives stolen information from an infected machine is called

a drop location. By counting the number of HTTP POST ( f7) and FTP STOR ( f8) opera-

tions, we can measure the level of the domain’s participation in such activities.

C&C-based Features

C&C servers are considered as the nerve system of malicious networks. C&C-based fea-

tures reflect the existence of any instruction that is transmitted between infected hosts and

domain names. In our system, f9 counts the number of exchanged C&C commands using

the IRC protocol between malware samples and the domain under consideration.

5.1.3 Rating Centers

In reputation systems, feedback collected from raters reflects participant behaviors. In our

context, features (f1-f9) are fed to dedicated rating centers to generate rating values. For

77



f1 f2 f3 f4 Features 
vectorf5 f6 f7 f8 f9

Accumulate 
featuresf1+f2+f3+f4=fconn f5+f6=fdown f7+f8=fup f9=fc&c

Rconn Rdown Rup Rc&c

r r r r

d

Assign rating

Domain rating 
values

conn
d

down
d

up
d

c&c
d

Domain name

Figure 5.2: Rating center functionalities.

any given period of time, rating centers produce rating values that reflect how each domain

behaves according to the collected set of features as depicted in Figure 5.2. First, the rating

centers store an accumulation of the features for each domain name d. The rating centers

then sort all of the observed domain names in descending order based on the calculated

features. Finally, rating centers arrange domain names into different rating levels. Based

on Definition 5.1, these levels reflect the position of a domain name with respect to all

observed domain names based on considered features. The assigned level for a domain

name is considered as the inferred rating value, which can be used in the severity score

computation.

Rating Freshness. Domain names can change their involvement in malicious activities

from one day to another. The severity score should therefore reflect this behavior by pri-

oritizing attention to recent rating values. Rating values are usually aggregated by simple

vector addition over a pre-specified time interval. Previous rating values can be aged by a

78



freshness factor λ ∈ [0,1] to give recent rating values more importance over the old ones.

When λ has low value, the old ratings have less influence on the severity scores, and vice

versa. Let �rd,t be the aggregated rating values at time t; we then define the accumulated

rating values with the freshness value λ at the time t +1:

�rd,(t+1) = λ .�rd,t +�rd,(t+1), where 0 ≤ λ ≤ 1. (5.1)

5.1.4 Severity Engine

The severity engine is responsible for determining the maliciousness level of a given do-

main. To accomplish this goal, the severity engine receives rating values from designated

rating centers based on the malware features. Our goal is to derive a severity function that

satisfies the following design criteria: first, the severity function should be dynamic and

updated over time. Second, the severity function should give more attention to the recent

rating values over the old ones. Third, the severity function should be customizable to serve

the purpose of a cyber crime investigation process.

Our severity engine uses Multinomial Bayesian systems (Dirichlet reputation sys-

tems) [129]. Dirichlet reputation systems provide a strong and sound mathematical model

for addressing our design criteria. It also allows for multinomial rating levels that are used

to represent feedback about domain names. Let L = {l1, . . . , lq} denote the set of possible

q rating levels. A domain name d receives a rating value rc
d ∈ L from each of the four rat-

ing centers c as shown in Figure 5.2. Let �rc
d = (rd(1),rd(2), . . . ,rd(q)) denote the rating of

center c corresponding to domain d, where rd(i) = 1 if the rating level i is chosen by c and

rd(i) = 0 otherwise.

Since the extracted features constitute the source of the rating values, we can place

79



emphasis on a subset of the features for our severity score calculations. Let wc be a weight-

ing factor that reflects the investigator’s interest in each set of features. The accumulated

rating values from c rating centers is defined as:

�Rd = ∑
c

wc
�(rc

d) (5.2)

Definition 5.2 (Severity Score Vector). The severity score vector Sd of a domain d with

rating values �Rd , as specified in Equation 5.2, and q rating levels in L is defined as [129]:

�Sd :
(

Sd(i) =
Rd(i)+Cαd(i)
C+∑q

j=1 Rd( j)
, i = 1 . . .q

)
(5.3)

The updated (posterior) severity score is initialized using an a priori severity score

(αd) to reflect previous expert knowledge about each domain name. The new rating values

(Rd) update the score based on the extracted features. C denotes a priori constant that weighs

the importance of considering previous information about domain names while updating the

new score. When a large value of C is chosen, new ratings have less impact on the current

scores.

Equation 5.3 represents the severity score in q different probability values for each

lq ∈ L. In order to represent the severity score with a single value for concise represen-

tation [55], we assume a given rating level li has point value that reflects its importance

between the other levels �V = (v(l1),v(l2), . . . ,v(lq)), where v(li) = i−1
q−1 . The severity score

vector �Sd is then multiplied by the corresponding �V and accumulated as follows:

Sd =
q

∑
i=1

v(i)Sd(i) (5.4)

Since the severity system is based on updating a priori information, each fresh domain

80



name d has to be initialized with a score that is defined by the common base rate vector �α .

The base rate injects the a priori knowledge about domain names. When the system is

bootstrapped, a default base rate αq =
1
q is used.

The base rate vector can be updated dynamically based on the severity scores ob-

served by all domain names. This vector reflects certain information about a domain name

with additional bias to either low or high severity scores. To calculate the dynamic base

rate at a specific time t, we aggregate all rating values for the observed domains as follows:

�Rt = ∑
d
�rd,t (5.5)

We can then calculate the dynamic base rate for time period t +1 using Equation 5.3.

To explain the proposed approach, assume that we have 10 domains for which to

evaluate their severity throughout the first two days as shown in Table 5.1 and Table 5.2.

We initialize the system by setting q = 5, C = 5, α = 1 with dynamic base rate, λ = 0.5,

and wc = 1.

In the first day, d6, d5, d3, and d6 are the most abused by malware samples to con-

duct download, upload, C&C, and successful connection activities respectively. Given the

features for the observed domains, rating values are inferred based on a scale of five levels,

where l5 denotes the most abused level. For example, the domain d1 conducted low (l1)

download activities, medium-low upload and successful connection activities, and medium

C&C activities. Each rating level has an individual score value that is calculated by Equa-

tion 5.3. Finally, the score estimation (Sd) is computed by Equation 5.4, which is used to

produce the ranked list of domain names. In fact, the domains d5, d6, and d4 occupy the

top three positions in the first day. As we monitor the domains throughout the second day,

d3 has become inactive and a new domain (d11) is observed. The newly observed domain

(d11) integrated into the system by taking the community base rate while receiving current

81



rating values, which qualify it to be in the 6th position. On the other hand, d3 has been

penalized for being inactive, which is reflected by discounting the scores with λ . Due to

the drop in activity of the d5 domain, it has been downgraded to second place in the ranked

list; since d6 continues to receive more high rating values, it qualifies to be at the top of

abused domains.

Features Rating Score
Domains Fdown Fup Fc&c Fconn l1 l2 l3 l4 l5 l1 l2 l3 l4 l5 Sd Rank

d1 10 20 10 50 1 2 1 0 0 0.22 0.33 0.22 0.11 0.11 0.39 5
d2 3 1 5 10 3 1 0 0 0 0.44 0.22 0.11 0.11 0.11 0.31 7
d3 5 8 21 30 2 1 0 0 1 0.33 0.22 0.11 0.11 0.22 0.42 4
d4 56 32 1 98 1 0 0 3 0 0.22 0.11 0.11 0.44 0.11 0.53 3
d5 34 52 13 130 0 0 1 1 2 0.11 0.11 0.22 0.22 0.33 0.64 1
d6 73 34 5 150 0 1 0 1 2 0.11 0.22 0.11 0.22 0.33 0.61 2
d7 2 4 5 30 2 2 0 0 0 0.33 0.33 0.11 0.11 0.11 0.33 6
d8 32 4 6 50 1 2 1 0 0 0.22 0.33 0.22 0.11 0.11 0.39 5
d9 2 4 6 29 3 1 0 0 0 0.44 0.22 0.11 0.11 0.11 0.31 7
d10 4 4 4 25 4 0 0 0 0 0.56 0.11 0.11 0.11 0.11 0.28 8

Table 5.1: Running example of ranking the severity of domain names: first day.

Features Rating Score
Domains Fdown Fup Fc&c Fconn l1 l2 l3 l4 l5 l1 l2 l3 l4 l5 Sd Rank

d1 3 16 2 22 3 0 1 0 0 0.42 0.24 0.24 0.05 0.05 0.27 8
d2 9 5 9 26 3 0 1 0 0 0.61 0.15 0.14 0.05 0.05 0.2 10
d3 0 0 0 0 0 0 0 0 0 0.167 0.11 0.06 0.06 0.11 0.21 9
d4 90 20 8 140 0 0 2 1 1 0.15 0.05 0.23 0.43 0.14 0.6 3
d5 20 40 10 110 0 1 2 0 1 0.05 0.14 0.33 0.15 0.33 0.64 2
d6 65 40 10 190 0 0 1 1 2 0.05 0.15 0.14 0.24 0.42 0.71 1
d7 10 30 9 50 1 1 1 1 0 0.33 0.33 0.14 0.14 0.05 0.31 5
d8 20 29 15 80 0 1 1 1 1 0.15 0.33 0.24 0.14 0.14 0.45 4
d9 10 12 16 59 1 2 0 0 1 0.43 0.33 0.05 0.05 0.14 0.29 7
d10 7 9 1 20 3 1 0 0 0 0.71 0.14 0.05 0.05 0.05 0.15 11
d11 2 4 17 30 3 0 0 0 1 0.56 0.14 0.05 0.08 0.19 0.3 6

Table 5.2: Running example of ranking the severity of domain names: second day.

5.2 Data Collection and Analysis

The basic source of data for our dynamic severity system is the malware dynamic analysis

reports provided by ThreatTrack Security Inc [124]. Each report summarizes all of the

behavioral activities conducted by a single malware sample in a controlled environment.

The reported behavioral activities cover the system level and the network interactions. We

82



analyzed an average of 6,000 distinct reports of different malware families on a daily basis

as shown in Figure 5.3. Our database collected over 14 million unique reports during the

period of January 1st , 2013 to November 16th, 2013.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

An
al

yz
ed

 R
ep

or
ts

 

Figure 5.3: Number of analyzed malware samples.

By simple measurement of our dataset, we leverage important insights from our se-

lected behavioral features. During our experiments, malware samples contacted between

200 to 1,000 unique domain names per day, which accumulated to roughly 132,000 do-

mains with an average of 11% new domains per day as depicted in Figure 5.4. Since ma-

licious networks are recycling domain names, it is necessary to monitor and observe their

actions on a daily basis to limit and minimize domain recycling.

Reusing domain names in malicious activities does not prevent the use of fresh or

new domains that appear for short periods of time. Figure 5.5 shows the distribution of

active days for observed domains.

Figure 5.6 shows that domain names are mostly contacted by malicious networks to

download updates to infected machines after successful connection. Leaking information

from the victim is the second most performed action when contacting malicious domains.

83



0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Do
m

ai
ns

 

Active Domains New Domains

Figure 5.4: Number of observed and new domain names.

5.3 Domain Name Severity System Evaluation

In this section, we present an evaluation of the domain name severity system. We show

how the system tracks the behavior of domain names and assigns dynamic severity scores

based on the interactions of the domains with malware samples. Reputation systems are

evaluated based on existing or known maliciousness judgments. In our case, we must build

common knowledge about domain names from existing reputation solutions to represent

the maliciousness judgments. Web of Trust (WOT) [128] is a community-based safe surfing

tool and is considered as one of the most popular reputation systems, which assigns scores

to domain names based on user complaints and sources of blacklists. Domain names are

rated based on a scale between [0-100]. WOT scores represent users’ preferences and their

perceptions about domain names. Such scores also give a graded reputation that reflects the

level of abuse of domain names, which can be used to judge the maliciousness of domains

under consideration.

Our experiments fall into three sections: first, we show the effectiveness of our system

84



0

20000

40000

60000

80000

1 2 3 4 5 6 7 8 9 10 15 20 30 40 50
M

or
e

Do
m

ai
ns

 

Active Days 

Figure 5.5: Distribution of the number of observed domains according to the number of
active days.

by contrasting the obtained scores with the WOT scores. Second, we explore different

factors that can affect the system, such as the domain age, features customization, and

the domain’s behavioral patterns. Finally, we investigate the level of maliciousness inside

popular top ranked domain names.

5.3.1 Effectiveness of Domain Name Severity

The effectiveness performance of our severity system is evaluated using known malicious-

ness judgments from the WOT reputation system [128]. Since the WOT maliciousness

indicators are represented in a non-binary notion, one evaluation measure that can be prop-

erly used to measure the effectiveness of our system is the nDCG, which is described in

Section 2.1.3.

We experiment with a dataset that spans the period of January 1st , 2013 to November

16th, 2013. The system calculates the severity scores for each domain name as described

in Section 5.1.4 on daily basis, and then produces a ranked list of severe domains. The

85



0

200

400

600

800

1000

1200

O
ve

ra
ll 

fe
at

ur
es

 fr
eq

ue
nc

ie
s 

Download Upload C&C

Figure 5.6: The average distribution of the extracted features.

nDCG values for the top 10 ranked domain names of each day are shown in Figure 5.7.

The average and variance values of nDCG over the observed interval are 0.72 and 0.0079

respectively. In Figure 5.8, we show the average nDCG@k of the system for different values

of k. Since the behavioral features capture domain name abuse from different perspectives,

we evaluate the domain name severity system based on different combinations of these

features as shown in Figure 5.9.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

nD
CG

@
10

 

Figure 5.7: The nDCG@10 across the dataset.

86



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 50 100 200 500 1000 2000

Av
er

ag
e 

nD
CG

 

k 

Figure 5.8: The average nDCG@k for the analyzed dataset.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

CDUI CDU DUI DU C I U D

Av
er

ag
e 

nD
CG

@
10

 

Behavioral Features 

C: Connections, D: Downloads, U: Uploads,  I: C&C 

Figure 5.9: The nDCG@10 with different combinations of rating centers.

When a domain name under consideration is not found in the WOT list, we set the

mal j value in Equation 2.2 to zero. In Figure 5.10, we show the percentage of domains

that were not found in the WOT list in the 30 top-ranked domains. We investigate all of the

missing domains to search for clear justification for the appearances of these domains within

the top ranked domains. Figure 5.11 shows the distribution of the behavioral features that

are conducted by the domains with no judgments in WOT. Most of these domains fall under

C&C activities. Since the WOT is based on user complaints, IRC domains are less likely

to be rated by end-users for two possible reasons: one, IRC domains are usually perceived

by end-user as harmless; two, there is no direct communication between these domains and

87



end-users. Furthermore, these domains belong to known IRC service providers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

nDCG@30 % of missing judgments

Figure 5.10: Effect of missing judgments on the nDCG@30.

Download 
28% 

C&C 
64% 

Upload 
8% 

Figure 5.11: Distribution of behavioral features for domains with no maliciousness judg-
ments in WOT.

The domain name severity system depends on the period and the freshness of an

abuse. Domain severity scores are discounted based on their age of being abused by the

malware community. Short-lived domains, which appear for less than 10 days, represent a

large portion of the abused domains as discussed in Section 5.2. The severity system can

be configured accordingly to focus on the fresh domains by adjusting the age weights (λ )

88



in Equation 5.2. Figure 5.12 shows the average nDCG of the system with different values

of the age discount factor. When the system uses the age discount factor, it can adjust the

importance or the level of contribution of past events to the current severity score. It is

clear that the performance dropped in the absence of the age factor discount (λ = 1), which

shows the importance of taking into consideration how long a domain name is abused. In

contrast, the system performs better when the age discount factor is set to ignore past scores

(λ = 0), which considers only the fresh domain names or the current day rating values. Our

experiments show that the nDCG value does not significantly change for 0.1 ≤ λ ≤ 0.9.

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e 

nD
CG

@
10

 

Age Discount (λ) 

Figure 5.12: Variation of nDCG@10 with λ .

Initially, the scores of fresh domain names are initiated by adjusting the system base

rate configurations. The base rate (α) can be initiated by previous expert knowledge, which

can affect the evolution of severity calculation. Figure 5.13 shows variation in the average

nDCG@10 with different configurations of the base rate α . When the system is configured

to dynamically calculate the base rate from the existing community, the initial knowledge

does not have any effect on the performance. However, when the system uses a fixed base

rate, the initial knowledge negatively affects the performance.

To evaluate our system in assigning high severity scores to malicious domains, we

collected domains listed by various sources of public blacklists [130, 131, 132]. We then

compared the blacklisted domains’ severity scores with the non-blacklisted domains within

89



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Dynamic  α=1 Dynamic  α=0 Fixed  α=1 Fixed  α=0 
Av

er
ag

e 
nD

CG
@

10
 

Base Rate 

Figure 5.13: Base rate selection and nDCG@10.

the top 1,000 severe domains on the last day of our analysis. Figure 5.14 shows that our

system successfully assigns high severity scores to the blacklisted domains, and also reflects

the distribution of α scores that are assigned to the new observed domains.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Se
ve

rit
y 

sc
or

es
 

Different domains 

Non-Blacklisted Blacklisted α 

Figure 5.14: Severity score distribution for blacklisted and non-blacklisted domains.

Previous studies observed some abuse within popular domains. It is thus necessary

to quantify the level of abuse within top ranked popular domain names [133]. Since our

domain name severity system measures the level of maliciousness, this allows us to infer

the abuse level of popular domain names. During our experiments, we examined the top

200 domains reported on a daily basis from our severity system to analyze the level of abuse

within public lists of popular domains represented by Alexa [134] and Quantcast [135] lists.

Figure 5.15 shows the daily percentage of the existence of popular domains within our

daily severe domains lists. Among the top 200 severe domains observed from our analysis,

90



32% and 21% of these domains were found in Alexa and Quantcast, respectively. We also

noticed that 37% of Alex and 27% of Quantcast domains have been blacklisted by public

blacklists.

0%

10%

20%

30%

40%

50%

60%

%
 in

 To
p 

20
0 

Alexa Quantcast Blacklisted Alexa Blacklisted Quantcast

Figure 5.15: Abuse of the malware community in popular domains lists.

5.4 Ranking the Severity of Name Servers from Passive

DNS

DNS has been abused by cyber criminals with techniques that require more control over

name servers in order to be implemented effectively. In this section, we look at the root

cause of managing malicious domain names. We extend the severity system developed

throughout this chapter to assign severity scores to name servers. However, we leverage the

passive DNS traffic to infer the malicious behavior of the name server. Our main goal is to

assign a high severity score to name servers involved in malicious activities. The severity

scores help in identifying rogue name servers, which are abused by malicious networks to

conduct various activities. Given a name server ns, we assign a high severity score if ns is

involved in malicious activities, such as hosting short-lived domains, Fast-Flux domains, or

DGA domains. On the contrary, we want to assign a low severity score if ns is used mainly

91



for legitimate purposes. With dynamic severity scoring, our goal is to decide the level of

maliciousness for each name server.

Previous works, discussed in Section 2.2.3, focused mainly on reputations and black-

listing of domain names; however, we focus on the root causes by designing a reputation

system for name servers instead of domains. To the best of our knowledge, our system is

the first to create a dynamic reputation around name servers.

Our work is based on the observation that name server behaviors are reflected on the

domain names under their authority. In short, domain name features have certain charac-

teristics that can reveal the nature of the malicious activities operated on a specific name

server. By identifying and observing the domains under an authoritative name server, our

system can assign appropriate severity scores for that name server. The severity of a name

server ns is determined by the following steps:

1. We observe the most recent set R(ns) of domain names that reports ns as an authori-

tative name server.

2. We aggregate the set S(d) of all observed sub-domains under d.

3. We measure two different groups of statistical features for each domain d, namely

Fast-Flux-based features and DGA-based features groups.

4. The calculated features feed to the rating centers to generate rating values, which are

processed by the severity engine to produce severity scores.

Once the statistical features are extracted, the rating center transforms the statistical

features into a set of rating values for each name server ns. The severity engine then takes

the rating values for each name server and assigns the severity score accordingly. In the

following, we explain the details about the statistical features. Afterward, the rating centers

92



discussed in Section 5.1.3 are used to convert the features to rating values, and the severity

engine explained in Section 5.1.4 is used to compute the name server’s severity score.

5.4.1 Name Server Statistical Features

In this section, we explain the statistical features used in our name server severity system.

Name servers play a crucial role in the DNS infrastructure by holding resource records for

domain names. Recent abuse of DNS requires more control over name servers in order

to be implemented effectively, such as Fast-Flux domains and DGA domains. Malicious

networks abuse name servers to hold and operate their domains. The statistical features

are inspired by the domain’s abuse characteristics that are discussed in previous works [80,

89, 26, 87]. Our features focus on the abuse of DNS that requires more control over name

servers. For instance, the Fast-Flux and DGA techniques are considered the most used

techniques for name server abuse. Such abuse requires frequent updates to the resource

records of the abused domains and more control over name servers as well. By observing

the Fast-Flux and DGA abuse, we can extract a few of the statistical features that measure

the level of abusiveness for the name server ns by malicious networks.

Fast-Flux Features

Since malicious networks are constructed mainly on top of compromised machines, bot-

masters need techniques to utilize these machines in order to operate malicious activities.

Botmasters have recently developed several ways to make malicious networks more flex-

ible and robust against take down actions, e.g., by using Fast-Flux techniques. Criminals

introduce FFSNs, which simply host a service by many different IP addresses; i.e., they

construct a proxy network on top of compromised machines that are used to build resilient

hosting infrastructure using public DNS [23]. Generally, FFSNs can be classified either as

93



single Fast-Flux or as double Fast-Flux. The single Fast-Flux technique frequently changes

the mapping of A records [88] of domain names to IP addresses of compromised systems in

the botnet. The double Fast-Flux technique is similar to the single Fast-Flux but it has an ad-

ditional layer of redundancy that continually changes the authoritative NS records [88, 23].

The Fast-Flux features report some characteristics of domain names that are abused

by Single-Flux or Double-Flux techniques. Table 5.3 summarizes the features that are used

in the literature to capture the behavior of Fast-Flux domain names and provide promising

results in recognizing such abuse [87, 89]. Fast-Flux is used to manage many IP addresses

to host a specific domain name. Therefore, the number of distinct IP addresses is one of the

important signs of Fast-Flux behavior. We measure the existence of multiple IP addresses

for a given domain and name server by counting the number of unique A records associated

with that domain and name server ( f1, f2). Fast-Flux behavior can also be recognized by the

TTL values for resource records. Since Fast-Flux techniques need to shuffle IP addresses

for domain and name servers in short periods, the TTL values of A and NS records are

typically configured with low values. By setting low TTL values, DNS forces resolvers to

drop the corresponding cached resource records quickly [89]. This causes new resource

records to be fetched from the authoritative name server more frequently. Our features

include the average TTL values for the observed A and NS records ( f3, f4) of a specific

domain.

DGA-based Features

When an infected machine must communicate with its home infrastructure, it usually con-

tacts either some of the hard coded IP addresses or the domain names. This static contact

information could be blacklisted and cause the infected machine to be isolated from reach-

ing home. Cyber criminals overcome this challenge by introducing the DGA technique to

94



generate domains dynamically using predefined algorithms. By utilizing some of these do-

mains, an infected machine has greater chances to more effectively interact with malicious

networks.

The DGA-based features capture the existence of the DGA behavior reflected on

DNS messages. Table 5.3 lists some of the features that were introduced in previous studies

to detect DGA domains [80]. DGA domain names are usually generated from random

characters or non-meaningful words. Based on these two observations, we utilize four

features that can detect DGA domains. The first feature is to measure the randomness of

the characters within the 2LD ( f5) using Shannon’s entropy [26]. The second feature is to

estimate the meaningfulness of domains ( f6) by extracting the Longest Meaningful String

(LMS) using the Wordnet database 1. The last two features evaluate the ratio of digits ( f7)

and the number of unique characters ( f8) within the 2LD.

Feature Type Features

Fast-Flux

( f1) Number of unique A records
( f2) Number of unique A records for name servers
( f3) Average TTL value for A records
( f4) Average TTL value for NS records

DGA

( f5) Entropy of the 2LD
( f6) Ratio of LMS to the length of the 2LD
( f7) Ratio of digits to the length of the 2LD
( f8) Number of unique characters in the 2LD

Table 5.3: Fast-Flux and DGA features.

5.5 Discussion and Limitations

Existing reputation systems produce a binary decision (Good or Bad) about domain names.

We believe that our domain name severity system can serve as an extension to existing

reputation systems such as Notos and EXPOSURE. Normally, reputation systems produce
1http://wordnet.princeton.edu

95



a large number of domain names to be blacklisted. Given a list of blacklisted or even

regular domain names, our system can add more information about the level of abuse for

these domains. Moreover, our system is based on behavioral features, which can easily be

extended by adding new features to capture other behaviors of malicious actions such as

spam, phishing, and other C&C communications.

Our experiments show a noticeable level of abuse for known good domains repre-

sented by Alexa and Quantcast lists. Such abuse raises an alarm against whitelists, which

can be abused to deliver and participate in malicious activities. Since our severity sys-

tem is based on the second level domain, the severity scores represent the collective abuse

conducted under each second level domain. The malware community has recently started

abusing cloud services to host malicious contents. In our analysis, we observed three major

cloud service providers that were listed among the top 300 severe domains rated by our sys-

tem. These domains have 665 different sites that were abused by the malware community.

Current studies focus on the abuse level of domain names, whereas our work serves

as a base for future behavior analysis of name servers. Our name server severity system can

complement the exiting domain name reputation systems to discover and effectively take

down malicious networks. The recognition of abuse types can be adjusted by the statistical

features, which can easily be extended by adding new features to capture other behaviors

of malicious actions.

We are aware that our system does have certain limitations. First, the abuse level rank-

ing is limited to the domain names observed during the dynamic analysis of the malware

samples. This limitation is inherited from the nature of malware dynamic analysis, which

96



can be affected by different factors such as analysis time and anti-sandbox techniques. Sec-

ond, the behavioral features consider all communication between domain names and mal-

ware samples as malicious. However, there are some activities that can be considered as be-

nign, such as regular or legitimate software updates by the sandbox environment. Recently,

some approaches have been introduced to detect malicious downloaded files [136, 67, 137].

Such techniques can be used to evaluate the reputation of the downloaded files in order to

improve the quality of the feature extraction by our system. In the case of the name server

severity system, the abuse level ranking is limited to the name servers observed by the DNS

sensors. This limitation is inherited from the nature of passive DNS monitoring, which can

only listen to name servers that reside in their premises. In addition, the statistical features

might capture some of the legitimate services (Fast-Flux). Certain learning algorithms can

be adopted to set some thresholds to recognized such legitimate services [87, 89].

5.6 Conclusion

In this chapter, we developed a severity system for domain names based on dynamic anal-

ysis reports of malware samples. The system leverages the interaction between domain

names and malware samples to extract indicators for malicious behaviors or abuse actions.

The system utilizes these behavioral features on a daily basis to dynamically produce sever-

ity or abuse scores for domain names. Since our system assigns maliciousness scores that

describe the level of abuse for each analyzed domain name, it can be considered as a com-

plementary component to existing (binary) reputation systems, which produce long lists

with no priorities. Our system leverages the domain names that reside under the authority

of name servers to extract indicators for malicious behaviors or abuse actions. The system

utilizes these behavioral features to dynamically produce severity or abuse scores for name

servers.

97



Our evaluation using real-world data, including a 10-month dynamic analysis report,

shows that the list produced by our system highly correlates with those produced by the

well-known Web Of Trust (WOT) reputation system. Moreover, our system allows us to

identify a noticeable level of abuse for known domains represented by Alexa and Quantcast

lists.

98



Chapter 6

Detection of DNS-based Malicious

Payload Distribution Channels

In this chapter, we propose a detection mechanism for DNS payload distribution channels

by leveraging features of DNS to distinguish between malicious and non-malicious do-

mains. We use this mechanism to analyze a significant amount of DNS traffic in order to

understand the extent of DNS abuse in the real world. We detected a few previously un-

known long-lasting malware domains and different types of payload distribution channels.

This result is significant considering that the use of DNS payload distribution channels by

malicious networks is relatively rarely exploited. Our proposed technique, which is based

on access counts of resource records, shows promising results regardless of the syntax for-

mats of payload distribution channels.

This chapter is organized as follows. Our system is described in Section 6.1. Section

6.2 explains our datasets and Section 6.3 demonstrates the effectiveness of our proposal via

an experiment on near real-time traffic. We discuss the limitations of our work in Section

6.4, and Section 6.5 provides concluding remarks.

99



Passive DNS 
Pre-processing

DNS Zone 
Analysis

Passive DNS 
Database

Payload Distribution 
Detection Module

Passive DNS Sensors

Known 
Specifications

Filtration

Payload 
Distribution 

Channels

MX Record 
Access Count

Filtration

Query-Response 
Pattern Analysis

Patterns for 
Payload 

Distribution  
Domains

Figure 6.1: Overview of proposed approach.

6.1 Proposed Approach

Our system monitors DNS messages in passive DNS and then characterizes and detects

payload distribution channels established within these DNS messages. As shown in Figure

6.1, the system consists of two main modules, one for query and response pattern analysis

and a second for the detection of payload distribution. Initially, the system pre-processes the

passive DNS traffic by extracting DNS messages that have TXT resource record activities

and divides the captured DNS traffic stream into specific epochs (e.g., epoch = 1 day). For

each epoch, it aggregates the DNS query and response messages of a given domain name to

be added to the domain-based queue. In parallel, the passive DNS traffic is also stored in a

passive DNS database, which collects historical data about DNS messages for offline anal-

ysis. Following the pre-processing phase, the collected messages are fed to the query and

response pattern analysis module, which provides characteristics of the payload distribution

channels. Finally, the detection module identifies the payload distribution channels. In the

following section, we provide details on how to characterize and detect payload distribution

channels.

100



6.1.1 Query and Response Patterns

DNS protocol is based on query and response messages to manage domain name sys-

tems. A query from any client can be formed to retrieve different information from a name

server, which will respond accordingly. By observing the communication between client

and server, we can model the relation between query and response messages. The query

and response relations can be used to distinguish between different behaviors of payload

distribution. When we observe any payload distribution activity, we use three parameters to

establish the channels in DNS. These parameters are the second-level domain, sub-domain,

and TXT record. The second-level domain is used to carry out payload distribution activ-

ity. The sub-domain is used to transfer any information from the client to the server. The

TXT record is the response information from the server to the client. During any session, the

client and the server agree on a specific domain name to be used for the payload distribution

activity. The second level domain parameter is thus determined before any session. We are

then left with two parameters that are used to form the communication channel. Based on

the nature of the payload distribution channel, these two parameters have different behav-

iors. The aim of the query and response pattern analysis module is to differentiate between

different behaviors of payload distribution. To achieve this goal, we analyze the exchange

behavior of query and response messages. This module is built based on two observations:

first, payload distribution channels through DNS are forced to transfer small quantities of

information with each DNS message due to the fact that DNS response packets are limited

to 512 bytes of characters if Extension mechanisms for DNS (EDNS) is not used [138].

Second, transferring more information through DNS protocol results in a high rate of DNS

queries and responses between the client and the name server [29].

Figure 6.2 illustrates different payload distribution scenarios that are considered the

four main possible behaviors of the two payload distribution parameters as sub-domains

101



and TXT records. Figure 6.2a explains how the client is changing the sub-domains to send

data to the name server, which will respond with the corresponding TXT records for each

sub-domain (Many-to-Many relation). Figure 6.2b shows how the client is changing the

sub-domains to update the name server with its status, and the server is replying with the

same TXT record for all possible sub-domains (Many-to-Single relation). Figure 6.2c ex-

plains how the client is sending the same sub-domain answered by several TXT records from

the server (Single-to-Many relation). This case rarely occurs within a short time frame be-

cause these responses are cached by caching resolvers for a period of time (TTL). Figure

6.2d shows how the client is sending the same sub-domain answered by only one TXT

record from the server (Single-to-Single relation). In general, malware families retrieve

updates from a malicious infrastructure in three different approaches: full payload updates

(Many-to-Many relation), periodical updates (Many-to-Single relation), or a one-time up-

date (Single-to-Single relation).

d

s1

s2

s3

s4

t1

t2

t3

t4

(a) Many-to-Many.

d

s1

s2

s3

s4

t

(b) Many-to-Single.

d s

t1

t2

t3

t4

(c) Single-to-Many.

d s t

(d) Single-to-Single.

Figure 6.2: Examples of query and response exchange patterns.

Definition 6.1. The query-response pattern model is a tuple G = 〈{d}∪T ∪S,E〉, where:

102



• d is the domain name node,

• S = {s1,s2, · · · ,sm} is a finite set of sub-domain nodes,

• T = {t1, t2, · · · , tk} is a finite set of TXT record nodes,

• E ⊆ (D×S)∪ (S×T ) is a finite set of pairs of distinct nodes, called edges.

We model the query and response relationship for each domain using a directed graph

as captured by Definition 6.1. For each vertex v in G, we define two functions: the in-

degree of v, denoted by inDegree(v), returns the number of entering edges to the node v:

inDegree(v) = |{u ∈V | (u,v) ∈ E}|; and the out-degree of v, denoted by outD(v), returns

the number of leaving edges from the node v: outDegree(v) = |{u ∈V | (v,u) ∈ E}|.
As shown in Figure 6.2, the query and response relationship patterns share certain

properties as given by Property 6.1.

Property 6.1. inDegree(d) = 0, outDegree(tk) = 0, outDegree(d) = inDegree(sm), and

outDegree(sm) = inDegree(tk)

In order to distinguish between the patterns shown in Figure 6.2, we define the nor-

malized distance measure between two non-zero integer values i1, i2 as formulated in Equa-

tion 6.1.

Dist(i1, i2) =
|i1 − i2|

max(i1, i2)
(6.1)

Since the query and response patterns can form complex relationships, we limited our sys-

tem to recognize only one pattern for each domain. We must therefore choose a candidate

node to represent the set. In fact, the system selects the most commonly used node de-

gree inside the targeted set. Let t ∈ T , and s ∈ S, each query and response pattern can be

recognized by the following properties:

103



Property 6.2. Given that inDegree(t) is the common value in inDegree(T ), then the Many-

to-Many pattern holds when Dist(outDegree(d), inDegree(t)) ≥ 0.5 and Dist(|S|, |T |) <
0.5.

Property 6.3. Given that inDegree(t) is the common value in inDegree(T ), then the Many-

to-Single pattern holds when Dist(outDegree(d), inDegree(t)) < 0.5 and Dist(|S|, |T |) ≥
0.5.

Property 6.4. Given that inDegree(t) is the common value in inDegree(T ) and outDegree(s)

is the common value in outDegree(S), then the Single-to-Many pattern holds when

Dist(outDegree(s), inDegree(t))≥ 0.5 and Dist(|S|, |T |)≥ 0.5.

Property 6.5. Given that inDegree(t) is the common value in inDegree(T ) and outDegree(s)

is the common value in outDegree(S), then the Single-to-Single pattern holds when

Dist(outDegree(s), inDegree(t))< 0.5, Dist(outDegree(d), inDegree(t))< 0.5, and

Dist(|S|, |T |)< 0.5.

Algorithm 18 displays an overview of query and response pattern recognition in four

steps. Step 1 (Line 1) takes a snapshot from the passive DNS traffic for a pre-defined

window of time. This step produces a set of query and response messages for each domain

that appears within the targeted window. Step 2 (Line 3) processes every domain name

by constructing the relation graph between sub-domains and TXT records. Step 3 (Lines

4-6) calculates the out-degree vector for all sub-domains, the in-degree vector for all TXT

records, and the out-degree of the domain. From these vectors, we get the commonly used

degree, which is considered a strong representative for the relation between all nodes. Step

4 (Lines 7-9) counts the distinct values of sub-domains and TXT records. Step 5 (Lines

10-17) determines the pattern mode based on the properties of each pattern, which can be

applied in arbitrary order (Property 6.2-6.5).

104



Algorithm 1: EXTRACTQUERYRESPONSEPATTERN

Input: A domain name d, set of sub-domains S = 〈s1,s2, . . . ,sn〉, set of TXT
records T = 〈t1, t2, . . . , tm〉

Output: Query and Response pattern mode,
{Many_Many,Many_Single,Single_Single}

1 D ← getSnapshoptFrom_pDNS(w)
2 foreach Domain d do

3 G ←Create_Relation_Graph(d,S,T )
4 SubDomain_Degree ←Common(outD(S))
5 TXT_Degree ←Common(inD(T ))
6 Domain_Degree ←Common(outD(D))
7 SubDomains_Counter ← |S|
8 TXT_Counter ← |T |
9 Pattern_Mode = None

10 if Property 6.5 then

11 Pattern_Mode = Single_Single
12 if Property 6.2 then

13 Pattern_Mode = Many_Many
14 if Property 6.3 then

15 Pattern_Mode = Many_Single
16 if Property 6.4 then

17 Pattern_Mode = Single_Many
18 return Pattern_Mode

105



6.1.2 Detection of Payload Distribution Channels

Each DNS message has a domain name d that consists of a set of labels. The rightmost label

is called the top-level domain; the two rightmost labels are called second-level domain; the

rest of the labels are referred to in the same manner. The services provided by these labels

are represented in a zone file and stored in the corresponding authoritative name server.

Name servers are capable of handling any DNS query and returning the corresponding

responses, which are taken from the zone file of each domain name. As name servers

are the key players in DNS, malicious networks must have access to a name server for

managing the payload distribution. When a name server is appointed to be the authoritative

name server for a malicious domain name, botmasters prepare the zone file of the domain to

store all attack payloads to be delivered via DNS. Since DNS zone files reflect the provided

services of domain names, we decided to observe DNS zone files to analyze domain name

behavior.

Extraction of DNS Zones: In payload distribution channels through DNS, name servers

are considered as the payload distributors. Since domain names can have multiple zones,

we must recognize the responsible zones that are associated with payload distribution.

Since a domain might have multiple labels that point to different zones, the system

traverses the labels from second-level to the left-most label. For each label, the NS resource

record is requested from the passive DNS database to see whether or not that label is a zone.

If a sub-domain label has an NS record, it is a zone under that second-level domain. In the

next step, the system profiles DNS zone activities of this zone.

DNS Zone Analysis: First, we analyze the behavior of domain names by observing DNS

zone activities in the passive DNS traffic. Within the zone file of each domain name, there

are different types of resource records. Each resource record indicates specific services

or operations associated with the domain name. An important feature of the passive DNS

106



database is the aggregation of the number of times each record has been requested, called

access count. Our intuition is that domain names, which are solely used for payload dis-

tribution, show different behavior compared to regular domains. Regular domains receive

queries for different resource records, whereas malicious domain names, which are mostly

used for payload distribution through DNS, are only accessed to receive attack payloads.

Botmasters therefore focus only on using specific resource records that are known to be

used in payload distribution channels such as TXT records. Moreover, these domains do

not heavily use the resource records that are normally used by regular domain names, such

as A, AAAA, and MX resource records. Thus, by observing the resource records and their

access counts, we can profile the DNS zone activities of a domain name.

Determining whether a zone is used for payload distribution purposes can be achieved

by analyzing its resource record activities. These activities can be calculated as a function

of access counts. By using the passive DNS database, we extract all accessed resource

records and their access counts. The passive DNS is built in such a way that it counts the

amount of times of access to each resource record for a certain period.

Let R = RA ∪RNS ∪·· ·∪RT XT where RA = {rA | rA is an A record}, . . . ,RNS = {rNS |
rNS is an NS record} be the set of all resource record types that can be defined in a DNS

zone file, and P = {p | p ∈ (R \RNS ∪RCNAME)} is the set of all the resource record types

that are commonly used by payload distribution channels and other uses too. Since the TXT

resource record is known to be the most suitable for payload distribution, we define a set

T = {rT XT | rT XT is a TXT record} that holds any TXT record in a given zone.

Let the sum of access counts of all resource records in P be acP, and let the sum of

access counts of all resource records in T be acT . We then define μ as follows:

μ =
acT

acP
(6.2)

107



Passive DNS
Period 30 days
DNS messages ≈ 20 Billion
TXT records ≈ 40 Million

Malware database
Period 1 year
No. of samples ≈ 14 Million
No. of samples with TXT activities ≈ 18 Thousand

Table 6.1: Statistics of the dataset used to evaluate the proposed approach.

From Equation 6.2, μ reflects the relation between the access ratios of T and P records

and thus acts as an indicator of payload distribution activities. Payload distribution channels

receive significant access counts from T , which results in larger μ values. However, non-

payload distribution channels receive more access counts on the resource records from P,

which hence results in smaller μ values.

Filtration Steps: Certain legitimate cases can behave as payload distribution channels. In

fact, there are specifications, which use TXT records to apply some security measures for

mail servers such as Sender Policy Framework (SPF) [139], Domain Keys Identified Mail

(DKIM) [140], Internet Key Exchange (IKE) [141], and DNS Black List (DNSBL) [142].

Since these specifications are designed for mail servers, a DNS zone file should reflect the

existence of MX resource records. These legitimate services can be recognized using two

different filtration steps: specifications recognition (i.e., SPF, DKIM, IKE, or DNSBL) and

MX resource record activity. The first filtration process takes each domain and selects the

most accessed TXT resource record using the passive DNS database. We then apply a

regular expression in the TXT record based on the defined syntax of specifications [140,

139, 141, 142] to determine any possible specification string (e.g., SPF). When data from

the TXT record match any defined specifications, we consider the domain name a non-

payload distribution channel. In the second filtration step, we investigate the activities

of MX resource records. When a domain name is associated with MX resource record

activities, it is considered a non-payload distribution channel.

108



6.2 Datasets Description

We utilize three datasets to evaluate our system: near real-time passive DNS traffic, a pas-

sive DNS database, and a malware database.

Passive DNS Traffic: We evaluate the system using a one-month passive DNS dataset,

which spans from March 19, 2013 to April 19, 2013, provided by Farsight Security Inc. [33].

We process only the packets with TXT responses. According to the system logs, the total

number of packets processed by our system is around 40 million packets with an average

of about 1.3 million packets daily (Table 6.1).

Passive DNS Database: Our system also builds a pDNS database that stores all the data

coming from the pDNS traffic. This database recorded the pDNS traffic that we utilize for

profiling the DNS zone of domains. The passive DNS database is provided by DNSDB of

Farsight Security Inc. [33].

Malware Database: We observe malware samples provided by ThreatTrack Security Inc [124]

over a one-year period. We receive the malware feed on a daily basis and then analyze each

sample in a sandbox to generate dynamic behavioral analysis reports. In our analysis, we

only consider malware samples that conduct activities using the TXT resource record. Table

6.1 shows statistics about the malware feed recorded between January 2012 and December

2012.

6.3 Experimental Results

In this section, we report the results of our experiments that we perform to test the effective-

ness of our system for detecting payload distribution channels in the passive DNS dataset.

We begin by demonstrating the results of the DNS zone analysis module using the passive

DNS dataset. Subsequently, we elaborate on the long-running hidden domains used by the

109



Morto worm [14] to distribute attack payloads. Finally, we conclude the section by showing

that, contrary to common knowledge (e.g., [14]), some of the attack payloads are in clear-

text without any encoding or encryption. This indicates that our system can detect these

channels regardless of the syntax of the distributed data.

During our experiments, we processed domain names accessed for TXT records in

a time-based window, the length of which we set to one day. When the window expires,

the packets are fed to the DNS zone analysis module to build the DNS zone profile of each

zone for detecting payload distribution channels.

Query and Response Patterns: In the first step of our system, we determine the query

and response patterns of the captured DNS traffic. To evaluate the effectiveness of each

pattern to carry out payload distribution channels, Figure 6.3 compares the average distinct

DNS messages with the number of malware instances per pattern as well as the number

of observed domains. The Many-to-Many pattern can be considered as the best candidate

for distributing large volumes of data while it was probed by a small number of malware

instances during the year of 2012. This extensive payload retrieval scheme would easily

alert the IDS [143]. On the other hand, the Single-to-Single pattern allows carrying small

volumes of data while maintaining a low network footprint. By observing our malware

samples, we discovered that most of the malware instances used this pattern to retrieve the

attack payloads as punctual updates. Since each of these instances sends a single query

to receive the attack payload, their queries can easily blend into the daily network traf-

fic. Compared to other patterns, Single-to-Single is the best candidate to establish a fully

resilient channel in DNS. The Single-to-Many pattern requires updating the zone file to dis-

tribute different resource data for the same query. This is technically difficult to maintain

because of the caching behavior of name servers. As we see in Figure 6.3, not a single mal-

ware instance uses this pattern. Although the Many-to-Single pattern has a single response

110



to different queries like the Single-to-Single pattern, it creates a large number of queries

that can also be noticed by IDSs.

1

10

100

1000

10000

100000

Single-to-Single Many-to-Single Many-to-Many
Query and response patterns 

Av. Distinct Messages Malware Instances Number of Domains

Figure 6.3: Average number of query and response messages within a one-day window.

Although the number of domains between all of the patterns is very close, there is a

distinct variation in the amount of generated traffic as shown in Figure 6.3. The Many-to-

Many pattern is generating the most extensive traffic compared to the other patterns. The

high volume of data exchange can reveal the name server used as payload provider. In

order to hide this name server, botmasters use it only for the bootstrapping phase to initiate

payload distribution channels. Malware samples are heavily using the Single-to-Single

pattern, which has the least amount of traffic, as it makes them difficult to be detected by

traditional defense mechanisms.

It is known that malware families are likely to share functionalities by utilizing com-

mon modules [144]. We observe the same behavior between different malware families

that share the same patterns in our evaluation. Figure 6.4 shows the query and response

pattern distribution across different malware families. The intersection between patterns

produces the number of malware families that share the same module. For example, there

are nine malware families utilizing Single-to-Single and Many-to-Single patterns. These

111



samples use the Single-to-Single transfer pattern to contact the botmaster and receive a sin-

gle packet while using the Many-to-Single pattern to check for periodic updates. There are

also six malware samples that utilize a combination of all three patterns to establish more

complex payload distribution channels.

Many-Many 

Single-Single Many-Single 

16 

41 20 

6 
5 

1 

9 

Figure 6.4: Query and response pattern distribution for observed malware families.

DNS Zone Analysis: When the query and response messages of domains are captured, they

are inspected by the DNS zone analysis module. The access counts of each resource record

are gathered from the passive DNS database. Equation 6.2 determines the μ values of each

domain based on the access counts. During our experiments on the passive DNS traffic,

we captured 2707 domains that have TXT resource record activities. Figure 6.5 shows the

distribution of domain names with different μ values. According to Equation 6.2, the bigger

the μ value, the more a domain name is involved in payload distribution.

Filtration: In Table 6.2, we show the number of detected domain names during the 30-day

period and the effect of each filtration mechanism. 2707 domains are detected before any

filtration is applied; however, some of these domains might be accessed mainly to receive

specifications-related data in TXT records. Applying both filtration mechanisms reduces

112



0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f d
om

ai
ns

µ

Figure 6.5: Distribution of rating values of the 2707 detected domains.

Number of observed domains 2707
Domains with MX records 2506
Domains following known specifications 2613
Domains remaining after applying both filtrations 37

Table 6.2: Statistics of detected domains within 30 days.

the number of domains to 37.

To validate the effectiveness of the filtration process, we observe our malware dataset

and passive DNS database to investigate the difference between payload distribution chan-

nels and regular domains. As regular domains, we use the top 500 domains from Alexa

top sites. By using our one-year malware dataset, we extract malware domains used for

payload distribution. We retrieve the access counts for all resource records of each domain,

from regular as well as from malware domains. These access counts represent a good mea-

sure to understand the individual resource record activities of any given domain. Figure 6.6

provides the distribution of access counts for the considered types of resource records (A,

AAA, MX, NS, TXT, and CNAME). Domains from Alexa receive DNS queries for differ-

ent resource records. The reason for this can be attributed to the fact that these domains

113



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

A AAAA MX NS TXT CNAME

Ac
ce

ss
co

un
ts

Resource records

Alexa Malware

Figure 6.6: Access counts of Alexa and malware domain DNS records.

utilize DNS for enabling access to different services. On the contrary, malware domains

receive an extensive number of DNS queries for TXT records. These records are used to

distribute the payload as they are the most suitable resource record type within the protocol.

We also investigate access to the CNAME records in malware domains. These are used to

redirect queries between malicious domains as botmasters maintain a network of malicious

payload distribution channels. On the other hand, malicious domains are not associated

with any MX resource records, which support the second filtration process.

The Resilient Morto Domains: Morto is a malware family that targets the Remote Desktop

Protocol (RDP) to gain access to host machines [14]. It is one of the malware families that

uses DNS as a payload distribution channel [14]. By utilizing the passive DNS database,

we detected domains used by the Morto family for more than 18 months with an average

to TXT records over four million times. Past work [14] has revealed that Morto receives

a Base64 encoded or encrypted URL, which points to the second payload. We noticed

that Morto domains also distribute IP addresses in clear-text inside TXT records. A re-

verse lookup of one of these IPs in the passive DNS database reveals that it is shared with

114



other malicious domains. As previously mentioned, the malware authors also link together

different domains through CNAME records to maintain a malicious network.

Source No. of domains Avg. μ value
Devicescape [53] 12 0.998
Tunneling [145] 1 0.991
Morto [14] 3 0.994

Table 6.3: Detected payload distribution domains.

Detection Regardless of Syntax: As our method discovers the Morto domains, it also de-

tects the legitimate payload distribution channels as discussed in Section 2.1.2. It indicates

that regardless of the syntax of the payload distribution channel, the μ (access count) metric

is a strong feature to detect domains, which are used for these channels (Table 6.3). If bot-

masters start using a syntax similar to the legitimate services to blend into their traffic, they

might not be detected by network monitors. However, our system may still detect them,

since the system monitors the DNS zone activities of payload distribution channels rather

than investigating their message syntax.

DNS Tunneling Detection: Our experiments reveal some DNS tunneling activities from

a single domain (a DNS Tunneling application for Android [145]). As our system is con-

figured to monitor TXT records, it successfully detects any DNS tunneling activities on

TXT records. If the tunnel is established by using another resource record type, we expect

that our system’s detection ability would remain intact, as the detection is not based on the

content of the resource record, but is rather based on the access counts of resource records.

In Table 6.3, we summarize our results with use cases and average μ values. After

applying both filtrations, we are left with only a few domains per day, and can therefore

manually investigate their traffic. The manual investigation resulted in 16 domain names

that are used as payload distribution channels. The remaining domains are used for trans-

mitting domain specific data in TXT records.

115



6.4 Discussion and Limitations

During our observation of the malware dataset, we find domain names that are used for

payload distribution channels. These malware samples use different methods to retrieve the

malicious content as discussed in Section 2.1.2. One of the interesting methods involves

the use of indexed queries to receive attack payload in multiple response packets. Due to

the size restriction on TXT resource records, the payload is chunked into parts, with each

part placed in another TXT record. Bots start querying this series of packets in a sequential

manner until the last packet is received. Some of these payloads are chunked into thousand

of packets. Surprisingly, this method is very similar to the patent from Trend Micro [52].

However, our results showed that this method is not seen in our passive DNS dataset. There

are two possible interpretations of the fact that this behavior is not observed in our recent

dataset: either botmasters realize the significant exposure of using this mechanism, which

generates a large number of messages, and therefore decide to stop using it; or, these domain

names are directly resolved by their own name servers or other open resolvers, which are

not captured by passive DNS sensors.

The closest work to our proposed solution is the detection of DNS traffic of a specific

malware family by applying features that are based on previously seen malicious traffic

syntax [16]. Our solution uses another approach by investigating the DNS zone activities of

malicious domains. Even if malware changes the message syntax, the use of DNS remains

the same. Our method detects the malicious traffic regardless of the syntax and malware

family.

The proposed solution can be used in real-time scenarios where there is access to the

DNS zone activities of domains. For example, it can be used by a domain name registrar

to detect registered domains used for payload distribution. In this case, the system can be

deployed on the authoritative name servers of the registrar so that it can observe the zone

116



activities of domains.

Since each malware family can use different domains, it is possible that our system

assigns multiple pattern labels to a single malware family. As previously explained, certain

malware families utilize a bootstrapping technique to initiate the payload distribution chan-

nel and then use another domain name with a different exchange pattern. In this case, our

method will give two different labels to the same malware family.

Our current design includes the following limitations. First, there are domain names

that use TXT resource records for legitimate services along with other activities. Malware

can play the same role by operating different services on the same domain name. When a

domain is used for different malicious activities (i.e. spam, phishing) as well as for payload

distribution, it will be accessed for different resource records, e.g., A record for phishing

scam websites. Since our system makes use of the fact that name servers of payload distri-

bution channels receive requests mostly for TXT records, it might consider this domain a

non-payload distribution domain. Second, the passive DNS replication [50] is a unique way

to collect the global DNS traffic by sensors. Unfortunately, it suffers from a shortcoming

that might affect our results. Malware might not use the caching resolver of a network, and

instead send queries directly to an open resolver. In this case, the traffic would not pass

through the sensors that collect DNS traffic, and would not be captured. However, this is

likely to remain a limitation in all solutions based on passive DNS datasets.

6.5 Conclusion

In this chapter, we shed light on the abuse of the DNS protocol by malware for distributing

attack payloads. We designed a system to characterize and detect the payload distribution

channels within passive DNS traffic. Our system observes the DNS zone activities of a

channel by gathering access counts of each resource record type, and determines payload

117



distribution channels. Our experiments on near real-time passive DNS traffic show that

our system can detect several resilient malicious payload distribution channels, which were

active for more than 18 months. We found that most malware instances with DNS-based

payload distribution use a resilient pattern to retrieve their attack payloads, ostensibly to

blend in with regular network traffic. Our system is also able to detect payload distribution

channels regardless of their syntax format. The evaluation of malware dynamic analysis

reports demonstrated that our method can determine payload distribution channel patterns

for different malware families.

118



Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusion

With the rise in the number of malware samples reported by Anti-Virus companies on a

daily basis, security professionals should integrate methodologies to digest the extracted

intelligence from analyzing such a large number of malware instances. In this context, the

dynamic analysis of malware samples inside a closed environment is a promising approach

to understand and observe the behavior of malicious codes and networks. This approach

aims to extract information regarding an infected system and its network activities. Such

extracted information can be considered a first step towards understanding malicious net-

works. To explore the abuse of malicious networks, we have elaborated some method-

ologies to extract intelligence, prioritize DNS abuse level, and detect payload distribution

channels through DNS.

For the intelligence extraction, we have introduced in Chapter 3 a detailed reverse

engineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture

and enable its mitigation. Furthermore, we provided a breakdown for the structure of the

Zeus botnet network messages. Our analysis of the C&C communications indicates that

119



the RC4 algorithm is used in a poor way to encrypt these communications (keystream

reuse). In addition to the knowledge of the network messages structure, we can launch

active countermeasures by interacting with the botnet servers using the extracted encryp-

tion key. Although the reverse engineering of malware samples generates valuable insights,

it is a tedious job that would be impractical to exercise on a daily basis. To keep up with the

increasing demand of analyzing malware samples, we have devised, in Chapter 4, a frame-

work to extract and build intelligence from the dynamic malware analysis reports. The

framework produces statistical insights that can be used in the early stages of cyber attack

investigations. Moreover, it identifies the configuration of any given network and quantifies

the relative importance of individual network resources. The developed framework utilizes

the power of graph-based algorithms to explore relationships between malicious resources,

which are used to investigate the abused domains as well as the malicious infrastructure

network.

We have also designed and implemented, in Chapter 5, a severity system for domain

names based on dynamic analysis reports of malware samples. The system leverages the

interaction between domain names and malware samples to extract indicators for malicious

behaviors or abuse actions. The system utilizes these behavioral features to dynamically

produce severity or abuse scores for domain names on a daily basis. Since our system as-

signs maliciousness scores that describe the level of abuse for each analyzed domain name,

it can be considered as a complementary component to existing (binary) reputation systems,

which produce long lists with no priorities. Our evaluation using real-world data, includ-

ing a 10-month dynamic analysis report, shows that the list produced by our system highly

correlates with those produced by the well-known WOT reputation system. Moreover, our

system allows us to identify a noticeable level of abuse for known domains represented

by Alexa and Quantcast lists. Such abuse raises an alarm against whitelists which can be

120



abused to deliver and participate in malicious activities. In our analysis, we observed no-

ticeable abuse for three major cloud service providers, which raises an alarm to implement

more policies around cloud services.

DNS has been recently abused by cyber criminals with techniques that require more

control over name servers in order to be implemented effectively. To this extent, we extend

the severity system to name servers based on DNS traffic. The system leverages the domain

names that reside under the authority of name servers to extract indicators of malicious

behaviors or abuse actions. The system utilizes these behavioral features to dynamically

produce severity or abuse scores for name servers.

Finally, in Chapter 6, we shed light on the abuse of the DNS protocol by malware

for distributing attack payloads. We developed a system to characterize and detect the pay-

load distribution channels within passive DNS traffic. Our system observes the DNS zone

activities of a channel by gathering access counts of each resource record type, and deter-

mines payload distribution channels. Our experiments on near real-time passive DNS traffic

show that our system can detect several resilient malicious payload distribution channels,

which were active for more than 18 months. We found that most malware instances with

DNS-based payload distribution use a resilient pattern to retrieve their attack payloads, os-

tensibly to blend in with regular network traffic. Our system is also able to detect payload

distribution channels regardless of their syntax format. The evaluation of malware dynamic

analysis reports demonstrated that our method can determine payload distribution channel

patterns for different malware families. The proposed solution can be used in real-time sce-

narios where there is access to the DNS zone activities of domains. For example, it can be

used by a domain name registrar to detect registered domains used for payload distribution.

In this case, the system can be deployed on the authoritative name servers of the registrar

so that it can observe the zone activities of domains. The rise of DNS protocol abuse to

121



distribute attack payload information urges us to adjust the policies in order to regulate and

manage the use of DNS resource records.

7.2 Future Work

Much progress remains to be made in addressing the DNS abuse by the malware commu-

nity. In what follows, we suggest some research directions that can utilize both DNS traffic

and malware analysis to address different challenges.

Take Down Optimization: Take down operations result in dismantling major criminal net-

works such as Rustock [146] and Citadel [147]. However, many argue over the effectiveness

of such take down operations [148]. Our analysis of malicious networks reveals the impor-

tance of some structural properties and domain names. One possible improvement would

be to evaluate the optimal selection of domains and IP addresses in order to efficiently

take down malicious infrastructure. The evidence of maliciousness extracted from malware

analysis and the volume of activities inferred from DNS traffic can help develop sound tech-

niques for identifying effective ways to take down malicious infrastructures. This research

would be extremely valuable, both to the operational community and to law enforcement,

for making the best decisions against malicious networks.

Network Reputation: As demonstrated by this thesis, the severity system has been ex-

tended to evaluate the abuse level of name servers. Similarly, the severity could be applied

to evaluate networks such as ISP or hosting providers. When evaluating networks, there

are many challenges to take in consideration, such as the network size, malicious activities

duration and volume, and the type of threat. Such techniques shall provide network opera-

tors with the threat status of their networks and help in implementing corrective measures.

122



Stone-Gross et al. [83] recently proposed a system to infer the reputation of networks us-

ing static blacklists, which can be extended by utilizing malware analysis and passive DNS

traffic to build a comprehensive network reputation profile.

Cloud Services Abuse: Due to the reliability and scalability of cloud based platforms,

cyber criminals have begun to abuse cloud services. Our study of the severity of domain

names can play an important role in quantifying the abuse of public services. For instance,

our evaluation demonstrates that cloud services are being abused by malicious activities.

In order to protect the reputation of the abused cloud services, more research is needed to

differentiate the pattern of abuse for such services. The intrusion detection system solution

can be employed to study the behavior of malware samples while accessing cloud services

and distinguish these behaviors from normal ones.

123



Bibliography

[1] The NAMESENTRY quality report: Abuse detection and mitigation ser-

vice. URL http://architelos.com/wp-content/uploads/2013/11/

NameSentry-Abuse-Report-Vol-2-Nov-2013.pdf. Accessed: 2014-07-30.

[2] Wenke Lee, Cliff Wang, and David Dagon. Botnet Detection: Countering the Largest

Security Threat, volume 36 of Advances in Information Security. Springer-Verlag

New York, 2008.

[3] Paul Barford and Vinod Yegneswaran. An inside look at botnets. In Malware Detec-

tion, pages 171–191. Springer, 2007.

[4] OECD. Malicious software (malware): A security threat to the internet economy,

2008. URL http://www.oecd.org/dataoecd/53/34/40724457.pdf. Accessed:

2014-07-30.

[5] Anirudh Ramachandran and Nick Feamster. Understanding the network-level be-

havior of spammers. SIGCOMM Comput. Commun. Rev., 36(4):291–302, 2006.

[6] Jaikumar Vijayan. Teen used botnets to push adware to hundreds of thousands of

PCs. URL http://www.computerworld.com/s/article/9062839/Teen_used_

botnets_to_push_adware_to_hundreds_of_thousands_of_PCs. Accessed:

2014-07-30.

124



[7] Botnets 101: What they are and how to avoid them.

URL http://www.fbi.gov/news/news_blog/botnets-101/

botnets-101-what-they-are-and-how-to-avoid-them. Accessed: 2014-07-

30.

[8] Kelly Jackson Higgins. Crimeware toolkits driving most online malware,

January 2011. URL http://www.darkreading.com/attacks-breaches/

crimeware-toolkits-driving-most-online-malware/d/d-id/1135076. Ac-

cessed: 2014-07-30.

[9] Jeremy Kirk. Passwords reset after ’pony’ botnet stole 2 million creden-

tials, December 2013. URL http://www.pcworld.com/article/2069260/

passwords-reset-after-pony-botnet-stole-2-million-credentials.

html. Accessed: 2014-07-30.

[10] Brian Krebs. Bringing botnets out of the shadows, March 2006. URL

http://www.washingtonpost.com/wp-dyn/content/article/2006/03/

21/AR2006032100279.html. Accessed: 2014-07-30.

[11] Anatomy of a botnet, 2013. URL http://www.fortinet.com/sites/default/

files/whitepapers/Anatomy-of-a-Botnet-WP.pdf. Accessed: 2014-07-30.

[12] Lucian Constantin. Possibly related DDoS attacks cause DNS hosting

outages, June 2013. URL http://www.pcworld.com/article/2040766/

possibly-related-ddos-attacks-cause-dns-hosting-outages.html. Ac-

cessed: 2014-07-30.

[13] Dancho Danchev. DIY malicious domain name registering service spotted in

the wild, December 2012. URL http://www.webroot.com/blog/2012/12/03/

125



diy-malicious-domain-name-registering-service-spotted-in-the-wild/.

Accessed: 2014-07-30.

[14] Cathal Mullaney. Morto worm sets a (DNS) record, 2011. URL http:

//www.symantec.com/connect/blogs/morto-worm-sets-dns-record. Ac-

cessed: 2014-07-30.

[15] OpenDNS.com. The role of DNS in botnet command & control,

2012. URL http://info.opendns.com/rs/opendns/images/OpenDNS_

SecurityWhitepaper-DNSRoleInBotnets.pdf. Accessed: 2014-07-30.

[16] Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos, Maarten van

Steen, and Norbert Pohlmann. On botnets that use DNS for command and control.

In European Conference on Computer Network Defense (EC2ND ’11), pages 9–

16, Gothenburg, Germany, September 2011. doi: http://dx.doi.org/10.1109/EC2ND.

2011.16.

[17] The state of malware 2013. Mcafee, January 2013. URL http://www.mcafee.com/

us/resources/misc/infographic-state-of-malware.pdf. Accessed: 2014-

07-30.

[18] D. Oro, J. Luna, T. Felguera, M. Vilanova, and J. Serna. Benchmarking IP blacklists

for financial botnet detection. In Information Assurance and Security (IAS), 2010

Sixth International Conference on, pages 62 –67, aug. 2010. doi: 10.1109/ISIAS.

2010.5604040.

[19] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Shades of grey: On the effec-

tiveness of reputation-based blacklists. In 3rd International Conference on Malicious

and Unwanted Software, MALWARE 2008., pages 57–64. IEEE, 2008.

126



[20] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An analysis of confickerŠs

logic and rendezvous points. Technical report, 2009.

[21] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-

lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your bot-

net is my botnet: analysis of a botnet takeover. In Proceedings of the 16th ACM

conference on Computer and communications security, pages 635–647. ACM, 2009.

[22] Paul Royal. Analysis of the kraken botnet. Technical report, 2008.

[23] Know your enemy: Fast-Flux service networks. URL http://www.honeynet.org/

papers/ff/. Accessed: 2014-07-30.

[24] Nicolas Falliere and Eric Chien. Zeus: King of the bots, 2009. URL

http://www.symantec.com/content/en/us/enterprise/media/security_

response/whitepapers/zeus_king_of_bots.pdf. Accessed: 2014-07-30.

[25] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freiling.

Measurements and mitigation of Peer-to-Peer based botnets: a case study on storm

worm. In LEET’08: Proceedings of the 1st Usenix Workshop on Large-Scale Exploits

and Emergent Threats, pages 1–9, Berkeley, CA, USA, 2008. USENIX Association.

[26] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: de-

tecting the rise of DGA-based malware. In USENIX Security Symposium, pages

491–506, Bellevue, WA, USA, August 2012.

[27] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. In-

creased DNS forgery resistance through 0x20-bit encoding: security via leet queries.

127



In ACM Computer and Communications Security, pages 211–222, Alexandria, VA,

USA, October 2008. doi: http://dx.doi.org/10.1145/1455770.1455798.

[28] David Dagon, Niels Provos, Christopher P Lee, and Wenke Lee. Corrupted DNS

resolution paths: The rise of a malicious resolution authority. In Network and Dis-

tributed System Security Symposium, San Diego, California, USA, February 2008.

[29] Tom van Leijenhorst, Darryn Lowe, and KW Chin. On the viability and perfor-

mance of DNS tunneling. In Conference on Information Technology and Applica-

tions, Cairns, Queensland, Australia, 2008.

[30] Elias Bou-Harb, Nour-Eddine Lakhdari, Hamad Binsalleeh, and Mourad Debbabi.

Multidimensional investigation of source port 0 probing. Digital Investigation, 11:

S114–S123, 2014.

[31] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: feature hashing

malware for scalable triage and semantic analysis. In Proceedings of the 18th ACM

conference on Computer and communications security, pages 309–320. ACM, 2011.

[32] Ned Moran and Nart Villeneuve. Hand me downs: Exploit and in-

frastructure reuse among APT campaigns, 09 2003. URL http:

//www.fireeye.com/blog/technical/cyber-exploits/2013/09/

hand-me-downs-exploit-and-infrastructure-reuse-among-apt-campaigns.

html. Accessed: 2014-07-30.

[33] Security Information Exchange (SIE), Farsight Security Inc. URL https://www.

farsightsecurity.com. Accessed: 2014-07-30.

[34] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr

Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the Zeus botnet

128



crimeware toolkit. In Conference on Privacy Security and Trust, pages 31–38, Ot-

tawa, Ontario, Canada, August 2010.

[35] Hamad Binsalleeh, A Mert Kara, Amr Youssef, and Mourad Debbabi. Characteriza-

tion of covert channels in DNS. In New Technologies, Mobility and Security (NTMS),

2014 6th International Conference on, pages 1–5. IEEE, 2014.

[36] A. Mert Kara, Hamad Binsalleeh, Mohammad Mannan, Amr Youssef, and Mourad

Debbabi. Detection of malicious payload distribution channels in DNS. In Communi-

cation and Information Systems Security Symposium (ICC), 2014 IEEE International

Conference on. IEEE, 2014.

[37] Farkhund Iqbal, Hamad Binsalleeh, Benjamin Fung, and Mourad Debbabi. Mining

writeprints from anonymous e-mails for forensic investigation. digital investigation,

7(1):56–64, 2010.

[38] Farkhund Iqbal, Hamad Binsalleeh, Benjamin Fung, and Mourad Debbabi. A unified

data mining solution for authorship analysis in anonymous textual communications.

Information Sciences, 231:98–112, 2013.

[39] Thomas Ormerod, Lingyu Wang, Mourad Debbabi, Amr Youssef, Hamad Bin-

salleeh, Amine Boukhtouta, and Prosenjit Sinha. Defaming botnet toolkits: A

bottom-up approach to mitigating the threat. In Emerging Security Information Sys-

tems and Technologies (SECURWARE), 2010 Fourth International Conference on,

pages 195–200. IEEE, 2010.

[40] Hamad Binsalleeh, Noman Mohammed, Parminder S Sandhu, Feras Aljumah, and

129



Benjamin CM Fung. Using RFID tags to improve pilgrimage management. In Inno-

vations in Information Technology, 2009. IIT’09. International Conference on, pages

1–5. IEEE, 2009.

[41] Provos Niels, Mavrommatis Panayiotis, Rajab Moheeb Abu, and Monrose Fabian.

All your iframes point to us. In SS’08: Proceedings of the 17th conference on Secu-

rity symposium, pages 1–15, Berkeley, CA, USA, 2008. USENIX Association.

[42] Brian Krebs. Storm worm Dwarfs world’s top supercomputers. URL

http://blog.washingtonpost.com/securityfix/2007/08/storm_worm_

dwarfs_worlds_top_s_1.html. Accessed: 2014-07-30.

[43] CRM Today. Financial insights evaluates impact of phishing on retail finan-

cial institutions worldwide, 2004. URL http://www.crm2day.com/content/t6_

librarynews_1.php?news_id=EplAlZlEVFjAwhYlkt. Accessed: 2014-07-30.

[44] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang, and

David Dagon. Peer-to-Peer botnets: overview and case study. In HotBots’07: Pro-

ceedings of the first conference on First Workshop on Hot Topics in Understanding

Botnets, pages 1–8, Berkeley, CA, USA, 2007. USENIX Association.

[45] Robert Lemos. Bot software looks to improve peerage. URL http://www.

securityfocus.com/news/11390. Accessed: 2014-07-30.

[46] Ryan Vogt, John Aycock, and Jr. Michael J. Jacobson. Army of botnets. In 14th

Annual Network and Distributed System Security Symposium, pages 111–123, 2007.

[47] Paul Mockapetris. Domain names: concepts and facilities. RFC 1034, November

1987.

130



[48] Wesley Hardaker. Requirements for management of name servers for the DNS. RFC

6168, May 2011.

[49] Paul Mockapetris. Domain names: implementation and specification. RFC 1035,

Internet standard, November 1987.

[50] Florian Weimer. Passive DNS replication. In 17th FIRST Conference on Computer

Security Incident, Singapore, June 2005.

[51] Rich Rosenbaum. Using the domain name system to store arbitrary string attributes.

RFC 1464, May 1993.

[52] Jianda Li, Bharath Kumar Chandrasekhar, and Kong Yew Chan. Updating of mali-

cious code patterns using public DNS servers. Patent no. US8171467 B1, Filed July

3th, 2007, Issued May 1st, 2012.

[53] John Gordon. Systems and methods for identifying a network. Patent no. US8353007

B2, Filed October 13th, 2009, Issued January 8th, 2013.

[54] Lars Rasmusson and Sverker Jansson. Simulated social control for secure internet

commerce. In Proceedings of the 1996 workshop on New security paradigms, pages

18–25. ACM, 1996.

[55] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation sys-

tems for online service provision. Decision support systems, 43(2):618–644, 2007.

[56] Audun Jøsang and Jochen Haller. Dirichlet reputation systems. In Availability, Re-

liability and Security, 2007. ARES 2007. The Second International Conference on,

pages 112–119. IEEE, 2007.

131



[57] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-

niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[58] Jose Nazario. Blackenergy DDoS bot analysis. Technical report, Arbor Networks,

2007.

[59] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and spam bot. In

HotBots’07: Proceedings of the first conference on First Workshop on Hot Topics in

Understanding Botnets, pages 10–18, Berkeley, CA, USA, 2007. USENIX Associa-

tion.

[60] Neil Daswani and Michael Stoppelman. The anatomy of clickbot.A. In HotBots’07:

Proceedings of the first conference on First Workshop on Hot Topics in Understand-

ing Botnets, pages 11–22, Berkeley, CA, USA, 2007. USENIX Association.

[61] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A multi-perspective analysis

of the storm (peacomm)worm. Technical report, Computer Science Laboratory, SRI

International, 2007.

[62] Sam Stover, Dave Dittrich, John Hernandez, and Sven Dietrich. Analysis of the

storm and nugache trojans: P2P is here. USENIX; login, 32(6):18–27, 2007.

[63] David Dittrich and Sven Dietrich. P2P as botnet command and control: a deeper in-

sight. In 3rd International Conference on Malicious and Unwanted Software (MAL-

WARE), pages 41–48, Piscataway, NJ, USA, 7-8 Oct. 2008 2008. Appl. Phys. Lab.,

Univ. of Washington, Washington, DC, USA, IEEE.

[64] David Dittrich and Sven Dietrich. Discovery techniques for P2P botnets. Stevens

Institute of Technology CS Technical Report 2008, 4, 2008.

132



[65] Maria Konte, Nick Feamster, and Jaeyeon Jung. Dynamics of online scam hosting in-

frastructure. In Passive and Active Network Measurement, pages 219–228. Springer,

2009.

[66] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita

Borisov. BotGrep: Finding P2P bots with structured graph analysis. In USENIX

Security Symposium, pages 95–110, 2010.

[67] Luca Invernizzi, Sung-Ju Lee, Stanislav Miskovic, Marco Mellia, Ruben Torres,

Christopher Kruegel, Sabyasachi Saha, and Giovanni Vigna. Nazca: Detecting mal-

ware distribution in large-scale networks. pages 1–16, 2014.

[68] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. Connected col-

ors: Unveiling the structure of criminal networks. In Research in Attacks, Intrusions,

and Defenses, pages 390–410. Springer, 2013.

[69] DNSBL. DNS Blacklists Information. URL http://www.dnsbl.info/. Accessed:

2014-07-30.

[70] SORBS. Spam and open relay blocking system. URL http://www.sorbs.net/.

Accessed: 2014-07-30.

[71] SpamHaus. The spamhaus project, Feb 2014. URL http://www.spamhaus.org/.

Accessed: 2014-07-30.

[72] SpamCop. Spam reporting service. URL http://www.spamcop.net/. Accessed:

2014-07-30.

[73] Christian J. Dietrich and Christian Rossow. Empirical research of ip blacklists. In

Norbert Pohlmann, Helmut Reimer, and Wolfgang Schneider, editors, ISSE 2008 Se-

curing Electronic Business Processes, pages 163–171. Vieweg+Teubner, 2009. ISBN

133



978-3-8348-9283-6. URL http://dx.doi.org/10.1007/978-3-8348-9283-6_

17.

[74] Jian Zhang, Phillip A Porras, and Johannes Ullrich. Highly predictive blacklisting.

In USENIX Security Symposium, pages 107–122, 2008.

[75] J. Ullrich. Dshield global worst offender list. URL http://dshield.org/. Ac-

cessed: 2014-07-30.

[76] Fabio Soldo, Anh Le, and Athina Markopoulou. Predictive blacklisting as an im-

plicit recommendation system. In proceedings of INFOCOM 2010, IEEE, pages

1–9. IEEE, 2010.

[77] Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential of proac-

tive domain blacklisting. In Proceedings of the 3rd USENIX conference on Large-

scale exploits and emergent threats: botnets, spyware, worms, and more, pages 6–14,

2010.

[78] Kazumichi Sato, Keisuke Ishibashi, Tsuyoshi Toyono, Haruhisa Hasegawa, and

Hideaki Yoshino. Extending black domain name list by using co-occurrence rela-

tion between dns queries. IEICE transactions on communications, 95(3):794–802,

2012.

[79] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-

ster. Building a dynamic reputation system for DNS. In USENIX Security Sympo-

sium, pages 273–290, Washington, DC, USA, August 2010.

[80] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE:

Finding malicious domains using passive DNS analysis. In Network and Distributed

System Security Symposium (NDSS), San Diego, CA, USA, February 2011.

134



[81] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and

David Dagon. Detecting malware domains at the upper DNS hierarchy. In USENIX

Security Symposium, pages 27–43, 2011.

[82] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. Understand-

ing the prevalence and use of alternative plans in malware with network games. In

Proceedings of the 27th Annual Computer Security Applications Conference, pages

1–10. ACM, 2011.

[83] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda. Fire: Finding

rogue networks. In Computer Security Applications Conference, 2009. ACSAC ’09.

Annual, pages 231 –240, December 2009. doi: 10.1109/ACSAC.2009.29.

[84] A.J. Kalafut, C.A. Shue, and M. Gupta. Malicious hubs: Detecting abnormally ma-

licious autonomous systems. In proceedings of INFOCOM 2010, IEEE, pages 1 –5,

March 2010. doi: 10.1109/INFCOM.2010.5462220.

[85] M Patrick Collins, Timothy J Shimeall, Sidney Faber, Jeff Janies, Rhiannon Weaver,

Markus De Shon, and Joseph Kadane. Using uncleanliness to predict future bot-

net addresses. In Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, pages 93–104. ACM, 2007.

[86] Francesco Roveta, Giorgio Caviglia, Luca Di Mario, Stefano Zanero, Federico

Maggi, and Paolo Ciuccarelli. Burn: Baring unknown rogue networks. In Proceed-

ings of the 8th International Symposium on Visualization for Cyber Security, pages

6–16. ACM, 2011.

135



[87] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Measur-

ing and detecting Fast-Flux service networks. In Proceedings of the 15th Annual

Network and Distributed System Security Symposium (NDSS’08), pages 1–12, 2008.

[88] P. Mockapetris. Domain names - implementation and specification. Technical report,

November 1987.

[89] Jose Nazario and Thorsten Holz. As the net churns: Fast-Flux botnet observations.

pages 24 – 31, Alexandria, VA, United states, 2008.

[90] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Bruschi.

FluXOR: Detecting and monitoring Fast-Flux service networks. In Detection of in-

trusions and malware, and vulnerability assessment, pages 186–206. Springer, 2008.

[91] Alper Caglayan, Mike Toothaker, Dan Drapeau, Dustin Burke, and Gerry Eaton.

Real-time detection of Fast Flux service networks. Proceedings - Cybersecurity Ap-

plications and Technology Conference for Homeland Security, CATCH 2009, pages

285 – 292, 2009.

[92] Kui Xu, Patrick Butler, Sudip Saha, and Danfeng Yao. DNS for massive-scale com-

mand and control. IEEE Transactions on Dependable and Secure Computing, 10(3):

143–153, 2013. doi: http://dx.doi.org/10.1109/TDSC.2013.10.

[93] Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen De, Pieter Dan-

hieux Bosschere, and Erik Van Buggenhout. DNS tunneling for network penetration.

In International Conference on Information Security and Cryptology (ICISC), pages

65–77, Seoul, Korea, November 2012.

[94] Dušan Bernát. Domain name system as a memory and communication medium.

In SOFSEM 2008: Theory and Practice of Computer Science, volume 4910, pages

136



560–571. Springer, 2008. ISBN 978-3-540-77565-2. doi: http://dx.doi.org/10.1007/

978-3-540-77566-9_49.

[95] Seth Bromberger. DNS as a covert channel within protected networks, 2011.

URL http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/

DNS_Exfiltration_2011-01-01_v1.1.pdf. Accessed: 2014-07-30.

[96] Alessio Merlo, Gianluca Papaleo, Stefano Veneziano, and Maurizio Aiello. A com-

parative performance evaluation of DNS tunneling tools. In Conference on Computa-

tional Intelligence in Security for Information Systems, pages 84–91, Torremolinos-

Málaga, Spain, 2011.

[97] Lucas Nussbaum, Pierre Neyron, and Olivier Richard. On robust covert channels

inside DNS. In Information Security Conference, volume 297, pages 51–62. Pafos,

Cyprus, May 2009. doi: http://dx.doi.org/10.1007/978-3-642-01244-0_5.

[98] Kenton Born and David Gustafson. Detecting DNS tunnels using character fre-

quency analysis. In Annual Security Conference, Las Vegas, NV, USA, April 2010.

[99] Cheng Qia, Xiaojun Chenb, Cui Xud, Jinqiao Shia, and Peipeng Liub. A bigram

based real time DNS tunnel detection approach. In Information Technology and

Quantitative Management (ITQM), pages 852–860, Suzhou, China, May 2013.

[100] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet detection by

monitoring group activities in DNS traffic. In Conference on Computer and Infor-

mation Technology, pages 715–720, Aizu-Wakamatsu, Fukushima, Japan, October

2007. doi: http://dx.doi.org/10.1109/CIT.2007.90.

[101] S. Marchal, J. Francois, C. Wagner, R. State, A. Dulaunoy, T. Engel, and O. Festor.

DNSSM: A large scale passive DNS security monitoring framework. In Network

137



Operations and Management Symposium (NOMS ’12), pages 988–993, Maui, HI,

USA, April 2012. doi: http://dx.doi.org/10.1109/NOMS.2012.6212019.

[102] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning more about the un-

derground economy: A case-study of keyloggers and dropzones. Computer Security

ESORICS 2009, pages 1–18, 2009.

[103] Top-10 botnet outbreaks in 2009. URL http://blog.damballa.com/?p=569. Ac-

cessed: 2014-07-30.

[104] Banking malware Zeus sucessfully bypasses anti-virus detection. URL

http://www.ecommerce-journal.com/news/18221_zeus_increasingly_

avoids_pcs_detection. Accessed: 2014-07-30.

[105] Zeus, king of the underground crimeware toolkits. URL http://www.symantec.

com/connect/blogs/zeus-king-underground-crimeware-toolkits. Ac-

cessed: 2014-07-30.

[106] IDAPro - Multi-processor disassembler and debugger. URL http://www.

hex-rays.com/idapro/. Accessed: 2014-07-30.

[107] PaiMei - a reverse engineering framework. URL http://code.google.com/p/

paimei/. Accessed: 2014-07-30.

[108] OUTPOST firewal from agnitum. URL http://www.agnitum.com/. Accessed:

2014-07-30.

[109] ZoneAlarm personal firewal. URL http://www.zonealarm.com/. Accessed:

2014-07-30.

138



[110] IDAPython: an IDA Pro plugin. URL http://d-dome.net/idapython/. Ac-

cessed: 2014-07-30.

[111] Zhen Li, Qi Liao, and Aaron Striegel. Botnet economics: Uncertainty matters. Man-

aging Information Risk and the Economics of Security, pages 245–267, 2009.

[112] Richard Ford and Sarah Gordon. Cent, five cent, ten cent, dollar: hitting botnets

where it really hurts. In NSPW ’06: Proceedings of the 2006 workshop on New

security paradigms, pages 3–10, New York, NY, USA, 2007. ACM. ISBN 978-1-

59593-923-4. doi: http://doi.acm.org/10.1145/1278940.1278942.

[113] Vesselin Bontchev. Current status of the caro malware naming scheme. In 15th Virus

Bulletin Conference, October 2005.

[114] Nick FitzGerald. A virus by any other name: Towards the revised caro naming

convention. Proc. AVAR, pages 141–166, 2002.

[115] Virus Total. URL http://www.virustotal.com/. Accessed: 2014-07-30.

[116] Ben Stock, Jan Gobel, Markus Engelberth, Felix C Freiling, and Thorsten Holz.

Walowdac-analysis of a peer-to-peer botnet. In 2009 European conference on Com-

puter Network Defense (EC2ND), pages 13–20. IEEE, 2009.

[117] Alberto Dainotti, Alistair King, Ferdinando Papale, Antonio Pescape, et al. Analysis

of a/0 stealth scan from a botnet. In Proceedings of the 2012 ACM conference on

Internet measurement conference, pages 1–14. ACM, 2012.

[118] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic notions for

the analysis of large two-mode networks. Social Networks, 30(1):31–48, 2008.

139



[119] MG Everett and SP Borgatti. The dual-projection approach for two-mode networks.

Social Networks, 35(2):204–210, 2013.

[120] Ravi Kumar, Andrew Tomkins, and Erik Vee. Connectivity structure of bipartite

graphs via the KNC-plot. In Proceedings of the 2008 International Conference on

Web Search and Data Mining, pages 129–138. ACM, 2008.

[121] Stanley Wasserman. Social network analysis: Methods and applications, volume 8.

Cambridge university press, 1994.

[122] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted

networks: Generalizing degree and shortest paths. Social Networks, 32(3):245–251,

2010.

[123] S Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pages 225–

227, 1990.

[124] ThreatTrack Security Inc. URL http://www.threattracksecurity.com/. Ac-

cessed: 2014-07-30.

[125] Neo4j - the world’s leading graph database. URL http://www.neo4j.org/. Ac-

cessed: 2014-07-30.

[126] Geolocation and online fraud prevention from maxmind. URL http://www.

maxmind.com. Accessed: 2014-07-30.

[127] WHOIS Domain Tools. URL http://whois.domaintools.com/. Accessed:

2014-07-30.

[128] Web of Trust (WOT). URL https://www.mywot.com/. Accessed: 2014-07-30.

140



[129] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and

Donald B Rubin. Bayesian data analysis. CRC press, 2013.

[130] Zeus Tracker. Zeus Tracker. URL https://zeustracker.abuse.ch/. Accessed:

2014-07-30.

[131] Malware Domain List. Malware Domain List. URL http://www.

malwaredomainlist.com/hostslist/mdl.xml. Accessed: 2014-07-30.

[132] SiteAdvisor software for safety ratings. URL http://www.siteadvisor.ca/. Ac-

cessed: 2014-07-30.

[133] Paul Royal. Maliciousness in top ranked Alexa domains. Barracuda

labs, March 2012. URL http://barracudalabs.com/2012/03/

maliciousness-in-top-ranked-alexa-domains/. Accessed: 2014-07-30.

[134] Alexa the web information company. URL http://www.alexa.com/. Accessed:

2014-07-30.

[135] Quantcast. URL https://www.quantcast.com/. Accessed: 2014-07-30.

[136] Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and Niels

Provos. CAMP: Content-Agnostic Malware Protection. In Proceedings of Annual

Network and Distributed System Security Symposium, NDSS, 2013.

[137] Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and Christos

Faloutsos. Polonium: Tera-scale graph mining and inference for malware detection.

In SIAM International Conference on Data Mining (SDM), pages 131–142, 2011.

[138] Paul Vixie. Extension mechanisms for DNS (EDNS0). RFC 2671, August 1999.

141



[139] M. Wong and Wayne Schlitt. Sender Policy Framework (SPF) for authorizing use of

domains in e-mail, version 1. RFC 4408, experimental, April 2006.

[140] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. Domainkeys

identified mail (DKIM) signatures. RFC 4871, May 2007.

[141] Michael Richardson and D.H. Redelmeier. Opportunistic encryption using the inter-

net key exchange (IKE). RFC 4322, December 2005.

[142] John Levine. DNS blacklists and whitelists. RFC 5782, February 2010.

[143] Rod Rasmussen and Paul Vixie. Surveying the DNS threat landscape, 2013. URL

http://www.internetidentity.com/white-papers. Accessed: 2014-07-30.

[144] Spyeye and Zeus malware: Married or living sep-

arately?, 2011. URL http://threatpost.com/

spyeye-and-zeus-malware-married-or-living-separately-101411.

Accessed: 2014-07-30.

[145] Nijhof. Element53: DNS tunneling application for android. URL http://www.

nijhof.biz/pages/project/171/Element53. Accessed: 2014-07-30.

[146] Botnet intelligence reviews: Rustock, March 2011. URL http://www.microsoft.

com/security/sir/story/default.aspx#!rustock. Accessed: 2014-07-30.

[147] Microsoft, financial services and others join forces to combat massive cybercrime

ring. Microsoft. URL http://www.microsoft.com/en-us/news/press/2013/

jun13/06-05dcupr.aspx. Accessed: 2014-07-30.

[148] Brian Foster. Three reasons why botnet takedowns are ineffective, May 2014. URL

https://blog.damballa.com/archives/2195. Accessed: 2014-07-30.

142


