3 research outputs found

    Performance Analysis of Adaptive Location Update Schemes for Continuous Cell Zooming Algorithm in Wireless Networks

    Get PDF
    To reduce the transmitted power of base stations in mobile wireless networks, continuous cell zooming algorithm is a feasible dynamic cell zooming algorithm. In this algorithm, location management is required in order to know the locations of users. Movement-based Update is not compatible and the application of Convention Periodic Update (CPU) scheme in continuous cell zooming algorithm can lead to a high signaling cost. Thus, aiming to highlight the effectiveness of newly proposed location update schemes, Time-Adaptive Periodic Update (TAPU) and Location-Adaptive Periodic Update (LAPU), a simulation-based performance analysis is conducted. Applying in continuous cell zooming algorithm, the performances of TAPU and LAPU are compared to that of Convention Periodic Update (CPU) scheme in terms of transmitted power ratio, outage ratio and the number of update messages. The performances of TAPU and LAPU are analyzed in a network with different number of users and in a network with different average moving speeds of users. The results show that compared to CPU, both TAPU and LAPU have no significant effect on power saving capability of continuous cell zooming algorithm in every scenario. Meanwhile, LAPU and TAPU give a significant reduction of update messages in every scenario. In terms of QoS effect, LAPU gives approximately the same outage ratio as CPU and a higher outage ratio occurs in TAPU

    An Overview of Cell Zooming Algorithms and Power Saving Capabilities in Wireless Networks

    Get PDF
    Cell zooming has emerged as a potential strategy to develop a green communication system in our society and it has become an essential research area of wireless communication. Aiming to highlight the trend of existing cell zooming algorithms and their power saving capabilities, this paper reviews a number of cell zooming algorithms that have been proposed in the literature. Static cell zooming algorithms are effective for off-peak hours and their maximum power saving capability is 50% since off-peak duration is typically not more than 12 hours.Meanwhile dynamic cell zooming algorithms are applicable in full-day operation and they are useful not only for power saving but also for load balancing. However, on/off switching delay, signalling overhead due to traffic information exchange and how to attain information of traffic spatial distribution are existing challenges in dynamic cell zooming algorithms. One noticeable point is that relative power saving in dynamic cell zooming algorithm is less than 50% if traffic spatial distribution is considered. Since location management (LM) was designed for effectively servicing to customers, further researches could lead to work on location management (LM) based cell zooming algorithms for both effective servicing and energy saving

    Analysis of the overall energy savings achieved by green cell-breathing mechanisms

    No full text
    International audienceThe purpose of this paper is to study the overall savings provided by the utilization of cell breathing in a cellular network taking into account not only the attainable savings in the radio access network (RAN) but also the consequences in the mobile phone. First, we briefly describe some cell breathing algorithms found in literature. None of the references have taken into account so far the impact of the cell-breathing technique on the mobile phone energy consumption. We present a system model that takes into account the radio access network and mobile phone consumptions. Then, we propose a distributed BSbased cell breathing algorithm that tackles the trade-off between the energy consumed by both the RAN and the mobile devices. Finally, simulation results of the performance are provided for the different state-of-the-art algorithms and our proposal, which permits us to identify the implications of such mechanisms in the overall consumed energy and user perception
    corecore