60 research outputs found

    Capacity and coverage trade-off in WCDMA environments with repeaters deployment

    Get PDF
    radio planning, WCDMA, repeaters, capacity and coverageThis work derives the analytic expression of the feasibility condition for the uplink of a WCDMA mobile communications system with repeaters deployment in a multiservice environment with a general heterogeneous layout. In particular, a compact closed expression for the admission region is presented, suitable for a system where the users belong to an arbitrary number of different service classes. A tradeoff between capacity and coverage arises and it has been analysed both theoretically and by means of simulations. Different parameters are shown to have a major impact and their adjustment is discussed.Peer ReviewedPostprint (published version

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    Mobile network design : Orange UK 2G to 3G mobile backhaul evolution

    Get PDF
    The research presented in this thesis is focused on the evolution of a GSM/GPRS (2G) cellular mobile network to UMTS (3G) and then subsequently, HSDPA. The particular technical area of research relates to the mobile backhaul network which provides the connectivity between radio cell sites which support the wide area radio coverage, and the mobile network operator’s core network. Due to the evolution of UMTS with HSDPA, the research covers the initial UMTS network rollout and then addresses the evolution of this infrastructure to support mobile broadband communications, through the introduction of HSDPA as a network upgrade. The two research questions being addressed are therefore: •How is it possible to evolve a GSM/GPRS mobile backhaul network to support a converged GSM/GPRS and UMTS cellular mobile service? •How is it possible to ensure scalability of the converged backhaul network given the introduction of HSDPA and associated mobile broadband data growth? The starting point of the research is an established GSM and GPRS commercial network in the UK and the study is based on the design of the Orange network and focused on the period 2000 to 2010. During this period the author was working as Principal Network Designer within Orange and had overall responsibility for the strategy, architecture and design of the UK mobile backhaul network. The thesis provides a detailed explanation of the novel network design that was adopted and how it was evolved throughout the ten year period covered by the research. The research proves that the original static TDM approach was not suitable for UMTS and therefore the outcome was the introduction of an ATM network with optimisation based on traffic class rt-VBR over protected STM-1 transmission links. HSDPA drove further traffic growth and resulted in an evolution of the solution to ensure massive scalability was supported through the migration to Carrier Ethernet and implementation of pseudo-wires. In addition, to providing a technical description of the network design, the thesis also aims to provide a historical record of the technologies and equipment used during this period of rapid change within the UKs mobile networks

    Nonuniform traffic distribution model in reverse link of multilaterate/multiservie WCDMA/based systems

    Get PDF
    This paper focuses on the modeling of the reverse link of a wideband code division multiple access system in a nonhomogeneous environment with a single cell. Multiple traffic spatial and service nonuniformities are considered in the analytical model, and then, expressions for required transmitted power and the associated outage probability and block error rate are derived. Special attention is also paid to the effect caused by different transmission bit rates and the spatial location of the traffic nonuniformities. From the presented expressions, it is possible to set appropriate load thresholds to control the desired error rate. Although the model considers a single cell, results in terms of maximum allowable load can also be applicable in multicell scenarios.Peer Reviewe

    The strategies associated with the migration of networks to 4G

    Get PDF
    The networks need to provide higher speeds than those offered today. For it, considering that in the spectrum radio technologies is the scarcest resource in the development of these technologies and the new developments is essential to maximize the performance of bits per hertz transmitted. Long Term Evolution optimize spectral efficiency modulations with new air interface, and more advanced algorithms radius. These capabilities is the fact that LTE is an IPbased technology that enables end-to-end offer high transmission rates per user and very low latency, ie delay in the response times of the network around only 10 milliseconds, so you can offer any realtime application. LTE is the latest standard in mobile network technology and 3GPP ensure competitiveness in the future, may be considered a technology bridge between 3G networks - current 3.5G and future 4G networks, which are expected to reach speeds of up to 1G . LTE operators provide a simplified architecture but both robust, supporting services on IP technology. The objectives to be achieved through its implementation are ambitious, first users have a wide range of added services like capabilities that currently enjoys with residential broadband access at competitive prices, while the operator will have a network fully IP-based environment, reducing the complexity and cost of the same, which will give operators the opportunity to migrate to LTE directly. A major advantage of LTE is its ability to fuse with existing networks, ensuring interconnection with the same, increasing his current coverage and allowing a data connection established by a user in the environment continue when fade the coverage LTE. Moreover, the operator has the advantage of deploying network gradually, starting initially at areas of high demand for broadband services and expand progressively in line with this. RESUMEN. Las redes necesitan proporcionar velocidades mayores a las ofertadas a día de hoy. Para ello, teniendo en cuenta que en tecnologías radio el espectro es el recurso más escaso, en la evolución de estas tecnologías y en los nuevos desarrollos es esencial maximizar el rendimiento de bits por hercio transmitido. Long Term Evolution optimiza la eficiencia espectral con nuevas modulaciones en la interfaz aire, así como los algoritmos radio más avanzado. A estas capacidades se suma el hecho de que LTE es una tecnología basada en IP de extremo a extremo que permite ofrecer altas velocidades de transmisión por usuario y latencias muy bajas, es decir, retardos en los tiempos de respuesta de la red en torno a sólo 10 milisegundos, por lo que permite ofrecer cualquier tipo de aplicación en tiempo real. LTE es el último estándar en tecnología de redes móviles y asegurará la competitividad de 3GPP en el futuro, pudiendo ser considerada una tecnología puente entre las redes 3G – 3.5G actuales y las futuras redes 4G, de las que se esperan alcanzar velocidades de hasta 1G. LTE proporcionará a las operadoras una arquitectura simplificada pero robusta a la vez, soportando servicios sobre tecnología IP. Los objetivos que se persiguen con su implantación son ambiciosos, por una parte los usuarios dispondrá de una amplia oferta de servicios añadidos con capacidades similares a las que disfruta actualmente con accesos a banda ancha residencial y a precios competitivos, mientras que el operador dispondrá de una red basada en entorno totalmente IP, reduciendo la complejidad y el costo de la misma, lo que dará a las operadoras la oportunidad de migrar a LTE directamente. Una gran ventaja de LTE es su capacidad para fusionarse con las redes existentes, asegurando la interconexión con las mismas, aumentando su actual cobertura y permitiendo que una conexión de datos establecida por un usuario en el entorno LTE continúe cuando la cobertura LTE se desvanezca. Por otra parte el operador tiene la ventaja de desplegar la red LTE de forma gradual, comenzando inicialmente por las áreas de gran demanda de servicios de banda ancha y ampliarla progresivamente en función de ésta

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators
    • …
    corecore