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Abstract. This work derives the analytic expression of the feasibility condition for the uplink of a 

WCDMA mobile communications system with repeaters deployment in a multiservice 

environment with a general heterogeneous layout. In particular, a compact closed expression for 

the admission region is presented, suitable for a system where the users belong to an arbitrary 

number of different service classes. A tradeoff between capacity and coverage arises and it has 

been analysed both theoretically and by means of simulations. Different parameters are shown to 

have a major impact and their adjustment is discussed. 
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1. Introduction 

Mobile communications systems often work under high heterogeneous 

conditions, both in time and space domains. This fact makes the proper design of 

the network infrastructures very important, especially the radio access part. 

Optimizing this design is a technical and economical challenge. Active repeaters 

(non-regenerative) are of special interest when considering the deployment of the 

coverage of a mobile communications system in a certain set of situations that 

include filling holes in a certain coverage area (including indoor and inside 

tunnels), or extending the service area beyond its boundaries. Moreover, repeaters 

are expected to play an important role in planning WCDMA systems because they 

will also be a cost-effective option to reduce inter-cell interference. Moreover, the 

improvement of operation and maintenance capabilities as well as of technologies 
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such as radio over fiber and optical wireless will promote a dense deployment of 

these devices. 

Unfortunately, since a repeater is not a noiseless device, it modifies the 

interference and thermal noise patterns of the donor base station (BS) receiver 

(RX). This has and effect on both the coverage of the BS and the capacity. The 

noise floor of the donor is increased, and consequently its effective cell area is 

shrunk. Obviously this loss is clearly compensated by the coverage area of the 

repeaters themselves. However this noise rise has also an important impact on 

(W)CDMA systems capacity, as it is shown later. 

Although much previous research efforts have been focused on the analysis of 

CDMA-based systems ([1]-[3] only to cite a few), not many studies in the 

literature analyse the effect of repeaters deployment on CDMA mobile 

communication systems [4]-[6]. Moreover, these studies consider simplified 

scenarios with the presence of users that belong to a single service class and radio 

resource management algorithms are usually not considered when evaluating 

networks performance. 

This paper derives the analytic expression of the feasibility condition for the 

uplink (UL) of a CDMA mobile communications system with repeaters in a 

multiservice environment with a general heterogeneous layout. In particular, a 

compact closed expression for the admission region is presented, suitable for a 

system where the users belong to an arbitrary number of different service classes. 

This generic analysis could be used for both the deployment of mobile 

communication systems and the implementation of suitable admission control 

mechanisms. Moreover, as it is shown later, a tradeoff between capacity and 

coverage arises and this is analysed both theoretically and by means of Monte 

Carlo simulations. Different parameters are shown to have a major impact and 

their adjustment is discussed. 

Thus, the organization of the paper is as follows. After this introduction, 

section 2 deals with the impact of repeaters on admission control. This is done 

along two subsections and in a comparative way with environments without 

repeaters. Section 3 presents simulations and studies the tradeoff between capacity 

and coverage. Finally, section 4 closes the paper with the conclusions of the work. 



3 

2. Admission Control in UMTS Systems 

2.1. Admission Control in Environments without Repeaters 

Admission Control (AC) is a key Radio Resource Management strategy in 

WCDMA systems. Since coverage and capacity are tightly coupled, a method that 

handles all new incoming traffic is mandatory. AC strategies decide whether a 

new radio access bearer (RAB) can be admitted or not according to a certain 

estimation of the current load. If the load stays below a certain threshold the new 

RAB will be allowed. 

The parameter η(m) defined in (1) represents the load factor in the UL 

measured at BS m. It is directly related with the noise rise due to interference 

levels [7]. Note that the summations are calculated over the MTs connected to BS 

m, this is indicated by ‘i ∈ m’¸ being i the summation index. 
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Where: 

 NMT: Number of mobile terminals (MT) in the system. 

 nB(m): Thermal noise power at BS m. 

 f(m): Quotient between intercell and intracell power, measured at BS m. 

 PRX(m,i): Power received at BS m from MT i. 

On the other hand, in WCDMA systems, the power control algorithm is 

composed by the so called inner and outer loops. Whereas the 1st one aims at 

adjusting the transmitted powers so that a certain signal to interference plus noise 

ratio γ(k) target is reached, the 2nd one intends to keep the quality of 

communications at a desired level in terms of block error rate. The expression for 

γ(k) measured in the UL before de-spreading is given by (2). 
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Where: 

 s(k): BS that is serving the MT k. Primary station that has a connection with k. 

On the other hand, and in order to simplify subsequent expressions, we define 

the parameter φ(k) as γ(k)/[1+ γ(k)], that is the signal to signal-plus-interference-

plus-noise ratio (3). 

[ ]

[ ]{ } [ ] [ ]
1
( )

( ),( )( )
1 ( ) 1 ( ) ( ), ( )

MT

RX
N

RX B
i

i s k

P s k kkk
k f s k P s k i n s k

γφ
γ

=
∈

≡ =
+

+ +∑
 (3) 

Then, after combining (1) and (3), (4) is obtained, which establishes a 

relationship between the load factor at BS m, η(m), and the summation of all the φ 

targets of those users connected with BS m. 
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In order to simplify the expression, we define the ASSIR(m), Aggregated Signal 

to Signal-plus-Interference-plus-noise ratio: 
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And thus, (4) can be simplified and re-written as follows: 

[ ]( ) 1 ( ) ( )m f m ASSIR mη = + ⋅  (6) 

The expression in (6) has to be always lower than the maximum allowed load 

factor ηmax, so that interference levels are kept sufficiently low and connections 

are not degraded. That means the condition in (7) has to be accomplished by all 

the cells in the system. 

 ( )
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This condition states how many users of each type can be admitted without 

exceeding the maximum allowed load in the cell, or rather it defines an admission 

region. Note that the expression is general and independent on the type of service 

the users are using. 
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2.2. Admission Control in Environments with Repeaters 

Subsequently, a general deployment with the presence of repeaters in a 

multiservice scenario is considered. An analytical solution of the feasibility 

condition for the UL of a CDMA system is derived and compared with that in 

subsection 2.1. 

As it was previously pointed, repeaters are not noiseless devices, a certain 

noise rise appears whenever new equipment is installed. Consequently, some 

changes must be introduced in the previous expressions. Particularly, φ(k) 

becomes (8). 
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Where: 

 NR(m): Number of repeaters connected to BS m. 

 nR:  Thermal noise power at the repeaters. 

 Gg(r,m) Global Gain, this is the absolute gain between the repeater and its 

donor BS (denoted by m). Note, however, that s(k) appears in (8) 

because we are not talking about a generic BS m, but the one that is 

serving the MT k. This gain considers: 

 The internal gain of the repeater itself. 

 The gain of the transmitter of the repeater in the link with the BS. 

 The gain of the RX of the BS in this link. 

 The absolute loss in the link between the BS and the repeater. 

Note that, in order to avoid amplifiers saturation at the repeaters, the maximum 

possible value for Gg(r,m) is the quotient between the repeater maximum 

transmission power PR,max(r) and the BS maximum transmission power PBS,max(m). 

Also note that if m is not the donor BS of the repeater r, then Gg(r,m)=0. 

( ) P ( ) ( , )R,max BS,max gP r m G r m≥ ⋅  (9) 

Because of the introduction of an extra noise power, the load factor must be 

also redefined (10). Moreover, in order to compare with environments without 

repeaters, the number of users has been maintained to NMT. It is irrelevant if they 

have established their connection through the donor BS or one of its repeaters, the 
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appropriate value of PRX(m,i) would be equally adjusted by the power control, but 

just considering a different effective path loss. 
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In order to allow an easy comparison with (7), a new parameter β(m) is defined 

in (11), which will be introduced in the expressions next. 
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Being δF(m) the relationship between the noise figure of the repeaters, FR, and 

that of the m BS, FB(m) (typically FB(m) < FR). 
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As a consequence, the expression in (13) is obtained. 
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And thus, a new admission region is found and defined by (14). 
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If this expression is compared with that in the case without repeaters (7), it can 

be observed that the new admission region is smaller, the system capacity in terms 

of number of active users is reduced. The new capacity is the one that would be 
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obtained in a network without repeaters but imposing a lower ηmax. This effect is 

extended and analysed by means of theoretical figures and simulations later on but 

it is clear that planning a WCDMA network with repeaters will not be such 

straightforward as in classical 2G FDMA/TDMA networks. 

Thus, when considering the presence of repeaters, a new parameter ξ(m), 

depending on the admission control threshold ηmax, can be defined (15). 
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And therefore the definition of the admission region can be re-written as 

follows: 
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Where ξ (m) represents the equivalent ηmax that should be imposed at the BS m 

in an environment without repeaters to obtain the same new admission region. It 

can be seen that the capacity reduction depends on the extra level of noise that is 

measured at the donor. The higher the number of installed repeaters, their noise 

figure or the global gain term, the smaller the admission region becomes. Note as 

well, that this degradation also depends on the maximum allowable load factor, 

for higher thresholds, the reduction is smaller, unfortunately this is a rather fixed 

design parameter. 

Nevertheless, the conclusions in the previous paragraph are straightforward as 

long as the relationship between the intra and the intercell power f(m) is 

maintained after installing repeaters. This is accomplished, for example, by those 

situations in which repeaters are ‘isolated’ from the rest of the system, for instance 

when covering a tunnel or inside a building with high propagation losses. On the 

other hand, there are other situations in which the installation of these devices 

modifies f(m). In these cases, the analytical expression of the admission region is 

identical but substituting f(m) by the new value, ϕ(m). The impact of ϕ(m) on the 

new admission region should be evaluated for each particular scenario. For 

example, repeaters could transmit more intercell power to the donor BS and 

decrease even more the admission region. 

Figure 1 shows some different examples of the facts that have been discussed 

(f(m) is not modified after installing the repeaters). Indeed, the admission regions 
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are plotted in a particular case of 3 different types of services and values of ηmax. 

Note that each axis represents one of the first three services in table 1, depicted 

later with other simulation conditions. The darker graph represents those possible 

combinations of types of users that would not exceed a load threshold of 0.8. On 

the other hand, the gains are set so that Gg is equal to 0 dB and the repeaters noise 

factor is considered to be the same as the donor BS. It can be seen that if one 

repeater is installed, the number of users would be drastically reduced. Under 

these assumptions, the number of accepted users would be equal to a situation 

without repeaters in which the maximum allowable load ξ is 0.6. If a second 

repeater is introduced, the equivalent maximum load ξ would be 0.4. Finally, the 

installation of four repeaters would imply such a noise rise that no users could be 

admitted in the cell. The degradation of capacity induced by the installation of 

repeaters is clear. Moreover, it is interesting that thanks to the definition of ξ, 

there is an easy way to quantify the reduction and compare the network 

performance before and after installing repeaters. 

Figure 2, can also help to the analysis of the plotted admission regions since it 

shows the maximum allowed load factor and the different equivalent loads ξ that 

would be obtained for different total received power at the BS. These curves allow 

an easy comparison of four situations, ranging from 1 to 4 repeaters, all of them 

with adjusted internal gains so that Gg is 0 dB. It can be seen that the higher the 

maximum allowed power at the RX, the smaller the differences between ηmax and 

the equivalent loads. Also, it can be seen those combinations of ηmax and number 

of repeaters which would imply that no users can access the cell, for example, 

when three repeaters are installed and ηmax must be below 0.75, or installing four 

repeaters and imposing ηmax ≤ 0.8. Finally, just note that these curves would be 

scaled by the term (1+f)/(1+ϕ) if the f factor was modified after installing the 

repeater, see equation (16). 

3. Capacity and Coverage Tradeoff in WCDMA 
Systems with Repeaters. 

From the previous expressions, it can be stated that: 

0 0 0
lim ( ) ; lim ( ) ; lim ( )

g
max max maxG r F
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ξ η ξ η ξ η
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= = =  (17) 
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This is logical, since all three situations tend to eliminate repeaters noise. 

However, whereas the third one is imposed by the equipment itself, the first and 

the second one can be decided during the planning process. Unfortunately, both 

imply a decrease in coverage so a tradeoff between coverage and capacity arises. 

In order to analyse the impact of these parameters on the system performance, 

static system level simulations have been executed. That is to say, a significant 

amount of uncorrelated snapshots have been run to obtain statistics. The simulator 

takes into account both UL and downlink (DL). The scenario is a road-like or 

railway one in which different numbers of repeaters are added to one BS to cover 

a certain target area. Classical COST231-Hata propagation model for suburban 

areas has been used [8] considering a 2GHz carrier. Regarding the shadowing 

model, the two dimensional model proposed in [9] has been introduced with a 

correlation distance of 18 m and a standard deviation of 8 dB. Finally, diagram 

patterns from commercial antennas have been used [10]. 

Regarding users services, the simulations consider 5 possible types. Table 1, 

contains their main features. Note that the DL limits the maximum amount of 

power devoted to one connection. On the other hand, MTs are supposed to have a 

maximum TX power of 21 dBm. 

Finally, different realistic types of repeaters have been contemplated, with 

different maximum TX powers (PR,max). In all cases their internal gain has been 

adjusted to the maximum value that guarantees no amplifiers saturation. 

Figure 3 shows the number of admitted users by the BS as a function of the 

number of connected repeaters. It can be seen that the reduction in capacity is 

directly proportional to PR,max and the number of repeaters. For example if 

repeaters transmit with the same maximum power as the BS (43 dBm) the global 

gain between the repeater and its donor is equal to 0 dB and therefore repeaters 

noise is not attenuated at all. This implies a high noise rise at the BS and 

consequently fewer users can be admitted. In fact, it can be seen that, for certain 

configurations and number of repeaters, no users could access the system. On the 

other hand, very low power repeaters do not degrade capacity as long as their 

number is not over 5, so the impact of the global gain is much more important 

than the number of installed repeaters. This fact will be analysed again later. 

The curves in Figure 4 show coverage in terms of Ec/I0, measured on the 

Common Pilot Channel (CPICH). In our simulations, the pilot channel is 
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realistically introduced according to UMTS networks. The CPICH allows the MT 

to execute the cell selection and soft handover procedures [12] and therefore a 

correct reception is mandatory in the target area of coverage. If the Ec/I0 measured 

on the pilot channel at one pixel is over -12 dB with a probability higher than 

95%, then that position is considered to be correctly covered in terms of CPICH. 

The figure shows a clear tradeoff, since those situations with higher capacity 

degradation are the ones with better pilot reception. Nevertheless, low power 

repeaters allow clear increases of coverage and with those configurations there 

was no significant loss in capacity. Thus, it seems that the tradeoff can be 

mitigated by means of many low power repeaters. However, this fact might 

obviously jeopardize a third parameter to optimize: the network cost. 

Although the Ec/I0 level is usually admitted as a metric of networks 

coverage, both UL and DL are limited in power. So CPICH coverage does not 

guarantee service availability. In fact, Figure 5 shows the medium power that a 

static voice user has to transmit as a function of its distance to the BS. The 

black horizontal line shows the maximum available UL TX power. It can be 

seen that users would have to commute to a degraded mode from around 3500 

m if no repeaters are installed in the scenario. Three situations with four 

repeaters are shown too. It can be seen that users would have enough power 

until around 11 km with 37 dBm repeaters. With 30 dBm repeaters, some 

deadspots would rise in the line between the donor and the last repeater. 

Finally, with 15 dBm repeaters, the extra coverage would be very low. Keeping 

these facts in mind, Figure 6 shows the probability that a service is available 

(that is, CPICH coverage is satisfactory and the power control does not require 

more than the maximum power in the UL and in the DL). The figure represents 

the values for repeaters with 37 and 15 dBm of PR,max. The notation Si stands 

for service i, where i is the row in table 1. It can be seen that the probability 

increases monotically with PR,max and the number of repeaters. However, as 

expected, both absolute values and increases are quite lower in the 15 dBm 

case, which shows modest improvements in the services availability. 

The advantage of using low power repeaters can be seen in Figure 7. This 

shows those configurations (number of repeaters and PR,max) that would 

succeed in covering a certain target area (65% of the scenario) along with the 
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reduction that they would imply in terms of capacity. For example, if a 10% 

reduction is tolerated, 4 repeaters with PR,max = 30 dBm could be planned. But 

if degradation is desired to be below 2.5%, this configuration would not be 

valid whereas six repeaters with PR,max = 20dBm would accomplish the 

requisite. The desired coverage could be guaranteed without a noticeable 

capacity loss but, as pointed out, with a much more costly solution. Indeed, 12 

low power repeaters (PR,max = 15 dBm) would be a valid configuration because 

of the high attenuation suffered by the noise. 

4. Conclusions 

Along this work an analytic expression of the feasibility condition for the UL 

of a WCDMA mobile communications system with repeaters has been obtained. 

A compact closed and generalist expression for the admission region has been 

presented and a new parameter ξ has been defined in order to quantify the 

resulting capacity degradation. It has been pointed out that planning WCDMA 

networks with repeaters implies a tradeoff between capacity and coverage, that is 

why introducing these devices will not be such straight forward as in classical 

FDMA/TDMA 2G systems. Repeaters noise figure, the global gain in the link 

between each repeater and the donor, and the number of repeaters itself are 

parameters with high impact on this tradeoff. The global gain shows an 

outstanding influence on capacity and service availability, however, by means of 

simulation it has been seen that degradation is not such significant with low power 

repeaters. In these situations a high noise rise can be avoided and the tradeoff is 

partially controlled. Installation of many repeaters could guarantee both coverage 

and capacity as long as their internal gains are adjusted so that the global gain is 

low. The cost of the network, however, might invalidate some of the solutions and 

certain capacity or coverage reduction could have to be accepted. 
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Figure legends and Tables 
 

Figure 1. Correspondence of admission regions with and without repeaters. 

Figure 2 ηmax and equivalent loads (ξ) as a function of the total received power at the donor BS 

Figure 3. Number of admitter users for different number and types of repeaters 

Figure 4 Probability of CPICH coverage in target area 

Figure 5. Medium UL transmitted power as a function of the distance to the donor BS 

Figure 6. Probability of service availability. 

Figure 7. Degradation of capacity when guaranteeing coverage in a 65% of the scenario, for 

different number of repeaters and PR,max. 

 

Table 1. Services Features 

Type of service UL Eb/N0 
(dB) 

DL Eb/N0 
(dB) 

Max DL 
power (dBm) 

Voice – 12.2 kbps 2.9 4.4 21 
Voice – 12.2 kbps 

(50 km/h) 5.5 7 21 

Data – 64 kbps 1 2.5 30 
Data – 144 kbps 0.4 2.3 30 
Data – 384 kbps 0.6 2.4 30 
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Figures 
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Figure 3: 
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Figure 4: 
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