6 research outputs found

    Analysis of The Tailored Coupled-Cluster Method in Quantum Chemistry

    Get PDF
    In quantum chemistry, one of the most important challenges is the static correlation problem when solving the electronic Schr\"odinger equation for molecules in the Born--Oppenheimer approximation. In this article, we analyze the tailored coupled-cluster method (TCC), one particular and promising method for treating molecular electronic-structure problems with static correlation. The TCC method combines the single-reference coupled-cluster (CC) approach with an approximate reference calculation in a subspace [complete active space (CAS)] of the considered Hilbert space that covers the static correlation. A one-particle spectral gap assumption is introduced, separating the CAS from the remaining Hilbert space. This replaces the nonexisting or nearly nonexisting gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital usually encountered in standard single-reference quantum chemistry. The analysis covers, in particular, CC methods tailored by tensor-network states (TNS-TCC methods). The problem is formulated in a nonlinear functional analysis framework, and, under certain conditions such as the aforementioned gap, local uniqueness and existence are proved using Zarantonello's lemma. From the Aubin--Nitsche-duality method, a quadratic error bound valid for TNS-TCC methods is derived, e.g., for linear-tensor-network TCC schemes using the density matrix renormalization group method

    Guaranteed convergence for a class of coupled-cluster methods based on Arponen's extended theory

    Full text link
    A wide class of coupled-cluster methods is introduced, based on Arponen's extended coupled-cluster theory. This class of methods is formulated in terms of a coordinate transformation of the cluster operators. The mathematical framework for the error analysis of coupled-cluster methods based on Arponen's bivariational principle is presented, in which the concept of local strong monotonicity of the flipped gradient of the energy is central. A general mathematical result is presented, describing sufficient conditions for coordinate transformations to preserve the local strong monotonicity. The result is applied to the presented class of methods, which include the standard and quadratic coupled-cluster methods, and also Arponen's canonical version of extended coupled-cluster theory. Some numerical experiments are presented, and the use of canonical coordinates for diagnostics is discussed.Comment: 11 page

    A hybrid stochastic configuration interaction-coupled cluster approach for multireference systems

    Full text link
    The development of multireference coupled cluster (MRCC) techniques has remained an open area of study in electronic structure theory for decades due to the inherent complexity of expressing a multi-configurational wavefunction in the fundamentally single-reference coupled cluster framework. The recently developed multireference coupled cluster Monte Carlo (mrCCMC) technique uses the formal simplicity of the Monte Carlo approach to Hilbert space quantum chemistry to avoid some of the complexities of conventional MRCC, but there is room for improvement in terms of accuracy and, particularly, computational cost. In this paper we explore the potential of incorporating ideas from conventional MRCC - namely the treatment of the strongly correlated space in a configuration interaction formalism - to the mrCCMC framework, leading to a series of methods with increasing relaxation of the reference space in the presence of external amplitudes. These techniques offer new balances of stability and cost against accuracy, as well as a means to better explore and better understand the structure of solutions to the mrCCMC equations.Comment: 13 pages, 10 figures, 3 table

    Analysis of the tailored coupled-cluster method in quantum chemistry

    Get PDF
    corecore