731 research outputs found

    Long-term measurements of spectrum occupancy characteristics

    Get PDF

    Leveraging Cognitive Radio Networks Using Heterogeneous Wireless Channels

    Get PDF
    The popularity of ubiquitous Internet services has spurred the fast growth of wireless communications by launching data hungry multimedia applications to mobile devices. Powered by spectrum agile cognitive radios, the newly emerged cognitive radio networks (CRN) are proposed to provision the efficient spectrum reuse to improve spectrum utilization. Unlicensed users in CRN, or secondary users (SUs), access the temporarily idle channels in a secondary and opportunistic fashion while preventing harmful interference to licensed primary users (PUs). To effectively detect and exploit the spectrum access opportunities released from a wide spectrum, the heterogeneous wireless channel characteristics and the underlying prioritized spectrum reuse features need to be considered in the protocol design and resource management schemes in CRN, which plays a critical role in unlicensed spectrum sharing among multiple users. The purpose of this dissertation is to address the challenges of utilizing heterogeneous wireless channels in CRN by its intrinsic dynamic and diverse natures, and build the efficient, scalable and, more importantly, practical dynamic spectrum access mechanisms to enable the cost-effective transmissions for unlicensed users. Note that the spectrum access opportunities exhibit the diversity in the time/frequency/space domain, secondary transmission schemes typically follow three design principles including 1) utilizing local free channels within short transmission range, 2) cooperative and opportunistic transmissions, and 3) effectively coordinating transmissions in varying bandwidth. The entire research work in this dissertation casts a systematic view to address these principles in the design of the routing protocols, medium access control (MAC) protocols and radio resource management schemes in CRN. Specifically, as spectrum access opportunities usually have small spatial footprints, SUs only communicate with the nearby nodes in a small area. Thus, multi-hop transmissions in CRN are considered in this dissertation to enable the connections between any unlicensed users in the network. CRN typically consist of intermittent links of varying bandwidth so that the decision of routing is closely related with the spectrum sensing and sharing operations in the lower layers. An efficient opportunistic cognitive routing (OCR) scheme is proposed in which the forwarding decision at each hop is made by jointly considering physical characteristics of spectrum bands and diverse activities of PUs in each single band. Such discussion on spectrum aware routing continues coupled with the sensing selection and contention among multiple relay candidates in a multi-channel multi-hop scenario. An SU selects the next hop relay and the working channel based upon location information and channel usage statistics with instant link quality feedbacks. By evaluating the performance of the routing protocol and the joint channel and route selection algorithm with extensive simulations, we determine the optimal channel and relay combination with reduced searching complexity and improved spectrum utilization. Besides, we investigate the medium access control (MAC) protocol design in support of multimedia applications in CRN. To satisfy the quality of service (QoS) requirements of heterogeneous applications for SUs, such as voice, video, and data, channels are selected to probe for appropriate spectrum opportunities based on the characteristics and QoS demands of the traffic along with the statistics of channel usage patterns. We propose a QoS-aware MAC protocol for multi-channel single hop scenario where each single SU distributedly determines a set of channels for sensing and data transmission to satisfy QoS requirements. By analytical model and simulations, we determine the service differentiation parameters to provision multiple levels of QoS. We further extend our discussion of dynamic resource management to a more practical deployment case. We apply the experiences and skills learnt from cognitive radio study to cellular communications. In heterogeneous cellular networks, small cells are deployed in macrocells to enhance link quality, extend network coverage and offload traffic. As different cells focus on their own operation utilities, the optimization of the total system performance can be analogue to the game between PUs and SUs in CRN. However, there are unique challenges and operation features in such case. We first present challenging issues including interference management, network coordination, and interworking between cells in a tiered cellular infrastructure. We then propose an adaptive resource management framework to improve spectrum utilization and mitigate the co-channel interference between macrocells and small cells. A game-theory-based approach is introduced to handle power control issues under constrained control bandwidth and limited end user capability. The inter-cell interference is mitigated based upon orthogonal transmissions and strict protection for macrocell users. The research results in the dissertation can provide insightful lights on flexible network deployment and dynamic spectrum access for prioritized spectrum reuse in modern wireless systems. The protocols and algorithms developed in each topic, respectively, have shown practical and efficient solutions to build and optimize CRN

    Opportunities And Challenges of E-Health and Telemedicine Via Satelite

    Get PDF
    The introduction of Information and Communication Technology (ICT) in the health scenario is instrumental for the development of sustainable services of direct benefit for the European citizen. The setting up of satellite based applications will enhance rapidly the decentralisation and the enrichment of the European territory driving it towards a homogenous environment for healthcare

    Human experience in the natural and built environment : implications for research policy and practice

    Get PDF
    22nd IAPS conference. Edited book of abstracts. 427 pp. University of Strathclyde, Sheffield and West of Scotland Publication. ISBN: 978-0-94-764988-3

    Performance evaluation of future wireless networks: node cooperation and aerial networks

    Get PDF
    Perhaps future historians will only refer to this era as the \emph{information age}, and will recognize it as a paramount milestone in mankind progress. One of the main pillars of this age is the ability to transmit and communicate information effectively and reliably, where wireless radio technology became one of the most vital enablers for such communication. A growth in radio communication demand is notably accelerating in a never-resting pace, pausing a great challenge not only on service providers but also on researches and innovators to explore out-of-the-box technologies. These challenges are mainly related to providing faster data communication over seamless, reliable and cost efficient wireless network, given the limited availability of physical radio resources, and taking into consideration the environmental impact caused by the increasing energy consumption. Traditional wireless communication is usually deployed in a cellular manner, where fixed base stations coordinate radio resources and play the role of an intermediate data handler. The concept of cellular networks and hotspots is widely adopted as the current stable scheme of wireless communication. However in many situations this fixed infrastructure could be impaired with severe damages caused by natural disasters, or could suffer congestions and traffic blockage. In addition to the fact that in the current networks any mobile-to-mobile data sessions should pass through the serving base station that might cause unnecessary energy consumption. In order to enhance the performance and reliability of future wireless networks and to reduce its environmental footprint, we explore two complementary concepts: the first is node cooperation and the second is aerial networks. With the ability of wireless nodes to cooperate lays two main possible opportunities; one is the ability of the direct delivery of information between the communicating nodes without relaying traffic through the serving base station, thus reducing energy consumption and alleviating traffic congestion. A second opportunity would be that one of the nodes helps a farther one by relaying its traffic towards the base station, thus extending network coverage and reliability. Both schemes can introduce significant energy saving and can enhance the overall availability of wireless networks in case of natural disasters. In addition to node cooperation, a complementary technology to explore is the \emph{aerial networks} where base stations are airborne on aerial platforms such as airships, UAVs or blimps. Aerial networks can provide a rapidly deployable coverage for remote areas or regions afflicted by natural disasters or even to patch surge traffic demand in public events. Where node cooperation can be implemented to complement both regular terrestrial coverage and to complement aerial networks. In this research, we explore these two complementary technologies, from both an experimental approach and from an analytic approach. From the experimental perspective we shed the light on the radio channel properties that is hosting terrestrial node cooperation and air-to-ground communication, namely we utilize both simulation results and practical measurements to formulate radio propagation models for device-to-device communication and for air-to-ground links. Furthermore we investigate radio spectrum availability for node cooperation in different urban environment, by conductive extensive mobile measurement survey. Within the experimental approach, we also investigate a novel concept of temporary cognitive femtocell network as an applied solution for public safety communication networks during the aftermath of a natural disaster. While from the analytical perspective, we utilize mathematical tools from stochastic geometry to formulate novel analytical methodologies, explaining some of the most important theoretical boundaries of the achievable enhancements in network performance promised by node cooperation. We start by determining the estimated coverage and rate received by mobile users from convectional cellular networks and from aerial platforms. After that we optimize this coverage and rate ensuring that relay nodes and users can fully exploit their coverage efficiently. We continue by analytically quantifying the cellular network performance during massive infrastructure failure, where some nodes play the role of low-power relays forming multi-hop communication links to assist farther nodes outside the reach of the healthy network coverage. In addition, we lay a mathematical framework for estimating the energy saving of a mediating relay assisting a pair of wireless devices, where we derive closed-form expressions for describing the geometrical zone where relaying is energy efficient. Furthermore, we introduce a novel analytic approach in analyzing the energy consumption of aerial-backhauled wireless nodes on ground fields through the assistance of an aerial base station, the novel mathematical framework is based on Mat\'{e}rn hard-core point process. Then we shed the light on the points interacting of these point processes quantifying their main properties. Throughout this thesis we relay on verifying the analytic results and formulas against computer simulations using Monte-Carlo analysis. We also present practical numerical examples to reflect the usefulness of the presented methodologies and results in real life scenarios. Most of the work presented in this dissertation was published in-part or as a whole in highly ranked peer-reviewed journals, conference proceedings, book chapters, or otherwise currently undergoing a review process. These publications are highlighted and identified in the course of this thesis. Finally, we wish the reader to enjoy exploring the journey of this thesis, and hope it will add more understanding to the promising new technologies of aerial networks and node cooperation

    A Software Engineered Voice-Enabled Job Recruitment Portal System

    Get PDF
    The inability of job seekers to get timely job information regarding the status of the application submitted via conventional job portal system which is usually dependent on accessibility to the Internet has made so many job applicants to lose their placements. Worse still, the epileptic services offered by Internet Service Providers and the poor infrastructures in most developing countries have greatly hindered the expected benefits from Internet usage. These have led to cases of online vacancies notifications unattended to simply because a job seeker is neither aware nor has access to the Internet. With an increasing patronage of mobile phones, a self-service job vacancy notification with audio functionality or an automated job vacancy notification to all qualified job seekers through mobile phones will simply provide a solution to these challenges. In this paper, we present a Voice-enabled Job Recruitment Portal (JRP) System. The system is accessed through two interfaces – the voice user’s interface (VUI) and web interface. The VUI was developed using VoiceXML and the web interface using PHP, and both interfaces integrated with Apache and MySQL as the middleware and back-end component respectively. The JRP proposed in this paper takes the hassle of job hunting from job seekers, provides job status information in real-time to the job seeker and offers other benefits such as, cost, effectiveness, speed, accuracy, ease of documentation, convenience and better logistics to the employer in seeking the right candidate for a job

    Differential perceptual and behavioral response to change in urban spatial form.

    Get PDF
    Massachusetts Institute of Technology. Dept. of City and Regional Planning. Thesis. 1967. Ph.D.Vita.Bibliography: l. 296-315.Ph.D

    2006 Eighteenth Annual IMSA Presentation Day

    Get PDF
    We believe that our goal of creating decidedly-different learners is already being met and will make a profound impact on the future of humanity.https://digitalcommons.imsa.edu/archives_sir/1020/thumbnail.jp
    corecore