8,872 research outputs found

    MELT - a Translated Domain Specific Language Embedded in the GCC Compiler

    Full text link
    The GCC free compiler is a very large software, compiling source in several languages for many targets on various systems. It can be extended by plugins, which may take advantage of its power to provide extra specific functionality (warnings, optimizations, source refactoring or navigation) by processing various GCC internal representations (Gimple, Tree, ...). Writing plugins in C is a complex and time-consuming task, but customizing GCC by using an existing scripting language inside is impractical. We describe MELT, a specific Lisp-like DSL which fits well into existing GCC technology and offers high-level features (functional, object or reflexive programming, pattern matching). MELT is translated to C fitted for GCC internals and provides various features to facilitate this. This work shows that even huge, legacy, software can be a posteriori extended by specifically tailored and translated high-level DSLs.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    An evaluation of Ada for Al applications

    Get PDF
    Expert system technology seems to be the most promising type of Artificial Intelligence (AI) application for Ada. An expert system implemented with an expert system shell provides a highly structured approach that fits well with the structured approach found in Ada systems. The current commercial expert system shells use Lisp. In this highly structured situation a shell could be built that used Ada just as well. On the other hand, if it is necessary to deal with some AI problems that are not suited to expert systems, the use of Ada becomes more problematical. Ada was not designed as an AI development language, and is not suited to that. It is possible that an application developed in say, Common Lisp could be translated to Ada for actual use in a particular application, but this could be difficult. Some standard Ada packages could be developed to make such a translation easier. If the most general AI programs need to be dealt with, a Common Lisp system integrated with the Ada Environment is probably necessary. Aside from problems with language features, Ada, by itself, is not well suited to the prototyping and incremental development that is well supported by Lisp

    ART-Ada design project, phase 2

    Get PDF
    Interest in deploying expert systems in Ada has increased. An Ada based expert system tool is described called ART-Ada, which was built to support research into the language and methodological issues of expert systems in Ada. ART-Ada allows applications of an existing expert system tool called ART-IM (Automated Reasoning Tool for Information Management) to be deployed in various Ada environments. ART-IM, a C-based expert system tool, is used to generate Ada source code which is compiled and linked with an Ada based inference engine to produce an Ada executable image. ART-Ada is being used to implement several expert systems for NASA's Space Station Freedom Program and the U.S. Air Force
    • …
    corecore