
Mental Models and Human-Computer Interaction 2
M.J. Tauber and D. Ackermann

Elsevier Science Publishers B.V. (North-Holland), 1991

THE PSYCHOLOGICAL PROCESSES OF
CONSTRUCTING A MENTAL MODEL WHEN

LEARNING BY BEING TOLD, FROM EXAMPLES,
AND BY EXPLORATION

Franz Schmalhofer and Otto Ktihn
Deutsches Forschungszentrum fur Kiinstliche Intelligenz,

Kaiserslautern, FRG

ABSTRACT

The current paper presents a detailed description of an integrative
simulation model, which specifies the psychological knowledge acquisi­
tion process in learning by being told (learning from text), in learning
from examples (learning from a demonstration) and in learning by
exploration. A learner's prior domain knowledge, which may consist of
domain specific knowledge and general heuristics, has a critical
influence in what is being learned. For various degrees of prior
knowledge, the simulation specifies the different ways by which a men­
tal model may be formed. Consequently, it can be applied for evaluat­
ing the effectiveness of the different learning methods and instruction
materials as well as the influence of a learner's prior knowledge.

Introduction
It has become well recognized that in order to establish user-

oriented design principles, one indeed needs to know which knowledge
users may employ to successfully work with computer systems and how
such knowledge can be acquired. In previous research, formal models
have been developed which specify the procedural knowledge that is
sufficient for performing various tasks. Such knowledge which has been
termed how-to-do-it knowledge is formally represented by production
rules.

The Cognitive Complexity Theory (CCT) of Kieras and Poison
(1985) belongs to this class of models. The CCT assumes that the time
required for learning to perform some task can be predicted by the
number of production rules which must be newly learned. This

prediction has been experimentally confirmed in several laboratory
experiments (e.g. Poison, Muncher and Engelbeck, 1986; Ziegler,
Hoppe and Fahnrich, 1986). Typically, the subjects of these experi­
ments are explicitly trained step by step in performing the various unit
tasks (Card, Moran and Newell, 1983), such as deleting a word.

For example, in the experiment by Poison et al. subjects were to
anticipate the next operating step in performing a task. After they failed
twice they were explicitly told the operation which they had to perform.
Subjects were thus obliged to memorize a sequence of operations. The
experimental results demonstrate that under these conditions how-to-
do-it knowledge that can be represented by production rules is directly
acquired. In particular, the mean time to master a task at a given posi­
tion in a training sequence is determined by the number of production
rules which must be newly learned for that task.

In these experiments subjects were quite restricted in what and
how they learned. At each step in the training task subjects had to learn
exactly one operation. Other than the sequential order no relation was
established among these steps of the training procedure. Basically, the
training procedure consisted in the memorization of a sequence of
operations. Due to this training procedure learners could hardly achieve
an understanding of how the system works. They could not utilize their
prior knowledge to derive a deeper understanding of the effectiveness
of their actions. Since such a learning procedure is rather untypical, it is
questionable to what extent the CCT should be used for deriving user-
centered design principles.

In a different line of research, it has been argued that a user's
mental model of a system is of critical importance (Norman, 1983;
Halasz and Moran, 1983). Contrary to the how-to-do-it knowledge a
mental model represents the how-it-works knowledge. A mental model
is a representation of the internal structures and processes of a system
at some uniform level of description. From a mental model any operat­
ing procedure for a device may supposedly be inferred by general rea­
soning processes. Therefore acquiring a mental model from which all
the relevant how-to-do-it knowledge can be derived may be overall
more parsimonious than memorizing a collection of operating pro­
cedures.

For building or updating a mental model of some system, humans
may employ a combination of different learning methods. Users may

study a text, learn from a demonstration of specific interactions with the
system (learning from examples) or simply explore the system by them­
selves. Rather than specifying only the resulting products, the informa­
tion processing of the different learning methods themselves should be
modeled. Since a learner's prior domain knowledge often determines
what is being learned from an instructional episode, the prior
knowledge must be explicitly represented in such a learning model. By
specifying different amounts and kinds of prior knowledge individual
differences between users can be taken into account when deriving lear-
nability predictions.

In the present paper, we will present such a computer simulation
which describes how a mental model is formed and updated by a com­
bination of learning methods:
1) by being told (text learning),
2) from a demonstration (examples) and
3) by exploration.
The various kinds of prior knowledge which are utilized during this
learning process will be delineated. In addition it will be shown how
how-to-do-it knowledge can be derived from such a mental model.
Expertise differences in the construction of a mental model will be
accounted for by differences in the prior domain knowledge whereas
the learning strategies remain unchanged.

The construction of a mental model

General processing goals
Under most circumstances learning is goal driven. The goal of

knowledge acquisition (KA-goal) is to form or update a mental model
which will be well suited for deriving how-to-do-it knowledge when
specific tasks arise. In order to allow for such derivations, knowledge
which is only implicitly contained in the mental model must be made
explicit to a certain degree. Without this knowledge explication in the
knowledge acquisition phase the processing demands for performing
specific tasks later could not be met. The goal of learning therefore is
to construct a mental model so that various tasks can be solved rela­
tively easily. Learning can thus be seen as a problem solving process in

which knowledge is explicated so that some conjectured tasks can be
solved in the future.

From the general learning goal four more specific processing goals
can be derived: explicitness, parsimony, coherence, and consistency.
The constructed mental model should contain as much explicit
knowledge as possible. Because of memory limitations the knowledge
should also be represented parsimoniously. Explicitness and parsimony
are contradicting processing goals. Therefore a compromise between
these processing goals must be achieved. Since humans are better able
to remember coherent information, the new knowledge should be
related to the prior existing knowledge. In addition, the mental model
should be consistent, since it should not provide contradictory solutions
for the same task.

In learning by being told, general information is usually presented
to the learner. In order for this information to be useful, the KA-goal
requires that more specific information be derived from it. The sup­
posedly relevant knowledge which is implied by the general statements
must be made explicit. Examples, on the other hand, present very
specific information. In order for an example to be useful for solving
other tasks, the KA-goal requires that more general information be
inferred from it. Examples must be generalized so that the resulting
knowledge is applicable for a larger variety of tasks. Thus two different
subgoals, one for learning from text and one for learning from exam­
ples, result from the general KA-goal. The KA-goal thus leads to a
mental model which contains knowledge that is rather explicit and at
the same time general enough to be applied to a number of tasks.

Based on the four general processing goals of knowledge acquisi­
tion, an integrative computer simulation of human learning was
developed. Since learning is driven by the existing prior knowledge, the
representation of (prior) knowledge will be discussed before the
different learning methods are described.

Representation of knowledge
Three logically different types of knowledge are distinguished:

1) known rules and facts,

2) hypotheses, and
3) heuristics
which can generate hypotheses. The three following forms are used to
represent knowledge (please note that capital letters at the beginning of
a word identify variables):

1) known(DomaintFactOrRuleJnfo)
2) hyp(Domain ,FactOrRule Jnfo)
3) heur(Domain,FactOrRule Jnfo).

Rules and facts which are known to be true are represented by
form 1). Hypotheses which were inductively formed and may therefore
be incorrect are represented by form 2). Form 3) is used to specify
heuristics which are applied for generating and modifying hypotheses.

The knowledge base is segmented into Domains which may be
accessed selectively. FactOrRule specifies the knowledge contents. Info
provides additional information about a knowledge element such as
confidence and usefulness counters, and how the particular knowledge
element has been obtained.

Domains are hierarchically organized. Although the proposed
simulation model is general and not tied to a specific subject domain it
will be presented for the acquisition of basic LISP knowledge. For the
learning of elementary LISP the relevant knowledge is structured
according to the following hierarchy:

commonsense
I

mathematics
I

lisp
/ I \

list first rest ...

Together the knowledge domains lisp, list, first, rest,., form the
user's mental model of the LISP system. When such a mental model is
being built up, knowledge from related domains is utilized to derive
inferences and to form hypotheses.

Description of the relevant prior knowledge
In the case of LISP knowledge the domains of mathematics and

commonsense are assumed to form the relevant prior knowledge. Com-
monsense knowledge is only accessed, if the subordinate, more specific
knowledge is insufficient for accomplishing the KA-goal.

It consists of the ordinary and universal knowledge, such as how
to compare statements to empirical observations, the transitivity of sub­
class relations and counting. In addition the commonsense knowledge
contains five types of general heuristics which can generate or modify
hypotheses in a domain: The empirical generation heuristics produce
hypotheses about specific observations being true in general. The wish­
ful thinking heuristics generate hypotheses so that some path of reason­
ing can be completed without any further consideration. Generalisation
and differentiation heuristics, on the other hand, modify already existing
hypotheses. Selection heuristics select a specific element from some
class under certain constraints. For example, alternative hypotheses
would be generated by selection heuristics.

Some examples of commonsense knowledge will be presented:
One piece of commonsense knowledge says that Something is con­

cluded to be correct, if the requirements for the activated attribute of
the relevant concept are satisfied. More explicitly, Something satisfies
an attribute requirement of a concept correctly, if
1. the concept requires the attribute to have a certain value (Required-

Value) and
2. an analysis of that Something which is driven by the attribute of the

concept yields a GivenValue and
3. the GivenValue corresponds to the RequiredValue.
Its formal representation in PROLOG is:

correct(Attribute,Concept,Something) :-
required(Attribute,Concept\RequiredValue),
given(Attribute,Something,GivenValue),
correspond(RequiredValue,GivenValue).

If no hypothesis exists about the RequiredValue of the attribute,
the following empirical generation heuristic is used. It generates the
hypothesis that the GivenValue is also the RequiredValue for the attri­
bute.

file:///RequiredValue

correct(Attribute,Concept.Something) :-
not hyp(required(Attribute,Concept JRequiredValue)),
given(Attribute,Something,GivenValue),
generate Jhyp(required(Attribute Concept,GivenVal ue)).

If a hypothesis contradicts a given value of an attribute the follow­
ing generalization heuristic may be employed. For example, for the
attribute number_of_arguments a RequiredValue of 1 and GivenValue
of 3 may yield the generalization RequiredValue of at_least(1).

correct(Attribute,Concept,Something) ;-
hyp(required(Attribute,Concept RequiredValue)),
given(Attribute,Something,GivenValue),
find_general(RequiredValue,GivenValue,Generalization),
generalize _hyp(required(Attribute,Concept,GivenValue),

required(Attribute,Concept,Generalization)).

The specialization heuristic works accordingly.
To the domain of mathematics belongs the knowledge about func­

tions in general (i.e. a function schema with the slots: number of argu­
ments, type of arguments, and input/output relation). It is represented
by:

correct Junction(F name Arguments Result) :-
correct(number_of_arguments JFname Arguments),
correct(type_of_arguments,FnameArguments),
cor rect(io_r elation Rname,(ArgumentsResult)).

This knowledge from the domains commonsense and mathematics
is used together with the instructional materials to form a basis for the
mental model of the LISP system. The basic distinctions of the mental
model are assumed to be acquired through learning by being told. This
learning method will be described later. From an instructional text
about the definitions of atoms and lists and the evaluation of an input
by the LISP system an initial (and incomplete) mental model of the
LISP system is obtained.

The initial mental model
The knowledge about LISP contains information about structures

and processes. The structures describe LISP objects and various rela­
tions among them. Their representation depends upon the instructional
material. For example, the instructional material determines which of
the following two representations is constructed for lists:

is_instance([],list).
is_instance([X\XsJ ,list) :-

is_instance(X ,s_expr),
is_instance(Xs,list).

is_instance(X,list) :-
begins_mth(X,'['),
ends_with(X:D,
contains(XJ(s)f

are_instance(Xs,s_expr).

Atoms and lists are subclasses of s-expressions, which is simply
represented by:

isa(atom,s_expr).
isa(list,s_expr).

The evaluation of LISP objects is represented by various process
descriptions. For example, the evaluation of a function call as input to
the LISP system is represented by:

evalflnputResult) :-
funcal I (Input,Fname A rgSpecs),
eval_argspecs(ArgSpecs Arguments),
correctJunction(FnameArgumentsResult).

Supposedly, the acquisition of additional LISP knowledge (e.g.
about specific functions such as FIRST, REST, ...) depends upon how
well the initial mental model has been formed. Different learning
methods may be employed. A particular LISP-function like the function
FIRST can be learned in three different ways.
1) It can be learned from the following sentences:

FIRST is a USP function.
It takes exactly one argument.
The argument must be a list.
The function FIRST returns the first element of the argument.

2) Alternatively, the function FIRST can be learned from a sequence
of examples such as:

(FIRST'(A B)) ~ > A
(FIRST 'A) -> ERROR

3) A third way of learning FIRST is to present one (simple) example
(or just the name of the function) as a start for exploring that func­
tion by interacting with the LISP interpreter.

Usually a combination of these learning methods will be used
when building a mental model.

Learning by being told
The previously listed sentences defining the LISP-function FIRST

are represented by the following clauses:
lispJunctionifirst).
required(number_of_argumentsfirst,1).
requiredf type _of_arguments first ,list).
requiredf iojrelation first,the Jvrst_element_of_argument).

These clauses are sequentially integrated into the initial mental
model. This process is driven by the KA-goal. At first, it is examined
whether a clause is already explicitly or implicitly known (redundant
clauses) or whether it contradicts already existing knowledge (contrad­
icting clauses).

Redundant clauses
A clause which is redundant with respect to knowledge of type

known is only added to the mental model, if it enhances the explicit­
ness of the mental model, i.e. if a long inference chain would otherwise
be needed to derive it. A clause which is redundant with respect to
some hypothesis replaces the respective hypothesis. No further process­
ing is required for redundant clauses in order to achieve the learning
goal.

Contradicting clauses
For contradicting clauses, the contradiction with the mental model

must be resolved. If the clause contradicts information of type known,
the learning process is interrupted and a question is asked to the teacher
(see Learning by exploration). If the clause contradicts a hypothesis
(information of type hyp), three different cases must be distinguished:
1) If the contradicting clause is more general than the hypothesis, the

hypothesis is substituted by the clause, and any inferences derived
from the hypothesis are generalized accordingly.

2) If the contradicting clause is more specific, the hypothesis is too
general. The overgeneralized hypothesis is consequently replaced by
the contradicting clause (which is of type known). The clauses

which have been derived from the overgeneralized hypothesis are
specialized accordingly. For instance, the hypothesis
required(type_of_arguments,first,s_epxr) would be replaced by the
told fact required(type_of_arguments,first,list), and the derived
clause

interaction [first,$ X],Y) :-
isJnstancefX,s_expr),
the Jirst _part_of(X,Y)

would be specialized to
interaction [first,$ X],Y)

is_instance(X,list),
the Jirst _part_of(X,Y).

3) If the clause contradicts a hypothesis without being more general or
more specific, the hypothesis is replaced by the contradicting clause,
and any information derived from the hypothesis is withdrawn from
the mental model.

New clauses
New clauses (i.e. clauses which are neither redundant nor contrad­

icting) become part of the mental model. The coherence of the new
clause to the mental model is established by deriving mostly forward
inferences from the new clause and the mental model. Forward infer­
ences are tried first, since texts usually present general information
before the more specific information.

When generating inferences the knowledge is searched from the
specific to more general domains. Superordinate domains such as
mathematics and commonsense may thus be used for constructing the
mental model. Since the most recently acquired knowledge is always
stored at the top of each domain, recently acquired knowledge is prefer­
ably utilized. By storing inferences in the mental model, its explicitness
is increased. Since the obtained inference can be used to find another
inference (and so on) the explicitness of the knowledge base can be
enhanced even further. The obtained forward inferences can be
simplified by applying backward inferences.

A large (possibly infinite) number of inferences could be derived
from each statement. Because of the parsimony criterion the inferencing
process has been restricted. Only one forward inference is generated at

each level and only i inferences are allowed in total. Thereby a
human's limited processing resources are taken into consideration, i is
assumed to be a parameter of the model.

In the following it is shown, how the new clause
lisp_function(first) is integrated into the initial mental model. At first,
the forward inference:

funcail(Input) :-
Input = [first I ArgSpecs].

is obtained from the new clause and the following clause of the initial
mental model:

funcall(Input) :-
Input = [Fname I ArgSpecs],
lisp_function(Fname).

This forward inference is generated by unifying (the head of) the
new clause, lisp_function(first), with a condition of a known clause,
lisp_function(Fname). The unifying condition is dropped from the
clause, and the variable bindings established in the unification are main­
tained.

In the second step the inference:
eval(InputResult) :-

Input = [first I Argspecs],
evaljar gspecs(Argspecs Arguments),
correctJunction(first ArgumentsResult).

is obtained from the inference derived in the first step and the following
clause:

evalflnputResult) :-
funcall(1nput,Fname ArgSpecs),
eval_argspecs(ArgSpecs Arguments),
correct_function(F name Arguments Result).

Due to the obtained inferences less processing is required, when
subsequent examples are studied or have to be verified, or when a pro­
gramming task has to be solved. A usefulness value of 1 is stored with
each inference. This value is incremented each time the inference is
used. After a certain time period, inferences with low usefulness values
are deleted from the knowledge base.

Learning from examples
The initial mental model may also be elaborated by studying

specific examples of interactions with the LISP system, such as:
(LIST 'A 'B)~> (A B)
(UST '(A B) 'C '(D E))~>((A B) C (D E))
(USTAB) --> ERROR

The first two inputs to the LISP system can actually be evaluated.
Therefore they are called positive example interactions. Inputs which
yield an error message like the third example are called negative exam­
ples. These three examples may be represented by:

interaction [list, $ a, $ b], [a,b]).
interaction [list, $ [a,b], $ c, $ [d,e]], [[a,b],c,[d,e]]).
interaction [list, a, b], error).

Again these examples are sequentially integrated into the mental
model so that the learning goal is achieved. For each example it is
determined whether it is consistent with the already existing mental
model. This is accomplished by utilizing the mental model to mentally
evaluate the input of the example. Because of the assumed human pro­
cessing limitations, again only j inferencing steps are performed. If this
processing limit is reached, the existing mental model is not explicit
enough for evaluating the example input. Consequently, no further pro­
cessing of the example would be performed. When the next example is
studied, the previously achieved inferences are supposedly primed so
that overall more than j inferencing steps can be performed. For a
more explicit mental model the processing demands will be below the
processing limits and the mental evaluation may yield a result. If the
mental evaluation yields the same result as specified in the example, the
example is called redundant with respect to the already existing mental
model. If the mental evaluation yields a different result than specified in
the example the example contradicts the existing mental model. If the
mental model does not contain sufficient information for evaluating the
example input, the example is called new.

Redundant examples
Although redundant examples do not contain any novel informa­

tion they may still be used to explicate knowledge which is so far only
implicit in the mental model. During the mental evaluation of an exam­
ple input the mental model was presumably used to construct an

explanation how the input to the LISP system is transformed into the
output. From this explanation a schema or template is constructed.
Such templates make the mental model more explicit and can be used
to evaluate inputs to the LISP system in a small number of processing
steps.

For the first example the following explanation may be obtained
from an explicit mental model:

interaction([list, $ a, $ b], [a,b]) since
funcall([list, $ a, $ b], list, [$ a, $ b]) and
eval_argspecs([$ a, $ b], [a,b]) and
correct_function(list, [a,b], [a,b]).
funcall([list, $ a, $ b], list, [$ a, $ b]) since

[list, $ a,$ b] = [list, $ a, $ b],
lisp_function(list).

eval_argspecs([$ a, $ b], [a,b]) since
eval($ a, a) and
eval($ b, b).

correct_Junction(list, [a,b], [a,b]) since
correctf number_of_arguments, list, [a,b]) and
correct(io_relation, list, ([a,b],[a,b])).
correct(number_of_arguments, list, [a,b]) since

required(nwnber_of_arguments, list, any) and
given(numberjofjarguments, [a,b], 2) and
correspond^ any,2).

correct(type_of_arguments, list, [a,b]) since
required(type_of_arguments, list, sjexpr) and
is_instance(a, s_expr) and
is_instance(b, sjexpr).

correct(io_relation, list, ([a,b],[a,b])) since
required(io_relation, list, list_of_arguments) and
given(io_relation, ([a,b],[a,b]),

list_of_arguments).

From this lengthy explanation the following more concise template
is constructed:

interaction([list, $ X, $ Y], [X,Y]) ;-
isJnstance(X, s_expr),
is_instance(Y, sjexpr).

This template is added to the mental model and increases its expli-
citness. As a consequence, several future LISP inputs will be evaluated
more easily. Technically, explanation-based generalisation (Mitchell,

Keller and Kedar-Cabelli, 1986) is used for constructing those tem­
plates.

Contradicting examples
An example is contradicting, if for its input a different result is

predicted from the stored knowledge than is specified in the example. A
contradicting example may only be observed if hypotheses were used
for mentally evaluating the input. Since the examples themselves are
known to be actual interactions with the LISP system, contradicting
examples provide evidence that one or several hypotheses of the mental
model are incorrect. Consequently, commonsense heuristics are
employed to modify or even replace hypotheses so that the example can
be explained. In addition, the inferences which were derived on the
basis of the old hypotheses are appropriately modified or excluded.

New examples
For new examples, the heuristic rules from the commonsense

knowledge are employed to generate hypotheses so that the example
input is mentally evaluated into the observed example result. These
hypotheses thus fill the gaps in the mental model and represent the new
knowledge which was acquired from the example, the mental model,
and commonsense heuristics. The mental evaluation including the gen­
erated hypotheses provides again an explanation how the specific exam­
ple input is transformed into the example result. From the obtained
explanation a template is constructed. The template which also includes
the relevant hypotheses is then added to the mental model.

Assume that only the initial mental model had been constructed,
and the example (LIST 'A yB) --> (A B) is studied. Then the common-
sense heuristics may generate the following four hypotheses:

1) hyp(list,lispJunction(list),(I,[],[])).
2) hyp(list,required(number_of_arguments,list,2),(!,[],[])).
3) hyp(list,required(type_of_arguments,list,[atom,atom]),(1,[],[])).
4) hyp(list,required(io_relation,list,list_of_arguments),(],[],[])).

Hypothesis 1) was generated by the wishful thinking heuristic, and
hypotheses 2), 3), and 4) were generated by the empirical generation
heuristic. A confidence value of 1 is initially stored with each
hypothesis. When a hypothesis is reused INFO is updated as described
by Schmalhofer (1986).

With these hypotheses, the second example cannot be explained.
Consequently, hypotheses 2 and 3 are modified by the generalisation
heuristics into:

2) hyp(list,required(number_of_argumentsjist,at_least(2)),(2,[1],[])).
3) hyp(list,required(type jof_ar guments,list,s_expr),(1,[atom],[])).

Learning from negative examples
For a negative example it is also examined whether the example is

consistent with the already existing mental model. In particular, it must
be explained why the input cannot be evaluated. It must be shown that
at least one of the necessary conditions for a correct input is violated.
After such a condition is found, the error is attributed to the violation
of this condition. If the violated condition is not of type known but
only a hypothesis, its confidence value is increased, because the exam­
ple provides evidence that the hypothesis is not overgeneralized. If no
violated condition is found, one of the used hypotheses must be over-
generalized. The commonsense specialization heuristic is used to
modify the hypothesis so that the error result can be explained.

For instance, if the hypothesis required(type_of_arguments, first,
sjexpr) had been generated and the example internetion([first, $ a],
error) were studied, the hypothesis would be specialized to
required(type_of_arguments, first,list). Because no new templates are
constructed, negative examples require less processing than positive
examples.

Learning by exploration
In learning by exploration the learners themselves must instigate

the learning process by asking a question to a teacher or to an environ­
ment. Whereas most efficient learning can take place when both general
and specific questions may be asked, general questions are not allowed
in learning by exploration. When exploring a computer system the type
of questions that may be asked is even further restricted. For instance,
the only type of questions a LISP-system can answer are "What is the
result of evaluating a particular input?".

A model of learning by exploration must specify which questions
can be asked by a learner with a given mental model, and how the
answers to these questions will be used to update the mental model.

Learning by exploration can be used to test existing hypotheses as well
as to generate and test new hypotheses.

Testing hypotheses through exploration
The mental model is searched for some insufficiently tested

hypothesis. Insufficiently tested hypotheses are identified by low
confidence values and by the lack of tested alternative hypotheses.
From the selected hypothesis a question (i.e. a particular input to the
LISP system) is then generated by a sequence of forward and backward
inferences. The number of inferencing steps required, depends on the
explicitness of the mental model. If templates are available, they are
utilized for generating a question, and hence only a small number of
inferences have to be performed. The generated question is then asked
to the environment, and an answer is obtained. The question and the
answer to the question constitute an example, from which knowledge
can be acquired similarly to learning from examples.

For testing a hypothesis two different strategies can be employed:
a confirmation strategy or a falsification strategy. Supposedly, the
confirmation strategy is used until the tested hypothesis has a
confidence value of k where k is a parameter of the model. Afterwards
the falsification strategy is employed. When testing a hypothesis, human
learners will usually have some expectations about the outcome of the
test. The knowledge that is acquired from a particular interaction will
depend both on the interaction itself as well as the subjects' expecta­
tions and the strategy of hypothesis testing employed.

How the mental model may be elaborated through testing
hypotheses is best illustrated by an example. Assume, the example:

(SET 'L '(A B)) -> (AB)

of the yet unknown function SET had previously been presented. And
from this example, the template:

interaction [set, $ X, $ Y],Y]) :-
is_instance(X ,atom),
is_instance(Y,list).

and the hypotheses:
hyp(set,required(number_ofjargurnents, set, 2), (1,[],[])).
hyp(set,required(type_of_arguments, set, [atom,list], (1,[],[])).
hyp(set,required(io_r elation, set, second jargument), (1,[],[J)).

had been generated. Since the hypotheses have only a confidence value
of 1 (as indicated in Info) the confirmation strategy will be used first to
test these hypotheses.

When exploring the LISP function SET with the parameter k being
equal to 3, the following sequence of examples were generated by the
simulation:

input expected result correct result

1. (SET 'C '(A B Q) --> (A B C) (A B C)
2. (SET 'B '(F (F B)) --> (F (F B)) (F (F B))

3. (SET 'D '(E) 'A) --> (E) ERROR
4. (SET 'A) --> ERROR ERROR

5. (SET '(A B) '(A)) --> (A) ERROR
6. (SET 'B 'A) --> A A

The examples 1. and 2. were generated using the confirmation
strategy. They have the same number and the same types of arguments
as the initial example from which the hypotheses were generated. The
derived template could be applied, and therefore not much inferencing
was required. Particular atoms and lists for the first and second argu­
ments were randomly selected from a set of possible atoms and lists.
The expected results were obtained by applying the template to the
selected arguments. Since these results were correct, the confidence
values of the hypotheses which were employed for generating these
examples were incremented. After the second example, the hypotheses
concerning the function SET thus had a confidence value of 3. The
falsification strategy was then employed in order to test plausible alter­
native hypotheses.

The examples 3. and 4. were generated when testing the
hypothesis about the required number of arguments. For the third exam­
ple, a selection heuristic was used to generate the alternative hypothesis
that the required number of arguments may be three. From this
hypothesis an input was then constructed. For the newly introduced
argument the same type was used as for the preceding argument. The
expected result was derived from the hypothesis about the input output
relation which says that the second argument will be returned. Since the

actual result is an error message, the generated alternative hypothesis
was rejected and added to the set of tested alternative hypotheses.

The fourth input tested the alternative hypothesis that the function
SET can have one argument. An error message was expected since the
hypothesis about the input output relation could not be applied without
a second argument. Again the alternative hypothesis was rejected and
added to the tested alternative hypotheses. After having tried 'one
more' and 'one less' arguments all plausible alternative hypotheses con­
cerning the number of arguments were tested.

The type hierarchy of the mental model was used for deriving
alternative hypotheses for the types of arguments. In input 5., a list
(instead of an atom) was used for the first argument. Since an error
message was returned, the hypothesis that the first argument may be a
list was rejected. In input 6., the type of the second argument was
varied. Since the input was found to be correct, the hypothesis concern­
ing the type of the second arguments was generalized. As the type
hierarchy in the mental model did not offer any further alternatives, the
hypothesis concerning the types of arguments was considered
sufficiently tested. Exploration stopped, because no insufficiently tested
hypotheses were left.

After the exploration the initial hypotheses about the function SET
had been modified as follows:

hyp(required(number_ofjarguments, set, 2),
(7,[2],[13J).

hyp(required(type_of_arguments, set, [atom, sjexpr]),
(7,[[atom,atom],[atom,list]],

[[list,atom],[list,list]])).
hyp(required(io_relation, set, secondjargument),

(7',[],[])).

Generating hypotheses in learning by exploration
If a learner is just given the name of some previously unknown

function (e.g. the function SET), hypotheses have to be generated for
the number and the types of arguments. For this purpose an already
known function is selected. The respective specifications from this func­
tion are used as hypotheses for the new function. With these hypotheses
an input to the LISP system is generated. If the input is found to be
incorrect, different hypotheses are tried until a positive example is

obtained. From a positive example a template is then constructed and
the generated hypotheses can be further tested.

Combination of the different learning methods
Since sentences and examples are the units in the learning process

and since the mental model is immediately updated, arbitrary sequences
of sentences, examples and exploration episodes can be modeled. Obvi­
ously, a different sequence of instruction materials may yield different
processing which may result in a different mental model.

If examples are studied after text (all the relevant clauses have
been told) these clauses can be employed for constructing templates
from the presented examples. Through the previously derived infer­
ences, a considerably shorter explanation is obtained. Studying and
inferencing from text thus facilitates the explication of knowledge from
subsequent examples.

Quite different processing requirements arise for a text which is
processed after examples have already been studied. In this case,
hypotheses may have already been generated from the examples. In
addition, templates may have been constructed. It is therefore possible
that the text will contradict the already generated hypotheses. These
incorrect hypotheses must consequently be deleted from the mental
model (or appropriately modified). In order to maintain a consistent
mental model, all inferences derived with incorrect hypotheses must
also be deleted. On the other hand, if the text confirms the generated
hypotheses, they can be asserted to be of type known.

The mental model which is being constructed when a user learns
about or interacts with a system thus not only depends upon the learn­
ing episodes but also on the sequence of learning episodes. Thus, it
comes as no surprise that almost every user may have a different men­
tal model about a system. With the present simulation we can conse-
quendy investigate, how a user with some given mental model will
tackle different tasks when interacting with the system.

Knowledge utilization
First we will briefly describe, how tasks are solved which more or

less directly probe the correctness and completeness of the mental

model. Such tasks are called verification tasks. Thereafter it will be
described how tasks which are usually assumed to require how-to-do-it
knowledge can be solved with the mental model. We will call these
tasks application tasks.

Verification tasks
In a verification task either a sentence (sentence verification) or an

example (example verification) is presented, and the student has to
decide whether the presented item is correct or not. Verification tasks
provide an ideal means for diagnosing the acquired mental model.

According to the simulation, verification tasks are solved by per­
forming a consistency check. If the presented item is implied by the
acquired knowledge (i.e. it is redundant in a logical sense), it will be
judged as correct. If it is found that it contradicts the mental model, it
will be judged as incorrect. If the presented item is neither redundant
nor contradicting, it will be judged as unknown.

Application tasks
Previous research has shown that the knowledge for performing an

application task can be modeled by goal driven production rules (e.g.
Kieras and Poison, 1986). Such application tasks are defined through
the goal which must be achieved with the particular computer system
(e.g. text editor). In text editing the deletion of a word in an electroni­
cally stored text would be such a goal. This task is structurally similar
to the deletion of an element in some list. In the following, we will
discuss, how the goal of deleting an element from a list can be
achieved by using the mental model of the LISP system. It will be
shown how how-to-do-it knowledge can be formed thereafter.

For example, consider the programming task which requires a
specific interaction to be performed with the LISP system: "Generate an
input to the LISP system which deletes the atoms A and B from the list
(A B C) which is bound to L , i.e. the function call should return the list
(C)".
This task can be represented by:

sol ve_task((is_resul t([c]),
is_argspec(l),
boundjo(l,[a,btc])),

interactionflnputResult)).

This goal of the task can be achieved by finding a specific interac­
tion in the mental model which satisfies the three requirements:
is__result([c]), is_argspec(l)> and bound_to(l,[a,b,c]). As previously
pointed out, the mental model describes the structures and processes of
the LISP system. Therefore, the programming task can be solved by
finding a sequence of processes in the mental model. It is assumed that
a mental model can be run forward and backward. Therefore, a
sequence of processes can be mentally applied to Result in reverse
order. When an Input is found which satisfies the above restrictions, the
programming task is solved. Such a solution can be found by a means-
end strategy. The more a mental model has been explicated, the less
search is required for finding a solution. The following solution will be
found by the simulation:

solve_task((is_result([c]),
is_argspec(l),
boundjo(l,[a,b,c])),

interaction([rest, [rest,I]],Icj).

interaction [rest, [rest,l]],[c]) since
funcall([rest, [rest.l]], rest, [[rest,l]J),
eval_argspecs([[rest,I]],[[b,c]]),
correctJunction(rest,[[b,c]],[c]).
eval_argspecs([[rest,I]],[[b,c]J) since

eval([rest,l],[b,c]).
eval([rest,l],[b,c]) since

funcall([rest,l], rest, [I]),
eval_argspecs([l],[[a,b,c]]),
correct Junction(rest,[[a,b,c]],[b,c]).
eval_argspecs([l],[[a,b,cj]) since
eval(l,[a,b,c]).
eval(l,[a,b,c]) since

bound_to(l,[a,b,c]).

Only a few inferences were needed for deriving this solution, since
the previously explicated knowledge in the mental model was utilized.
From this solution the following production rule is derived:

if solve Jask(
is_result(R),
is_argspec(X),
bound_to(X,[Aft\R])),

then is_input([rest,[restX]]).

This production rule states that if a task has to be solved in which
a result R is to be obtained from a list of the form [A,B\R] which is
bound to X then type: [rest,[restj(]]. With this production rule as
how-to-do-it knowledge similar tasks can be solved more efficiently.
Production rules can also formed with knowledge of type hyp, i.e. with
hypotheses. They are generated by the same mechanism which also
generated the templates. Whereas templates can be seen as operational
specializations for verification tasks, production rules are formed as
operational specialization for application tasks. We have thus shown
how how-to-do-it knowledge can be derived from the mental model,
when specific tasks have to be solved.

Discussion
In previous research (Norman, 1983), it has been argued that the

users' mental model (i.e. how-it-works knowledge) is very important
for understanding their interactions with a system. Some experimental
studies have shown the advantages of explicitly instructing a mental
model (Kieras and Bovair, 1984). Also, it has been demonstrated that
how-it-works-instructions can be more effective than how-to-do-it
instructions (Schmalhofer, 1987), which may be due to how-it-works-
instructions being more general (Catrambone, 1988).

Computer simulation models can be used to obtain a better under­
standing of these empirical results. However, previous models described
only the knowledge which is sufficient to operate some system (Kieras
and Poison, 1985) independent of any mental model. In a continuation
of this line of research, we modeled the psychological processes of con­
structing a mental model when learning by being told, from examples,
and by exploration. The simulation shows, how knowledge from related
domains, hypotheses, and heuristic strategies are used for forming a
mental model. Knowledge explication is seen as an important process
for making the mental model more useful. The mental model which
was learned for the domain of LISP is basically a cognitive LISP inter­
preter. The knowledge explication yields a more efficient cognitive
LISP interpreter which has more structures and more efficient
processes. When the mental model is applied to solve some task with
the system, how-to-do-it knowledge is constructed. The proposed model

thus presents a more complete picture of the cognitive complexities in
learning to use a computer system.

Acknowledgements
This research was supported by grant Schm 648/1 from DFG. The

cognitive model was initially programmed at the Institute for Cognitive
Science of the University of Colorado, Boulder whose hospitality is
greatly appreciated.

References

Card, S.K., Moran, T.P. and Newell, A . (1983). The Psychology of
Human-Computer Interaction. Hillsdale, New Jersey: Lawrence Erl-
baum Associates.
Catrambone, R. (1988). Specific versus General Procedures in Instruc­
tions. Doctoral Dissertation, Psychology, University of Michigan.
Halasz, F.G. and Moran, T.P. (1983). Mental models and problem
solving in using a calculator. In Proceedings of CHV83 Human Fac­
tors in Computing Systems. New York: A C M .
Kieras, D.E. and Bovair, S. (1984). The role of mental model in learn­
ing to operate a device. Cognitive Science, 8, pp. 191-219.
Kieras, D. and Poison, P. (1985). An approach to the formal analysis
of user complexity. International Journal of Man-Machine Studies, 22,
pp. 365-394.
Mitchell, T. M . , Keller, R. and Kedar-Cabelli, S. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1, pp. 47-
80.
Norman, D.A. (1983). Some observations on mental models. In D.
Gentner and A . L . Stevens (Eds.), Mental Models. Hillsdale, NJ: Erl-
baum.
Poison, P.G., Muncher, E. and Engelbeck, G. (1986). A test of a com­
mon elements theory of transfer. CHV86 Proceedings, pp. 78-83.

Schmalhofer, F. (1987). Mental model and procedural elements ap­
proaches as guidelines for designing word processing instructions. In
H . Bullinger and B . Shakel (Eds.), Human-Computer Interaction IN­
TERACTS?. Amsterdam: North-Holland.
Schmalhofer, F. (1986). The construction of programming knowledge
from system explorations and explanatory text: a cognitive model. In
C.R. Rollinger and W. Horn (Eds.), GWAI-86 and 2nd Austrian
Artificial Intelligence Conference. Heidelberg: Springer.
Ziegler, J.E., Hoppe, H.U. and Fahnrich, K.P. (1986). Learning and
transfer for text and graphics editing with a direct manipulation inter­
face. Proceedings of CHI'86, Human Factors in Computing Systems,
Boston, pp. 72-77.

