6 research outputs found

    A tight lower bound instance for k-means++ in constant dimension

    Full text link
    The k-means++ seeding algorithm is one of the most popular algorithms that is used for finding the initial kk centers when using the k-means heuristic. The algorithm is a simple sampling procedure and can be described as follows: Pick the first center randomly from the given points. For i>1i > 1, pick a point to be the ithi^{th} center with probability proportional to the square of the Euclidean distance of this point to the closest previously (i1)(i-1) chosen centers. The k-means++ seeding algorithm is not only simple and fast but also gives an O(logk)O(\log{k}) approximation in expectation as shown by Arthur and Vassilvitskii. There are datasets on which this seeding algorithm gives an approximation factor of Ω(logk)\Omega(\log{k}) in expectation. However, it is not clear from these results if the algorithm achieves good approximation factor with reasonably high probability (say 1/poly(k)1/poly(k)). Brunsch and R\"{o}glin gave a dataset where the k-means++ seeding algorithm achieves an O(logk)O(\log{k}) approximation ratio with probability that is exponentially small in kk. However, this and all other known lower-bound examples are high dimensional. So, an open problem was to understand the behavior of the algorithm on low dimensional datasets. In this work, we give a simple two dimensional dataset on which the seeding algorithm achieves an O(logk)O(\log{k}) approximation ratio with probability exponentially small in kk. This solves open problems posed by Mahajan et al. and by Brunsch and R\"{o}glin.Comment: To appear in TAMC 2014. arXiv admin note: text overlap with arXiv:1306.420

    Improved Algorithms for Clustering with Outliers

    Get PDF
    Clustering is a fundamental problem in unsupervised learning. In many real-world applications, the to-be-clustered data often contains various types of noises and thus needs to be removed from the learning process. To address this issue, we consider in this paper two variants of such clustering problems, called k-median with m outliers and k-means with m outliers. Existing techniques for both problems either incur relatively large approximation ratios or can only efficiently deal with a small number of outliers. In this paper, we present improved solution to each of them for the case where k is a fixed number and m could be quite large. Particularly, we gave the first PTAS for the k-median problem with outliers in Euclidean space R^d for possibly high m and d. Our algorithm runs in O(nd((1/epsilon)(k+m))^(k/epsilon)^O(1)) time, which considerably improves the previous result (with running time O(nd(m+k)^O(m+k) + (1/epsilon)k log n)^O(1))) given by [Feldman and Schulman, SODA 2012]. For the k-means with outliers problem, we introduce a (6+epsilon)-approximation algorithm for general metric space with running time O(n(beta (1/epsilon)(k+m))^k) for some constant beta>1. Our algorithm first uses the k-means++ technique to sample O((1/epsilon)(k+m)) points from input and then select the k centers from them. Compared to the more involving existing techniques, our algorithms are much simpler, i.e., using only random sampling, and achieving better performance ratios

    Min-Sum Clustering (With Outliers)

    Get PDF
    We give a constant factor polynomial time pseudo-approximation algorithm for min-sum clustering with or without outliers. The algorithm is allowed to exclude an arbitrarily small constant fraction of the points. For instance, we show how to compute a solution that clusters 98% of the input data points and pays no more than a constant factor times the optimal solution that clusters 99% of the input data points. More generally, we give the following bicriteria approximation: For any ? > 0, for any instance with n input points and for any positive integer n\u27 ? n, we compute in polynomial time a clustering of at least (1-?) n\u27 points of cost at most a constant factor greater than the optimal cost of clustering n\u27 points. The approximation guarantee grows with 1/(?). Our results apply to instances of points in real space endowed with squared Euclidean distance, as well as to points in a metric space, where the number of clusters, and also the dimension if relevant, is arbitrary (part of the input, not an absolute constant)

    On algorithms for large-scale graph and clustering problems

    Get PDF
    Gegenstand dieser Arbeit sind algorithmische Methoden der modernen Datenanalyse. Dabei werden vorwiegend zwei übergeordnete Themen behandelt: Datenstromalgorithmen mit Kompressionseigenschaften und Approximationsalgorithmen für Clusteringverfahren. Datenstromalgorithmen verarbeiten einen Datensatz sequentiell und haben das Ziel, Eigenschaften des Datensatzes (approximativ) zu bestimmen, ohne dabei den gesamten Datensatz abzuspeichern. Unter Clustering versteht man die Partitionierung eines Datensatzes in verschiedene Gruppen. Das erste dargestellte Problem betrifft Matching in Graphen. Hier besteht der Datensatz aus einer Folge von Einfüge- und Löschoperationen von Kanten. Die Aufgabe besteht darin, die Größe des so genannten Maximum Matchings so genau wie möglich zu bestimmen. Es wird ein Algorithmus vorgestellt, der, unter der Annahme, dass das Matching höchstens die Größe k hat, die exakte Größe bestimmt und dabei k² Speichereinheiten benötigt. Dieser Algorithmus lässt sich weiterhin verwenden um eine konstante Approximation der Matchinggröße in planaren Graphen zu bestimmen. Des Weiteren werden untere Schranken für den benötigten Speicherplatz bestimmt und eine Reduktion von gewichtetem Matching zu ungewichteten Matching durchgeführt. Anschließend werden Datenstromalgorithmen für die Nachbarschaftssuche betrachtet, wobei die Aufgabe darin besteht, für n gegebene Mengen die Paare mit hoher Ähnlichkeit in nahezu Linearzeit zu finden. Dabei ist der Jaccard Index |A ∩ B|/|A U B| das Ähnlichkeitsmaß für zwei Mengen A und B. In der Arbeit wird eine Datenstruktur beschrieben, die dies erstmalig in dynamischen Datenströmen mit geringem Speicherplatzverbrauch leistet. Dabei werden Zufallszahlen mit nur 2-facher Unabhängigkeit verwendet, was eine sehr effiziente Implementierung ermöglicht. Das dritte Problem befindet sich an der Schnittstelle zwischen den beiden Themen dieser Arbeit und betrifft das k-center Clustering Problem in Datenströmen mit einem Zeitfenster. Die Aufgabe besteht darin k Zentren zu finden, sodass die maximale Distanz unter allen Punkten zu dem jeweils nächsten Zentrum minimiert wird. Ergebnis sind ein 6-Approximationalgorithmus für ein beliebiges k und ein optimaler 4-Approximationsalgorithmus für k = 2. Die entwickelten Techniken lassen sich ebenfalls auf das Durchmesserproblem anwenden und ermöglichen für dieses Problem einen optimalen Algorithmus. Danach werden Clusteringprobleme bezüglich der Jaccard Distanz analysiert. Dabei sind wieder eine Menge N von Teilmengen aus einer Grundgesamtheit U sind und die Aufgabe besteht darin eine Teilmenge CC zu finden, die max 1-|X ∩ C|/|X U C| minimiert. Es wird gezeigt, dass zwar eine exakte Lösung des Problems NP-schwer ist, es aber gleichzeitig eine PTAS gibt. Abschließend wird die weit verbreitete lokale Suchheuristik für k-median und k-means Clustering untersucht. Obwohl es im Allgemeinen schwer ist, diese Probleme exakt oder auch nur approximativ zu lösen, gelten sie in der Praxis als relativ gut handhabbar, was andeutet, dass die Härteresultate auf pathologischen Eingaben beruhen. Auf Grund dieser Diskrepanz gab es in der Vergangenheit praxisrelevante Datensätze zu charakterisieren. Für drei der wichtigsten Charakterisierungen wird das Verhalten einer lokalen Suchheuristik untersucht mit dem Ergebnis, dass die lokale Suchheuristik in diesen Fällen optimale oder fast optimale Cluster ermittelt
    corecore