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Abstract
Clustering is a fundamental problem in unsupervised learning. In many real-world applications,

the to-be-clustered data often contains various types of noises and thus needs to be removed from
the learning process. To address this issue, we consider in this paper two variants of such clustering
problems, called k-median with m outliers and k-means with m outliers. Existing techniques for
both problems either incur relatively large approximation ratios or can only efficiently deal with a
small number of outliers. In this paper, we present improved solution to each of them for the case
where k is a fixed number and m could be quite large. Particularly, we gave the first PTAS for the
k-median problem with outliers in Euclidean space Rd for possibly high m and d. Our algorithm
runs in O(nd( 1

ε
(k+m))( k

ε
)O(1)

) time, which considerably improves the previous result (with running
time O(nd(m+ k)O(m+k) + ( 1

ε
k logn)O(1))) given by [Feldman and Schulman, SODA 2012]. For the

k-means with outliers problem, we introduce a (6 + ε)-approximation algorithm for general metric
space with running time O(n(β 1

ε
(k +m))k) for some constant β > 1. Our algorithm first uses the

k-means++ technique to sample O( 1
ε
(k +m)) points from input and then select the k centers from

them. Compared to the more involving existing techniques, our algorithms are much simpler, i.e.,
using only random sampling, and achieving better performance ratios.
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1 Introduction

Clustering is a fundamental problem in computer science and finds applications in a wide
range of domains. Depending on the objective function, it has many different variants. Among
them, k-median and k-means are perhaps the two most commonly considered versions. For
a given set P of n points in some metric space, the k-median problem aims to identify a
set of centers C = {c1 · · · ck} that minimizes the objective function

∑
x∈P minci∈C d(x, ci),
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where d(x, ci) denotes the distance from x to ci. The k-means problem is very similar to the
k-median problem, except that the clustering cost is measured by the squared distance from
each point to its corresponding center.

Both the k-median and the k-means problems have shown to be NP-hard [6, 21]. Thus,
most of the previous efforts have concentrated on obtaining approximation solutions. In
the metric space settings, Charikar, Guha, and Shmoys [9] gave the first constant factor
approximation solution to the k-median problem. Arya et al. [8] later showed that a simple
local search heuristic yields a (3 + ε)-approximation. Li and Svensson [26] gave a (1 +

√
3 + ε)-

approximation based on a pseudo-approximation. Byrka et al. [23] further improved the
approximation ratio to (2.671 + ε). This is the current best known result for the k-median
problem. For the k-means problem, Gupta and Tangwongsan [18] demonstrated that local
search can achieve a (25 + ε)-approximation in metric spaces. The approximation ratio has
been recently improved to (9 + ε) by Ahmadian et al. [3] using a primal-dual algorithm.

All the above results allow the number k of clusters to be any integer between 1 and
n. A common way to relax the problem is to assume that k is a fixed number and the
space is Euclidean (instead of general metric). For this type of clustering problem, better
results have already been achieved. Kumar, Sabharwal, and Sen [25] gave a linear time
(i.e., O(2(k/ε)O(1)

nd)) (1 + ε)-approximation algorithms for either problem in any dimensions.
Chen [11] later improved the running time to O(ndk + 2(k/ε)O(1)

d2nσ) by using coresets,
where σ is an arbitrary positive number. Feldman, Monemzadeh, and Sohler [15] further
demonstrated that one can construct a coreset for the k-means problem with size independent
of n and d. With this, they showed that a (1 + ε)-approximation can be obtained in
O(ndk + d · poly(k, ε) + (kε )O(k/ε)) time. Moreover, both the k-median and the k-means
problems admit (1 + ε)-approximations for the case where the dimensionality of the space is
a constant [17, 13].

The clustering problem has an implicit assumption that all input points can be clustered
into k distinct groups, which may not always hold in real-world applications. Data from
such applications are often contaminated with various types of noises, which need to be
excluded from the solution. To deal with such noisy data, Charikar et al. [10] introduced the
clustering with outliers problem. The problem is the same as the ordinary clustering problem,
except that a small portion of the input data is allowed to be removed. The removed outlier
points are ignored in the objective function. By discarding the set of outliers, one could
significantly reduce the clustering cost and thus improve the quality of solution.

For the k-median with outlier problem, Charikar et al. [10] gave a (4(1+ 1
ε ))-approximation

for metric space, which removes a slightly more than m (i.e., O((1 + ε)m)) outliers. Chen
[12] later obtained an algorithm which does not violate either k or m, but has a much large
constant approximation ratio. Recently, Krishnaswamy, Li, and Sandeep [24] improved the
approximation ratio to 7.08 + ε [24] using an elegant iterative rounding algorithm. For
Euclidean space, better results have also been achieved. Friggstad et al. [16] presented a
(1 + ε)-approximation algorithm that uses (1 + ε)k centers and runs in O((nk)1/εO(d)) time.
Their algorithm is efficient only in fixed dimensional space. Feldman and Schulman [14]
gave a (1 + ε)-approximation algorithm without violating the number of the centers. Their
algorithm runs in O(nd(m+ k)O(m+k) + (1

εk logn)O(1)) time, but needs to assume that both
k and m are small constants to ensure a polynomial time solution. There has also been work
on obtaining coresets for the problem [20].

For the k-means with outliers problem, Friggstad et al. [16] designed a bi-criteria algorithm
that uses (1 + ε)k centers and has an approximation ratio of (25 + ε). Krishnaswamy, Li,
and Sandeep [24] subsequently presented a (53 + ε)-approximation algorithm. This is the
best existing approximation ratio for the problem.
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1.1 Our Contributions
In this paper, we consider two variants of the clustering problem with outliers, k-median
with outliers in Euclidean Rd space (where d could be very high) and k-means with outliers
in metric space. For both problems, we assume that k is a fixed number and m is a variable
less than n.

For the Euclidean k-median with m outliers problem, we give the first PTAS for
non-constant m, based on a simple random sampling technique. Our algorithm runs in
O(nd( 1

ε (k+m))( kε )O(1)) time, which significantly improves upon the previously known (1 + ε)-
approximation algorithm for the problem [14, 16].

I Theorem 1. Given an instance of the Euclidean k-median with m outliers problem and a
parameter 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm that runs in O(nd( 1

ε (k +
m))( kε )O(1)) time.

For the k-means with m outliers problem, we give a (6 + ε)-approximation. Our algorithm
first uses k-means++ [7] to sample O( 1

ε (k+m)) points from the input and then select k points
from them as centers. k-means++ is an algorithm proposed for resolving the sensitivity issue
of Lloyd’s k-means algorithm [27] to the locations of its initial centers. Since the k-means
with outliers problem needs to discard m outliers, which may cause major changes in the
topological structure and clustering cost of the solution, it could greatly deteriorate the
performance of many classical clustering algorithms [19, 24]. However, several studies on
k-means++ for noisy data seem to suggest that it is an exception and can actually yield
quite good solutions [5, 19]. As far as we know, there is no known theoretical analysis that
tries to explain the performance of k-means++ on noisy data. The following theorem takes
the first step in this direction.

I Theorem 2. Given a point set P in a metric space and a parameter 0 < ε ≤ 1, let C be a
set of O( 1

ε (k +m)) points sampled from P using k-means++. Then, C contains a subset of
k centers that induces a (6 + ε)-approximation for k-means with m outliers with constant
probability.

As a corollary to Theorem 2, it is easy to see that O( 1
ε (k+m))k sets of candidate centers

for the problem can be generated in O(n(k +m) 1
ε ) time. A (6 + ε)-approximation can then

be obtained by an exhaustive search over the candidate sets.

I Corollary 3. Given an instance of the k-means clustering problem with m outliers and
a parameter 0 < ε ≤ 1, there is a (6 + ε)-approximation algorithm that runs in time
O(n(β 1

ε (k +m))k) for some constant β > 1.

1.2 Other Related Work
Most of the aforementioned results are mainly for theoretical purpose. There are also more
practical solutions available for clustering. The most popular one for k-means is probably
the heuristic technique introduced by Lloyd [27], which iteratively assigns the points to their
nearest centers and updates the centers as the means of their corresponding newly generated
clusters. It is known that Lloyd’s algorithm is sensitive to the locations of the initial centers.
An effective remedy for this undesirable issue is the use of an initialization algorithm called
k-means++, which generates an initial set of cluster centers close to the optimal solution.
Arthur and Vassilvitskii [7] showed that the k centers generated by k-means++ induce an
O(log k)-approximation in an expected sense. Ostrovsky et al. [29], Jaiswal and Garg [22],
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and Agarwal, Jaiswal, and Pal [1] further revealed that these k centers can lead to O(1)-
approximations under some data separability conditions. Ailon, Jaiswal, and Monteleoni [4]
demonstrated that a bi-criteria constant factor approximation can be obtained by sampling
O(k log k) points using k-means++. Aggarwal, Deshpande, and Kannan [2] and Wei [30] later
discovered that O(k) points are actually sufficient to ensure a constant factor approximation.

2 Preliminaries

The clustering with outliers problem can be formally defined as follows.

I Definition 4 (k-median/k-means clustering with outliers). Let P be a set of n points in
a metric space (X,d), and k,m > 0 be two integers. The k-median or k-means clustering
problem with outliers is to identify a subset Z ⊆ P of size m and a set C ⊆ X of k
centers, such that the clustering cost Φ(P \ Z,C) is minimized among all possible choices
of Z and C, where Φ(P \ Z,C) =

∑
x∈P\Z minc∈C d(x, c) for k-median and Φ(P \ Z,C) =∑

x∈P\Z minc∈C d2(x, c) for k-means.

In Euclidean space, the clustering with outliers problem is identical, except that the
points lie in Rd, and the centers can be k arbitrary points in Rd.

We will use the following result to find the approximate centers, which is known as
Chernoff bound.

I Theorem 5 ([28]). Let A1 . . . Am be 0 − 1 independent random variables with Pr(Ai =
1) = pi. Let A =

∑m
i=1Ai and u =

∑m
i=1E(Ai). Let 0 < α < 1 be an arbitrary real number.

Then, Pr[A ≤ (1− α)u] ≤ e−α
2u
2 .

Given a cluster A ⊆ Rd, let Γ(A) denote the optimal 1-median center of A. The following
result says that a good approximation to Γ(A) can be obtained using a small set of points
randomly sampled from A.

I Lemma 6 ([25]). Given a set R of size 1
λ4 randomly sampled from a set A ⊆ Rd, where

λ > 0, there exists a procedure Construct(R) that yields a set of 2(1/ε)O(1) points core(R),
and there exists at least one point r ∈ core(R), such that the inequality

d(r,Γ(A)) ≤ λ∆(A)
|A|

holds with probability at least 1
2 . The procedure Construct(R) runs in O(2(1/ε)O(1) · d) time.

3 k-Median Clustering with Outliers in Euclidean Space

In this section, we present a new algorithm for the k-median clustering problem with outliers
in the geometric settings. Let Φ(x,C) = minc∈C d(x, c) denote the cost of clustering a point
x ∈ Rd using a set C ⊆ Rd of centers. The clustering cost of a point set P ⊆ Rd induced by
C is denoted by Φ(P,C) =

∑
p∈P Φ(p, C). For a singleton C = {c}, we also write Φ(P,C) as

Φ(P, c). The minimum 1-median cost of a set S ⊆ Rd is denoted by ∆(S) =
∑
x∈S d(x,Γ(S)),

where Γ(S) denotes the optimal center of S.
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3.1 The Algorithm
The general idea of our algorithm solving the k-median clustering problem with outliers is as
follows. Assume that {P1, ..., Pk} is the optimal partition of the k-median clustering problem
with outliers, where |P1| ≥ |P2| ≥ . . . ≥ |Pk|. The objective of our algorithm is to find the
approximate centers of Pi(i = 1, . . . , k). Assume that Pi(1 ≥ i ≥ k) is the largest cluster
whose approximate center has not yet been found. In our algorithm, two strategies are
applied to find the approximate center of Pi. It is possible that the points in Pi are far away
from the approximate centers already found. For this case, by randomly sampling points in
the remaining data set, with large probability, a large portion of Pi is in the sampled set.
By enumerating all possible certain size of subsets of the sampled set, there must exist one
subset that an approximate center of Pi can be obtained from this set by Lemma 6. On the
other hand, if the points in Pi are close to the set of the approximate centers already found
(denoted by C), then one center in C can be used to approximate the center of Pi, and the
points close to the approximate centers in C can be deleted from the point set. The specific
algorithm for the k-median clustering problem with outliers is described in Algorithm 1. The
algorithm Random-sampling has eight parameters Q, g, k, C, ε, U,N, and M , where Q is the
input dataset, g is the number of centers not yet found, k is the total number of clusters, C
is the multi-set of obtained approximate centers, ε is a real number (0 < ε ≤ 1), U is the
collection of candidate solutions, N = (20k10 + 4mk8)/ε5, and M = k8/ε4.

Algorithm 1 The algorithm for k-median with outliers in Euclidean space.

Algorithm Find-k-centers

Input: a point set P , integers k,m > 0, and an approximation factor 0 < ε ≤ 1.
Output: a point set C = {c1, . . . , ck}.

1. let N = (20k10 + 4mk8)/ε5, M = k8/ε4, U = ∅;
2. loop 2k times do
3. Random-sampling(P , k, k, ∅, ε, U);
4. return the set of centers C ∈ U with the smallest cost for k-median with m outliers.

Algorithm Random-sampling(Q, g, k, C, ε, U)

1. S = ∅;
2. if g = 0 then
3. U = U ∪ {C};
4. return.
5. sample a set S of size N from Q independently and uniformly;
6. for each subset S′ ⊆ S of size M do
7. for each point c ∈ core(S′) do
8. Random-sampling(Q, g − 1, k, C ∪ {c}, ε, U);
9. find the median value β of all values in {Φ(x,C) | x ∈ Q};
10. Q′ = {x ∈ Q | Φ(x,C) ≤ β};
11. Random-sampling(Q′, g, k, C, ε, U).

3.2 Analysis
In this section we show the correctness of Theorem 2. Given an instance of the k-median
clustering problem with m outliers (P, k,m), let Z = {z1 . . . zm} be the set of outliers in the
optimal solution, and P = {P1 . . . Pk} be the k-partition of the remaining (inliers) points
in P that minimizes the k-median objective function. Without loss of generality, assume
that |P1| ≥ |P2| ≥ . . . |Pk|. Denote by ∆k =

∑k
i=1 ∆(Pi) the clustering cost induced by the

optimal solution.
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We now give an outline of the proof. In order to prove the correctness of Algorithm
Find-k-centers, we need to get that there exists a set of centers in U that achieves the desired
approximation for the centers of clusters P1, . . . , Pk. Assume that a set C = {c1, . . . , ci−1}
of centers has been found. The key point is to prove that the ci obtained by Algorithm
Random-sampling based on C can get a good approximation for Pi. The general idea of
proving that ci is a good approximate center of Pi is as follows. A set B of points that are
close to C by a fixed value r can be obtained, where the possible value of r can be enumerated
efficiently. The following two cases are discussed: (1) Pi ∩B 6= ∅, and (2) Pi ∩B = ∅. For
the first case, we show that Γ(Pi) is close to a previously sampled point, and there exists a
center in C that achieves the desired approximation for Γ(Pi). For the second case, we prove
that P\B contains a substantial part of Pi. We show that by randomly sampling from P\B,
a subset of points from Pi can be found, and a good approximate center for Pi is obtained
by Lemma 6.

I Lemma 7. With a constant probability, there exists a set of approximate centers C∗ in
the list U generated by the algorithm Find-k-centers, such that for any constant 1 ≤ j ≤ k,
we have

d(cj ,Γ(Pj)) ≤
ε∆(Pj) + 3(j − 1)ε∆k

k2|Pj |
,

where cj denotes the nearest point to Γ(Pj) in C∗.

Before proving Lemma 7, we first show its implication. Let C∗ denote the center set
given in Lemma 7. Given a cluster Pj ∈ P, we have

Φ(Pj , C∗) ≤ Φ(Pj , cj) =
∑
x∈Pj

d(x, cj) ≤
∑
x∈Pj

(d(x,Γ(Pj)) + d(Γ(Pj), cj))

= ∆(Pj) + |Pj |d(cj ,Γ(Pj)) ≤ ∆(Pj) + ε∆(Pj) + 3(j − 1)ε∆k

k2

≤ ∆(Pj) + ε∆(Pj)
k2 + 3(k − 1)ε∆k

k2 , (1)

where the third step is due to triangle inequality, and the fifth step follows from the assumption
that Lemma 7 is true. Summing both sides of inequality (1) over all Pj ∈ P, we have

k∑
j=1

Φ(Pj , C∗) ≤ ∆k + ε∆k

k2 + 3(k − 1)ε∆k

k
≤ (1 + 3ε)∆k. (2)

This implies that Lemma 7 is sufficient to ensure the approximation guarantee for our
algorithm. We now prove the correctness of Lemma 7.

Proof. (of Lemma 7) We prove the lemma by induction on j. We first consider the case
of j = 1. Our algorithm initially samples a set of N points from P . Let S = {s1, . . . , sN}
denote the set of N points sampled from P . Define N random variables A1, . . . , AN , such
that if si ∈ P1, Ai = 1. Otherwise, Ai = 0. Since |P1| ≥ |P2| ≥ . . . ≥ |Pk|, it is easy to know
that for any constant 0 < i ≤ N , we have

Pr[Ai = 1] = |P1|
|P |
≥ |P1|
|Z|+ k|P1|

≥ 1
m+ k

.

Let A =
∑N
i=1Ai and u =

∑N
i=1E(Ai). We have u ≥ N

m+k ≥
2k8

ε4 . Using Lemma 5, we
get

Pr(A ≥ k8

ε4
) ≥ Pr(A ≥ 1

2u) = 1− Pr(A ≤ 1
2u) ≥ 1− e−u8 ≥ 1− e−k

8/4ε4
>

1
2 .
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This implies that with probability at least 1
2 , the set of N points sampled from P contains

more than k8

ε4 points from Pi. By feeding λ = k2

ε into Lemma 6, we know that the inequality
d(c1,Γ(P1)) ≤ ε∆(P1)

k2|P1| holds with probability at least 1
2 , which implies that Lemma 7 holds

for the case j = 1.
We now assume that Lemma 7 holds for j ≤ i− 1 and consider the case of j = i. Define

a multi-set C∗i−1 = {c1, . . . ci−1}, where ct is the nearest point to Γ(Pt) from C∗i−1 for any
1 ≤ t ≤ i − 1. Define Bi = {x ∈ P | Φ(x,C∗i−1) ≤ ri}, where ri = ε∆k

k2|Pi| . It is easy to see
that Bi is a subset of P that consists of the points close to C∗i−1. We distinguish the analysis
into the following two cases.

Case (1): Pi ∩Bi 6= ∅. In this case, Pi contains some points close to C∗i−1. We prove that
one center from C∗i−1 can be used to approximate Γ(Pi).

Case (2): Pi ∩ Bi = ∅. In this case, all the points from Pi are far from the centers in
C∗i−1. We prove that Pi contains a substantial part of P \B. Thus, a subset of Pi can be
randomly sampled from P \B with high probability. By enumerating this subset, a center
can be obtained to approximate Γ(Pi) .

Case (1): Pi ∩ Bi 6= ∅. Let p be an arbitrary point from Pi ∩ Bi and cf be the nearest
point to p in C∗i−1. Let Pf denote the cluster in {P1, . . . , Pi−1} such that d(cf ,Γ(Pf )) is
the smallest value in {d(cf ,Γ(Pj)) | 1 ≤ j ≤ i− 1}. We now prove that cf can be used
to approximate Γ(Pi) by triangle inequality and induction assumption. Observe that

d(Γ(Pi), cf ) ≤ d(Γ(Pi), p) + d(p, cf ) ≤ d(Γ(Pi), p) + ri ≤ d(Γ(Pf ), p) + ri

≤ d(Γ(Pf ), cf ) + d(cf , p) + ri ≤ d(Γ(Pf ), cf ) + 2ri

≤ ε∆(Pf ) + 3(f − 1)ε∆k

k2|Pf |
+ 2ri

= ε∆(Pf ) + 3(f − 1)ε∆k

k2|Pf |
+ 2ε∆k

k2|Pi|
, (3)

where the first step and the fourth step are due to triangle inequality, the second step
follows from the fact that p ∈ Bi, the third step is derived from the fact that p ∈ Pi, the
sixth step follows from the assumption that Lemma 7 holds for j ≤ i− 1, and the last
step follows from the definition of ri. Since f < i, we have |Pf | > |Pi|. This implies that

ε∆(Pf ) + 3(f − 1)ε∆k

k2|Pf |
= ε∆(Pf )

k2|Pf |
+ 3(f − 1)ε∆k

k2|Pf |
≤ ε∆(Pf )

k2|Pi|
+ 3(f − 1)ε∆k

k2|Pi|

≤ ε∆k

k2|Pi|
+ 3(i− 1)ε∆k

k2|Pi|
= (3i− 2)ε∆k

k2|Pi|
. (4)

Combining inequalities (3) and (4) together, we get

d(Γ(Pi), cf ) ≤ (3i− 2)ε∆k

k2|Pi|
+ 2ε∆k

k2|Pi|
= 3iε∆k

k2|Pi|
≤ ε∆(Pi) + 3iε∆k

k2|Pi|
.

This completes the proof of Lemma 7 in case (1).
Case (2): Pi ∩ Bi = ∅. For this case, we will show that Pi contains a large fraction of

P\Bi. Furthermore, algorithm Random-sampling can find a set Q such that P\Bi ⊆ Q
and |Q| ≤ 2|P\Bi|. Thus, a set S randomly sampled from Q contains a certain number
of points from Pi. By enumerating the subsets of S, we can obtain a subset S′ ⊆ Pi of
size M , which can be used to find the approximate center for Pi by Lemma 6.
We now show that the proportion of the points of Pi in P\Bi is large. We achieve this by
dividing P\Bi into three portions: Z\Bi,

∑i−1
j=1 Pj \Bi, and

∑k
j=i Pj\Bi, and comparing

their sizes with |Pi| respectively.

ISAAC 2019



61:8 Improved Algorithms for Clustering with Outliers

B Claim 8. |Pi|
|P\Bi| ≥

ε
5k2+mε .

Proof. It is easy to show that |Z\Bi| ≤ m. By the definitions of Bi and ri, we know that
Φ(Pj , C∗i−1) ≥ ri|Pj\Bi| for any 1 ≤ j ≤ i− 1, which implies that

i−1∑
j=1
|Pj\Bi| ≤

1
ri

i−1∑
j=1

Φ(Pj , C∗i−1) ≤ (1 + 3ε)∆k

ri
= k2|Pi|(1 + 3ε)|

ε
,

where the second step is due to our induction assumption and a similar argument in obtaining
(2), and the last step is due to the definition of ri.

By the fact that |P1| ≥ . . . ≥ |Pk|, we have
∑k
j=i |Pj\Bi| ≤ (k − i)|Pi|. Thus,

|Pi|
|P\Bi|

= |Pi|
|Z\Bi|+

∑i−1
j=1 |Pj\Bi|+

∑k
j=i |Pj\Bi|

≥ |Pi|
m+ k2|Pi|(1+3ε)|

ε + (k − i)|Pi|

≥ 1
m+ k2(1+3ε)

ε + (k − i)
≥ ε

5k2 +mε
, (5)

where the last inequality is due to the fact that 0 < ε ≤ 1. C

Claim 8 implies that Pi contains a large fraction of P\Bi. The algorithm finds the set
P\Bi by guessing the number of points from P\Bi. Given an integer 1 ≤ j ≤ logn, let
βj denote the n

2j−1 -th largest value in {Φ(x,C∗i−1) | x ∈ P}, and let Qj denote the set of
points x ∈ P with Φ(x,C∗i−1) ≤ βj . We know that there exists a constant l, such that
P\Bi ⊆ Ql and P\Bi * Ql−1. It is easy to know that |P\Bi| ≥ 1

2 |Ql|. By Claim 8, we have
|Pi|
|Ql| ≥

ε
10k2+2mε . Using Lemma 5, we know that with probability at least 1

2 , the set of N
points randomly sampled from Ql contains more than k8

ε4 points from Pj . Using Lemma 6,
we can find an approximate center ci such that d(ci,Γ(Pi)) ≤ ε∆(Pi)

k2|Pi| with probability at least
1
2 . This implies that with probability more than 1

2k , Algorithm Random-sampling identifies
a set C∗ of k centers, such that for any constant 1 ≤ j ≤ k, we have

d(cj ,Γ(Pj)) ≤
ε∆(Pj) + 3(j − 1)ε∆k

k2|Pj |
.

The probability can boosted to a constant by repeatedly running Random-sampling for 2k
times. This completes the proof of Lemma 7. J

We are now ready to prove the correctness of Theorem 1.

I Theorem 1. Given an instance of the Euclidean k-median with m outliers problem and a
parameter 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm that runs in O(nd( 1

ε (k +
m))( kε )O(1)) time.

Proof. Lemma 7 implies that our algorithm gives a (1 + ε)-approximation for the problem.
We focus on the running time of the algorithm. Let T (n, g) be the running time of algorithm
Random-sampling on input (P , g, k, C, ε, U). It is easy to show that T (n, 0) = O(1) and
T (0, g) = 0. In the algorithm, step 5 takes (k+m

ε )O(1) time, step 8 takes (k+m
ε )( kε )O(1) · d time

and yield (k+m
ε )( kε )O(1) candidate centers, and step 9 takes O(ndk) time. Thus we get the

following recurrence.

T (n, g) = (k +m

ε
)O( kε ) ·T (n, g−1)+T (n2 , g)+(k +m

ε
)O(1) +(k +m

ε
)( kε )O(1)

·d+O(ndk).
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Choose λ = (k+m
ε )( kε )O(1) to be large enough such that

T (n, g) ≤ λT (n, g − 1) + T (n2 , g) + λ(nd).

We claim that T (n, g) ≤ ndλg · 22g2 . This claim holds in the base case. We suppose that the
claim holds for T (n′, g′) ∀n′ < n, ∀g′ < k. It is easy to verify that

ndλg · 22g2
≤ ndλ · λg−1 · 22(g−1)2

+ n

2 dλ
g · 22g2

+ λnd,

which implies that the claim T (n, g) ≤ ndλg · 22g2 holds. Thus our algorithm runs in
nd( 1

ε (k +m))( kε )O(1) time. J

4 k-Means Clustering with Outliers in Metric Space

Our approach for the k-means clustering with m outliers problem first samples a set of
O( 1

ε (k + m)) points with k-means++. Then, it enumerates all the subset of size k of the
sampled set and finds the one with the minimal clustering cost. We prove that the subset with
minimal clustering cost can achieve (6 + ε)-approximation to the k-means clustering with m
outliers problem. The k-means++ algorithm samples a point with probability proportional
to its squared distance to the nearest previously sampled point, as detailed in Algorithm 2.
For t sampled points, the algorithm runs in O(nt) time.

The notations for k-means follows from that of k-median except for a few modifications.
We use the squared distances from the points to their corresponding centers to measure the
clustering cost. Let (X,d) be a metric space, where d is the distance function defined over
all points in X. Given a point x ∈ X and a set C ⊆ X of cluster centers, let Φ(x,C) =
minc∈C d(x, c)2. Given an instance (P, k,m) of the k-means clustering problem with outliers,
let Z = {z1 . . . zm} be the set of outliers in the optimal solution, and P = {P1 . . . Pk} be
the k-partition of the remaining points in P that minimizes the k-means objective function.
Given a cluster Pi ∈ P and a point c, let Γ(Pi) denote its optimal center. The definitions of
Φ(Pi, C), Φ(Pi, c), and ∆(Pi) stay unchanged. Let b(Pi, α) = {x ∈ Pi | d(x,Γ(Pi))2 ≤ αri}
be the closed ball centered at Γ(Pi) of radius αri, where ri = ∆(Pi)

|Pi| .
We first give an outline of the proof of Theorem 3. Given a cluster Pj ∈ P, it is easy

to see that if the value of α is small enough, then any point from b(Pj , α) can be used to
approximate the centroid of Pj . This implies that we can achieve the desired approximation
ratio through finding a point from b(Pj , α) for each cluster Pj ∈ P. For the points in Pj ,
outliers, and the set of previously sampled points, there are only two possible relations: either
the points in Pj and outliers are far away from the set of previously sampled points, or the
points in Pj and outliers are close to the previously sampled points. For the case when the
points in Pj and outliers are far away from the set of previously sampled points, by applying
k-means++, the points in Pj and outliers can be sampled with high probability, and we
prove that b(Pj , α) contains a substantial portion of the sampled points from Pj . For the
case when the points in Pj and outliers are close to the previously sampled points, we prove
that the probability of sampling a point from b(Pj , α) and outliers is small, and a previously
sampled point can be used to approximate the centroid of Pj .

Let Ci denote the set of points sampled with k-means++ in the first i iterations. Define
Oi = {Pj ∈ P | cost(Pj , Ci) ≤ (6 + ε

2 )∆(Pj)}, where cost(Pj , Ci) = minc∈Ci Φ(Pj , c). Let
T be union of the set of points outside Oi and Z. The following lemma shows that if the
proportion of the cost from the points in T to Ci in Φ(P,Ci) is small enough, then the points
in Ci give the desired approximation for the problem.

ISAAC 2019
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Algorithm 2 The k-means++ algorithm.

Input: a point set P and an integer t > 0.
Output: a point set C = {c1, . . . , ct}.

1. Sample a point x ∈ P uniformly at random, initialize C1 to {x};
2. for i = 2 to t do:
3. Sample a point x ∈ P with probability Φ(x,Ci)

Φ(P,Ci) ;
4. Ci ← Ci−1 ∪ {x};
5. i← i+ 1;
6. return C ← Ci.

I Lemma 9. If
∑
Pj∈P\Oi Φ(Pj , Ci) + Φ(Z,Ci) ≤ ε

53Φ(P,Ci), then
∑k
j=1 cost(Pj , Ci) ≤

(6 + ε)∆k.

We now give two useful properties of the closed ball b(Pj , α). The first property says
that any point in such ball is close to Γ(Pj), which can be derived from triangle inequality
easily. The second property says that the points in the closed ball b(Pj , α) are quite far from
the centers in Ci.

I Lemma 10. For any cluster Pj ∈ P \Oi, we have
(i) For any point c ∈ b(Pj , α), Φ(Pj , c) ≤ (2 + 2α)∆(Pj).
(ii) Let dj denote the squared distance between Γ(Pj) and its nearest point in Ci. Let β =

dj
rj

and 1 < α < β. Then β > 2+ ε
2 and Φ(b(Pj ,α),Ci)

Φ(Pj ,Ci) ≥ 1
2(β+1) (4

√
βj√
α

+βj+lnα−4
√
βj− βj

α ).

By feeding α = 2 + ε
4 into Lemma 10, we get that any point from b(Pj , 2 + ε

4 ) can give a
(6 + ε

2 )-approximation for the optimal centroid of Pj . Now we show that Φ(b(Pj ,2+ ε
4 ),Ci)

Φ(Pj ,Ci) is
bounded by a constant.

I Lemma 11. For any cluster Pj ∈ P\Oi,
Φ(b(Pj ,2+ ε

4 ),Ci)
Φ(Pj ,Ci) ≥ 3

500 .

Proof. Define Q(α, β) = 1
2(β+1) (4

√
β√
α

+ β + lnα− 4
√
β− β

α ). It is easy to verify that Q(2, β)
increases monotonously with increasing value of β for β ≥ 2. Therefore,

∆(Ci,b(Pj , 2 + ε
4 ))

∆(Ci, Pj)
≥ ∆(Ci,b(Pj , 2))

∆(Ci, Pj)
≥ Q(2, βj) > Q(2, 2) > 3

500 ,

where the first step is derived from the fact that b(Pj , 2 + ε
4 ) ⊆ b(Pj , 2), the second step

is due to Lemma 10, and the third step follows from the fact that βj > 2, which is derived
from Lemma 10. J

We now prove the correctness of Theorem 2.

I Theorem 2. Given a point set P in a metric space and a parameter 0 < ε ≤ 1, let C be a
set of O( 1

ε (k +m)) points sampled from P using k-means++. Then, C contains a subset of
k centers that induces a (6 + ε)-approximation for k-means with m outliers with constant
probability.

Proof. By Lemma 9, we know that if the current set of the points (sampled with k-means++)
does not give the desired approximation ratio, the set of outliers Z or a cluster outside Oi
will be sampled with high probability. In the worst case scenario, we have to pick out k
approximate centers for the clusters in P and all the m outliers.
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At each iteration of k-means++, we define a variable Ai. If the algorithm samples a
point from Z or

⋃
Pj∈P\Oi b(Pj , 2 + ε

4 ), then Ai = 1; otherwise, Ai = 0. By the argument
above, Ai = 1 implies that the algorithm succeeds in finding an outlier or a (6 + ε

2 )-
approximation for the optimal center of a cluster in P \Oi. By Lemma 9 and Lemma 11,
we have E[Ai] ≥ 3

500 ·
ε

53 = 3ε
26500 . Let N = 53000(k+m)

3ε , A =
∑N
i=1Ai, and u =

∑N
i=1E(Ai).

Using Lemma 5, we have Pr(A ≥ k +m) ≥ 1− Pr(A ≤ 1
2u) ≥ 1− e−k/4 ≥ 1− e−1/4. This

implies that the set of O( 1
ε (k + m)) points sampled with D2-sampling contains a subset

of k points that induces a (6 + ε)-approximation with a high constant probability, which
completes the proof of Theorem 2. J

References
1 Manu Agarwal, Ragesh Jaiswal, and Arindam Pal. k-means++ under Approximation Stability.

Theoretical Computer Science, 588:37–51, 2015.
2 Ankit Aggarwal, Amit Deshpande, and Raivi Kannan. Adaptive sampling for k-means cluster-

ing. In Proc. 12nd Int. Workshop and 13rd Int. Workshop on Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 15–28, 2009.

3 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better Guarantees for
k-Means and Euclidean k-Median by Primal-Dual Algorithms. In Proc. 58th IEEE Symposium
on Foundations of Computer Science, pages 61–72, 2017.

4 Nir Ailon, Ragesh Jaiswal, and Clairire Monteleoni. Streaming k-means approximation. In
Proc. 23rd Annual Conference on Neural Information Processing Systems, pages 10–18, 2009.

5 Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed J Zaki. Robust partitional
clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11):994–
1002, 2009.

6 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

7 David Arthur and Sergei Vassilvitskii. k-means++: the adavantage of careful seeding. In Proc.
18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, 2007.

8 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In Proc.
33rd Annual ACM Symposium on Theory of Computing, pages 21–29, 2001.

9 Moses Charikar, Sudipto Guha, and David B. Shmoys. A constant-factor approximation
algorithm for the k-median problem. In Proc. 31st Annual ACM Symposium on Theory of
Computing, pages 1–10, 1999.

10 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 642–651, 2001.

11 Ke Chen. On k-Median clustering in high dimensions. In Proc. 17th ACM-SIAM Symposium
on Discrete Algorithm, pages 1177–1185, 2006.

12 Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, volume 8, pages 826–835,
2008.

13 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local Search Yields Approximation
Schemes for k-Means and k-Median in Euclidean and Minor-Free Metrics. In Proc. 57th IEEE
Annual Symposium on Foundations of Computer Science, pages 353–364, 2016.

14 Feldman Dan and Leonard J. Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proc. 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1343–1354, 2012.

15 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proc. 23rd Annual Symposium on Computational Geometry, pages
11–18, 2007.

ISAAC 2019



61:12 Improved Algorithms for Clustering with Outliers

16 Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R Salavatipour.
Approximation schemes for clustering with outliers. In Proc. 37th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 398–414, 2018.

17 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local Search Yields a
PTAS for k-Means in Doubling Metrics. In Proc. 57th IEEE Annual Symposium on Foundations
of Computer Science, pages 365–374, 2016.

18 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. arXiv, 2008. arXiv:0809.2554.

19 Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii. Local
search methods for k-means with outliers. Proceedings of the VLDB Endowment, 10(7):757–768,
2017.

20 Huang ingxiao, Jiang Shaofeng, Li Jian, and Wu Xuan. ε-Coresets for Clustering (with
Outliers) in Doubling Metrics. In Proc. 59th IEEE Annual Symposium on Foundations of
Computer Science, pages 814–825, 2018.

21 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proc. 34th Annual ACM Symposium on Theory of Computing, pages
731–740, 2002.

22 Ragesh Jaiswal and Nitin Garg. Analysis of k-means++ for separable data. In Proc. 15th
Int. Workshop and 16th Int. Workshop on Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 591–602, 2012.

23 Byrka Jaroslaw, Pensyl Thomas, Rybicki Bartosz, Srinivasan Aravind, and Trinh Khoa. An
Improved Approximation for k-Median and Positive Correlation in Budgeted Optimization.
ACM Transactions on Algorithms, 13(2):23, 2017.

24 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant Approximation for k-Median
and k-Means with Outliers via Iterative Rounding. In Proc. 50th Annual ACM Symposium on
Theory of Computing, pages 646–659, 2018.

25 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010.

26 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal
on Computing, 45(2):530–547, 2012.

27 Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

28 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

29 Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–28:22, 2013.

30 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In Proc.
30th Annual Conference on Neural Information Processing Systems, pages 604–612, 2016.

http://arxiv.org/abs/0809.2554

	Introduction
	Our Contributions
	Other Related Work

	Preliminaries
	k-Median Clustering with Outliers in Euclidean Space
	The Algorithm
	Analysis

	k-Means Clustering with Outliers in Metric Space

